SÉbAStiEn Lacrampe Cuyaubère Flieutête

LELEPA

TOPICS IN THE GRAMMAR OF A VANUATU LANGUAGE

> A thesis submitted for the degree of Doctor of Philosophy of the Australian National University

April 2014

Department of Linguistics
School of History, Culture and Language
The Australian National University

Except where otherwise noted in the text, this thesis represents the author's own original work.

Sébastien Lacrampe Department of Linguistics
School of Culture, History and Language The Australian National University

Acknowledgements

I owe my initial encounter with the Lelepa people and their language to Pierre Fartaparar. At that time I was a teacher in Port-Vila, and he was my neighbour, running a very conveniently placed nakamal, or kava-bar with his dad. We would see each other in the morning, as he was getting ready for the day and I was walking to work. We started waving hello to each other, and then one day he invited me for a shell of kava, and later asked me to spend a weekend on his island, Lelepa. The rest, as they say, is history, and as I got to know some Lelepa people, it seemed natural for me to work on their language. So to Pierre, I am immensely grateful.

At about the time I was contemplating the idea of doing linguistic work on Lelepa, I met two inspirational and pivotal persons, Chris Ballard and Nick Thieberger. They both encouraged me to work on the language, as Chris was doing research on the history of the region, and Nick was working on the languages of the area. Nick became a supervisor, and Chris an extremely valuable colleague who fed me historical resources and supported the production of a book of stories in the language.

In Lelepa and Mangaliliu, I am very grateful to the families who opened their homes, languages and culture to me, and made me a happy fieldworker every day: Tareinuwa Munariki and Leitag, Naomi and Kilion Kalotiti, Chief Kalkot Murmur and Leisara Kalotiti. To Douglas Marka Fonu Lolowia, I will be always grateful for our friendship and for your help in getting my project going in the field. You left us too early and we miss you. Kukat pa kane aga ti tapargor nag mau.

For their support for my fieldwork, I am extremely grateful to the whole community of Lelepa speakers, particularly those who allowed me to record them. To those speakers who did a lot of work with me, I want to particularly acknowledge Thompson Namuan, who not only was an informant from the start, but also a good friend who made sure I laughed every day. In my final fieldtrip, I am particularly grateful to Thompson Namuan (again!) with whom I went through literally hundreds of verb paradigms, and Richard Matanik who generously helped with checking the draft of the story book and suggesting many useful changes. In Vanuatu, I also benefitted from discussions with the local mob of linguists, John Lynch, Robert Early and Hannah Vari-Bogiri.

To my supervisors at the ANU, I am also extremely grateful. To I Wayan Arka, my chair of panel, for acute and detailed criticism, constant encouragement, and a truly admirable personality. Bethwyn Evans, for her excellent advice, dedication and for reading a whole draft of my PhD . Alex François, for the many challenging discussions, the fun of organising a conference together, and the technical help with Toolbox and Word. To Nick Thieberger who was an external supervisor, who read drafts of my chapters, made many useful suggestions and would check on me when I was out of touch for too long. To Nick Evans, who was my advisor and had the task of reading a first draft of my PhD , and provided extremely detailed and valuable criticism. Nick really made me realise that a writer should have the reader in mind. Despite his extremely busy schedule, we had many hours of meetings to discuss my draft, and I am extremely grateful for his advice.

In the final stages before submission, I am grateful to Maxine McArthur, the editor at the School of Culture, History and Languages of the ANU, who did a wonderful and quick job copy-editing the whole thesis.

I am also very grateful to the Australian Government for an Australian Postgraduate Award scholarship which funded three and a half year of my candidature and to the Endangered Languages Documentation Program at the School of Oriental and African Studies at the University of London, which funded a further year. For funding towards the production of a book of Lelepa stories I collected and put together with a group of Lelepa speakers, I am grateful to the Australian Government's Pacific Public Sector Linkages Programme (PPSLP).

Amongst Oceanic linguists, my thanks go to Valerie Guérin for her friendship and encouragement, Dorothy Jauncey for reading drafts, and Jeremy Hammond for helping with technology, supplying a nifty Elan/Toolbox script, and fun times in Vila, Sydney, Lelepa and France.

To my friends at the ANU, for challenging discussions and support of all kind, including Friday night beers at University House, my thanks go to Tom Honeyman, Maia Ponsonnet, Piers Kelly, Christian Doehler, Fany Cottet, Julia Miller, Yusuf Sawaki, Niko Kobepa, Aung Si, Chikako Senge, Stef Spronck, Greg Dickson and Matt Carroll.

Last but not least, this thesis would not have been possible without the unconditional support and constant encouragement (and occasional threats) from my wife, Miranda. Love goes to my children Atticus, Paco and Saskia, whose patience with their father seemingly has no limits, and to my parents and brother back in France.

Abstract

This thesis discusses topics in the grammar of Lelepa, an Oceanic language spoken by about 500 people on the islands of Lelepa and Efate in the centre of the Vanuatu archipelago.

The areas of grammar covered in the thesis are phonology (chapter 2), morphology (chapter 3), word classes (chapter 4), noun phrases (chapter 5), possession (chapter 6), clause structure and grammatical relations (chapter 7), verb classes and valency changing devices (chapter 8), the verb complex (chapter 9), complex predicates (chapter 10), aspect and modality (chapter 11), coordination and subordination (chapter 12).

The phonemic inventory is of medium to small size, with fourteen consonants and five vowels. It includes two typologically rare labial-velar consonants. Stress is not phonemic. Syllables can be complex and consonant clusters are allowed in onset and coda positions. The most important phonological process is vowel reduction, which represent a significant driver of language change.

Clausal word order is SVO. Oblique arguments follow the object(s), and adjuncts occur in initial or final position in the clause. An exception is the benefactive phrase, an adjunct encoding beneficiaries which occurs between the subject proclitic and the verb, and makes the verb complex a discontinuous structure. The benefactive phrase is cross-linguistically unusual and makes central Vanuatu languages distinctive.

Of typological interest is the split dividing objects along two classes of transitive verbs. It has its source in a semantic distinction between significantly affected Ps and less affected Ps. However, the split is lexical because borrowed transitive verbs are systematically classified with verbs taking less affected Ps regardless of the degree of affectedness of their P .

Lelepa has serial verb constructions but has also developed other verbal constructions grouped in the class of complex predicates, which comprise auxiliary verbs, serial verbs, post-verbs and
clause-final particles. These encode a broad range of semantic distinctions including aspectual, modal and directional values, manner, intensification, cause-effect and result.

Lelepa distinguishes between inalienable and alienable possession, but the possessive constructions have diverged from the typical Oceanic model. In particular, relational classifiers are not found in the language, and a construction reflecting alienable relationships distinguishes between human and non-human possessors.

An unusual feature is the marking of mood and transitivity on certain verbs with Stem Initial Mutation. In this process, verbs switch their initial consonant from /f/ to /p/ according to particular mood and transitivity values. This process is known in Vanuatu language but often limited to mood marking, whereas Lelepa and other central Vanuatu languages also mark transitivity.

The morphological structure is agglutinative, but many grammatical features are encoded by particles, especially in the verb complex. In the nominal domain, inflectional affixes include possessor-indexing suffixes, a prefixed article and derivational affixes generating deverbal nouns. Compounding is a feature of both nouns and verbs.

Word classes are clearly defined, and the main open classes are nouns and verbs. Nominals can be derived through nominalisation of verb roots or subtantivisation, a process deriving referential items from all word classes except nouns and pronouns.

Table of contents

Acknowledgements V
Abstract vii
Glosses and abbreviations xxiii
List of tables XXV
List of maps and figures xxix
1 Introduction 1
1.1 The language and its speakers 1
1.1.1 Location 1
1.1.2 Genetic affiliation 1
1.1.3 Language name and language transmission 3
1.1.4 Language ecology and language use 5
1.2 Typological profile 6
1.3 Previous studies 9
1.4 The present study 10
1.4.1 Fieldwork and methodology 10
1.4.2 Corpus and examples used in this study 11
2 Phonology 13
2.1 Introduction 13
2.2 Segmental Phonology 13
2.2.1 Phoneme inventory 13
2.2.2 A preliminary note on final vowel reduction 15
2.2.3 Consonants 17
2.2.3.1 Stops 17
2.2.3.2 Nasals 20
2.2.3.3 Fricatives 22
2.2.3.4 Liquids 24
2.2.3.5 Glides 25
2.2.3.6 Co-articulated consonants 27
2.2.4 Vowels 30
2.2.4.1 Minimal vowel contrasts 30
2.2.4.2 Vowel allophony 31
2.2.4.3 Vowel length 38
2.3 Syllable structure 41
2.3.1 Introduction 41
2.3.2 Syllable types 43
2.3.2.1 Nucleus-only syllables 43
2.3.2.2 Open syllables 44
2.3.2.3 Closed syllables 45
2.3.3 Summary: the Lelepa syllable 47
2.4 Phonotactics 49
2.4.1 Consonant distribution 49
2.4.1.1 Simple onsets and simple codas 49
2.4.1.2 Consonant combinations 50
2.4.2 Vowel distribution 56
2.4.3 Word stress 58
2.4.3.1 Preliminaries 58
2.4.3.2 Dominant stress pattern 59
2.4.3.3 Exceptions to the dominant stress pattern 61
2.4.3.4 Final vowel reduction and stress assignment 63
2.5 Phonological processes 64
2.5.1 Vowel reduction 64
2.5.1.1 Final vowel reduction 65
2.5.1.2 Pretonic vowel reduction 66
2.5.2 Epenthesis 67
2.5.2.1 Vowel epenthesis 67
2.5.2.2 Glide epenthesis 70
2.5.3 Consonant syllabification 71
2.5.4 Vowel harmony 71
2.5.5 Gemination 73
2.6 Orthography 74
3 Morphology 75
3.1 Introduction 75
3.2 Noun morphology 75
3.2.1 Nouns and possessive morphology 75
3.2.2 The residual article $n(a)$ - 80
3.2.3 Nominal compounding 83
3.2.3.1 Compound words 84
3.2.3.2 Phrasal compounds 86
3.2.3.3 Summary of properties of nominal compounds 90
3.3 Verb morphology 91
3.3.1 Word boundaries in the verb complex 91
3.3.2 Object marking morphophonology 93
3.3.2.1 Object marking on $k i$-ending verbs 94
3.3.2.2 Object marking on non ki-ending verbs 96
3.3.3 Transitivisation with $-k i i^{\text {'TR' }}$ 99
3.3.4 Relic transitivisation with $-e$ 'TR' 101
3.3.5 Final consonant loss alternation 102
3.4 Derivational morphology 103
3.4.1 Nominalisation 103
3.4.1.1 Productive nominalisation: na-...na 103
3.4.1.2 Vestigial nominalisation: $n(a)$ - 107
3.4.2 Substantivisation: te 'SBST' 108
3.4.2.1 $\quad t e=+$ verbs 110
3.4.2.2 $t e=+$ adjectives 112
3.4.2.3 te + possessives 113
3.4.2.4 te + determiners 115
3.4.2.5 $t e=+$ numerals 118
3.4.2.6 $t e=+$ adverbs 118
3.4.2.7 te + topic particle 119
3.4.3 Locative $a=$ 120
3.4.4 Ordinal kee- 121
3.4.5 Reduplication 122
4 Word classes 125
4.1 Introduction 125
4.2 Nouns 125
4.2.1 The class of nouns 125
4.2.2 Common and proper nouns 128
4.2.3 Place names 130
4.2.4 Obligatorily possessed kin terms 131
4.2.4.1 Basic kin terms 131
4.2.4.2 Dyadic kin terms 133
4.3 Verbs 135
4.4 Post-verbs 138
4.5 Adjectives 141
4.6 Pronouns 145
4.6.1 Personal pronouns 145
4.6.2 Demonstrative pronouns 147
4.6.2.1 tena 'SBST.DEM' 147
4.6.2.2 tenge 'SBST.DEF' 148
4.6.2.3 Spatial demonstratives tewas and tewan 148
4.6.3 Benefactive pronouns 149
4.7 Adverbs 150
4.7.1 Phrasal adverbs 152
4.7.1.1 Pre-verbal phrasal adverbs 153
4.7.1.2 Post-verbal phrasal adverbs 154
4.7.1.3 Pre- and post-verbal phrasal adverbs 157
4.7.1.4 Spatial adverbs 159
4.7.2 Sentential adverbs 162
4.7.2.1 Temporal adverbs 162
4.7.2.2 Manner adverb tapla 'like this; thus' 164
4.8 Prepositions 165
4.8.1 True prepositions 166
4.8.1.1 pae 'SOURCE’ 166
4.8.1.2 naloni 'about, regarding' 166
4.8.1.3 mag 'BEN' 167
4.8.2 Prepositional verbs 167
4.9 Directionals 169
4.10 Numerals 171
4.10.1 The class of numerals 171
4.10.2 Counting system 173
4.11 The pre-head modifier sara 'each, every' 175
4.12 Determiners 176
4.12.1 Definite and indefinite determiners 176
4.12.1.1 Indefinite specific determiner skei ' ${ }^{\text {INDEF }}$ 176
4.12.1.2 Definite specific determiner nge 'DEF' 178
4.12.2 Demonstrative determiners 179
4.12.2.1 The demonstratives $n a$ and nae 180
4.12.2.2 Spatial demonstratives wa ‘DEM:MED', wa-s ‘DEM-PROX’ and wa-n 'DEM-DIST' 181
5 Noun phrases 185
5.1 Introduction 185
5.2 Noun phrases: structural overview 185
5.2.1 Structure of NP_{N} 185
5.2.2 Structure of $\mathrm{NP}_{\text {PRO }}$ 186
5.2.3 The core unit of $\mathrm{NP}_{\mathrm{N}}: \mathrm{NP}_{\text {Core }}$ 187
5.3 Heads of NPs 189
5.3.1 Head nouns 190
5.3.2 Head pronouns 190
5.3.2.1 Personal pronouns 190
5.3.2.2 Demonstrative pronoun tena 191
5.3.2.3 Demonstrative pronoun tenge 192
5.3.3 Determiners as heads 193
5.4 Modification within NPs 193
5.4.1 Pre-NP ${ }_{\text {Core }}$ modification: sara 'each' 193
5.4.2 Modification within NP Core: ADJ 196
5.4.2.1 The ADJ slot 196
5.4.2.2 The adjective phrase 197
5.4.3 The POSS slot 201
5.4.3.1 Possessive pronominals 202
5.4.3.2 Possessor NPs 203
5.4.4 Determiners 204
5.4.4.1 Indefinite specific skei 'INDEF' 204
5.4.4.2 Indefinite specific tete 'some' 206
5.4.4.3 Definite specific nge 'DEF' 207
5.4.4.4 Demonstrative na 'DEM' 209
5.4.5 Relative clauses 209
5.5 Functions of NPs 210
5.5.1 Grammatical functions 210
5.5.1.1 Subject NPs 210
5.5.1.2 Object NPs 211
5.5.1.3 Oblique NPs 212
5.5.1.4 Adjunct NPs 212
5.5.2 Pragmatic and discourse functions 212
5.5.2.1 Subject NP position 213
5.5.2.2 Lexical vs. pronominal realisation of NPs 213
5.5.2.3 Left-dislocated NPs 215
5.5.2.4 Right-dislocated NPs 215
5.5.2.5 Pronouns modified with $n a$ 'DEM' 215
6 Possession 217
6.1 Introduction 217
6.2 Overview of possessive constructions 217
6.3 Pronominal possessor 220
6.3.1 Inalienable possession: $\mathrm{N}_{\text {possessum }}-\mathrm{SUF}_{\text {possessor }}$ 220
6.3.2 Inalienable possession: $\mathrm{N}_{\text {possessum }} \mathrm{PRO}_{\text {possessor }}$ 222
6.3.3 General possession: $\mathrm{N}_{\text {possessum }}$ POSS possessor 223
6.3.4 Associative possession: $\mathrm{N}_{\text {possessum }}$ nag-SUF possessor 225
6.4 Nominal possessor 228
6.4.1 Inalienable possession: $\mathrm{N}_{\text {possessum }} \mathrm{N}_{\text {possessor }}$ 228
6.4.2 General possession, non-human possessor: $\mathrm{N}_{\text {possessum }}=n \mathrm{~N}_{\text {possessor }}$ 228
6.4.3 General possession, human possessor: $\mathrm{N}_{\text {possessum }}=g \mathrm{~N}_{\text {possessor }}$ 229
6.5 Local possessum noun kia- 230
7 Clause structure and grammatical relations 233
7.1 Introduction 233
7.1.1 Terminology 234
7.1.2 Basic and extended clause levels 235
7.2 Overview of basic clause structure 237
7.3 Copular clauses 238
7.3.1 The functions of the copula 238
7.3.2 Copula omission 241
7.4 Non-copular verbal clauses 242
7.4.1 Argument realisation 242
7.4.1.1 S and A arguments: subjects 242
7.4.1.2 P and R arguments: objects 245
7.4.1.3 T, L, I arguments: secondary objects and obliques 249
7.4.2 Word order 251
7.4.2.1 Monovalent clauses 252
7.4.2.2 Divalent clauses 253
7.4.2.3 Trivalent clauses 256
7.4.3 Argument coding summary 259
7.4.4 Grammatical relations 260
7.4.4.1 Subject 260
7.4.4.2 Object 260
7.4.4.3 Split object 261
7.4.4.4 Oblique 263
7.5 Adjuncts 264
7.5.1 Temporal adjuncts 264
7.5.2 Source adjuncts 266
7.5.3 Benefactive phrase 267
7.6 Variations in the structure of the clause 269
7.6.1 Subject NP position 270
7.6.2 Left-dislocation 271
7.6.2.1 Left-dislocated subject 272
7.6.2.2 Left-dislocated arguments of equative clauses 272
7.6.2.3 Left-dislocated object 272
7.6.2.4 Left-dislocated oblique 273
7.6.2.5 Left-dislocated possessor 273
7.6.3 Right-dislocation 274
7.6.4 Topicalisation of adjuncts 274
7.7 Negation 275
7.7.1 Symmetric negation 275
7.7.1.1 Negation of simple clauses 276
7.7.1.2 Negation of complex sentences 277
7.7.2 Negative verbs 278
7.7.2.1 tik. 'be lacking' - pitlak. 'have; exist' 278
7.7.2.2 pueli 'not be there' - to 'stay' 279
7.7.2.3 malo 'not want' - msau 'want' 279
7.7.2.4 kano 'be.unable; cannot' - tae 'know; can' 280
7.7.3 Constituent negation 280
8 Verbs classes and valency changing operations 283
8.1 Introduction 283
8.2 Overview of verb classes 284
8.3 Intransitive verbs 286
8.3.1 Class 1 and Class 2 intransitives 286
8.3.2 Intransitives and oblique arguments 299
8.3.3 Adjectival verbs 291
8.4 Ambitransitive verbs 293
8.4.1 Ki -ending ambitransitives 293
8.4.2 Non ki-ending ambitransitives 293
8.4.1 A-verbs and U-verbs 294
8.5 Transitive verbs 297
8.5.1 Class 1 transitives 298
8.5.1.1 Ki -ending transitives 298
8.5.1.2 Non ki-ending transitives 300
8.5.2 Class 2 transitives 302
8.6 Ditransitive verbs 306
8.7 Valency-changing operations 309
8.7.1 Valency increasing: transitivisation with -ki 'TR' 309
8.7.1.1 Applicative derivation 310
8.7.1.2 Causative derivation 315
8.7.2 Valency re-arrangement operations 315
8.7.3 Reduplication as a valency changing operation 317
8.7.4 Fixed transitivity alternations 319
9 The verb complex 323
9.1 Introduction 323
9.2 The verb complex: structure and unity 323
9.2.1 Defining the verb complex 323
9.2.2 Structural overview 325
9.3 Pre-verbal elements 327
9.3.1 Subject proclitic 327
9.3.2 Irrealis particle 328
9.3.3 Aspect and modality particles 328
9.3.4 Numeral 330
9.3.5 Negation particle 331
9.3.6 Auxiliaries 331
9.3.7 Pre-verbal adverbs 333
9.3.8 Reflexive/reciprocal particle 333
9.4 Post-verbal elements 335
9.4.1 Post-verbs 335
9.4.2 Perfect sua 335
9.4.3 Object 336
9.4.3.1 The paradigm of bound object markers 337
9.4.3.2 Object enclitics vs. object suffixes 337
9.4.3.3 Allomorphy in object marking 338
9.4.4 Bi -functional $=s$ ' $3 \mathrm{SG} . \mathrm{OBJ}$; 3OBL’ 344
9.4.4.1 $=s$ encoding objects 346
9.4.4.2 $=s$ encoding obliques 347
10 Complex predicates 349
10.1 Introduction 349
10.1.1 Serial verb constructions in Oceanic languages 349
10.1.2 Defining complex predicates in Lelepa 350
10.2 Overview of complex predicates 352
10.2.1 Construction types 352
10.2.2 Semantics of complex predicates 354
10.2.2.1 Aspect 356
10.2.2.2 Modality 356
10.2.2.3 Valency increase 357
10.2.2.4 Manner 357
10.2.2.5 Cause-effect 357
10.2.2.6 Direction/motion 358
10.3 Auxiliary constructions 358
10.3.1 Distinguishing auxiliary constructions from SVCs 358
10.3.2 Formal properties of auxiliary constructions 359
10.3.2.1 to 'stay; IPFV' 360
10.3.2.2 mato 'stay long; IPFV' 361
10.3.2.3 wane 'lie; IPFV’ 361
10.3.2.4 atlake 'start' 362
10.3.2.5 stat 'start' 362
10.3.2.6 pea/fea 'first/first:IRR' 363
10.3.2.7 msau 'want' 363
10.3.2.8 malo 'not want' 363
10.3.2.9 tae 'know; can' 364
10.3.2.10 kano 'be unable; cannot' 364
10.3.2.11 mas 'must' 364
10.3.2.12 pa/fa 'go:R/IRR' 365
10.3.2.13 panei 'come' 365
10.3.3 Semantics of auxiliary constructions 365
10.3.3.1 Imperfective 366
10.3.3.2 Inceptive 368
10.3.3.3 Sequentiality 368
10.3.3.4 Desiderativity 368
10.3.3.5 Ability 369
10.3.3.6 Obligation 369
10.3.3.7 Change of state 370
10.3.3.8 Direction and motion 371
10.4 Serial verb constructions 372
10.4.1 Phonological and formal properties of SVCs 372
10.4.2 Patterns of formation 374
10.4.3 Semantics of SVCs 377
10.4.3.1 Direction/location/position 377
10.4.3.2 Sequentiality 378
10.4.3.3 Cause-effect 379
10.4.3.4 Manner 380
10.4.3.5 V1 + rogo 'feel': try, test 381
10.5 Post-verb constructions 382
10.5.1 Formal properties of post-verb constructions 382
10.5.2 Semantics of post-verb constructions 382
10.5.2.1 Completion: pkout 'completely' 383
10.5.2.2 Intensification: suk. 'tight', suk \sim suk 'tight~RED' 384
10.5.2.3 Result: punu 'dead', lwa 'removed', paksaki 'clean', gor 'block' 386
10.6 Clause-final particle constructions 392
10.6.1 Stative: to, mato, wane 392
10.6.2 Durative: pa, pan pa 394
10.6.3 Previous events: pea 396
10.6.4 Direction away from deictic centre: $p a$ 396
10.6.5 Direction towards deictic centre: panei 398
11 Aspect and modality 399
11.1 Introduction 399
11.1.1 Terminology 400
11.1.2 Aspect and mood: two overt categories 401
11.2 Modality 403
11.2.1 The first division: realis and irrealis 403
11.2.2 Realis clauses 403
11.2.3 Irrealis clauses 404
11.2.4 Stem-initial mutation 409
11.2.4.1 Mood-related stem-initial mutation 411
11.2.4.2 Transitivity-related stem-initial mutation 412
11.2.5 Epistemic modality in the verb complex 416
11.2.5.1 Hypothetical: lag 'MAYBE' 416
11.2.5.2 Certainty: kat 'CERT' 418
11.3 Aspect 420
11.3.1 Pre-verbal aspect particles 420
11.3.1.1 Iterative and emphatic: mro 'AGAIN' 422
11.3.1.2 Ongoing/continuous: plo 'STILL’ 422
11.3.1.3 Sequential: po 'SEQ' 425
11.3.2 Auxiliaries marking aspect 427
11.3.2.1 Imperfective: to and mato 'IPFV' 427
11.3.2.2 Imperfective: wane 'IPFV' 429
11.3.3 Perfect 430
11.4 Lack of tense category and lexical encoding of time 434
12 Coordination and subordination 439
12.1 Introduction 439
12.2 Coordination 439
12.2.1 Asyndetic coordination 439
12.2.2 Conjunctive coordination with go 'and' 440
12.2.3 Conjunctive coordination with naaram 'and' 442
12.2.4 Disjunctive coordination with kite 'or' 444
12.2.5 Adversative coordination with kane 'but' 446
12.2.6 Sequential coordination with nina 'then' 448
12.2.7 Simultaneity coordination with se 'while' 449
12.3 Distinguishing coordination from subordination 452
12.4 Complement clauses 455
12.4.1 Defining Lelepa complement clauses 455
12.4.2 The complementisers lag, se and takanei 457
12.4.3 Complement-taking predicates 461
12.4.3.1 Utterance predicates 462
12.4.3.2 Propositional attitude predicates 463
12.4.3.3 Knowledge and acquisition of knowledge predicates 464
12.4.3.4 Fearing predicates 466
12.4.3.5 Desiderative predicates 467
12.4.3.6 Phasal predicates (aspectuals) 467
12.4.3.7 Immediate perception predicates 468
12.4.3.8 Achievement predicates 468
12.4.3.9 Categories not expressed by CTPs 469
12.5 Adverbial clauses 469
12.5.1 Purpose clauses 470
12.5.2 Reason clauses 471
12.5.3 Conditional clauses 472
12.5.4 Time clauses 474
12.6 Relative clauses 475
12.6.1 Properties of relative clauses 475
12.6.2 Functions of $\mathrm{NP}_{[\text {REL }]}$ 477
12.6.2.1 $\quad \mathrm{NP}_{[\text {REL }]}$ is subject 477
12.6.2.2 $\mathrm{NP}_{\text {[REL] }}$ is object 479
12.5.2.3 $\mathrm{NP}_{[\mathrm{REL}]}$ is oblique 480
12.6.2.4 $\mathrm{NP}_{[\mathrm{REL}]}$ is possessor 481
12.6.2.5 $\mathrm{NP}_{[R E L]}$ is adjunct 482
Bibliography 483
Appendix: texts 495

List of tables

Table 2.1 Consonants 14
Table 2.2 Vowels 15
Table 2.3 Short vowels contrasts 31
Table 2.4 Long vowels contrasts 31
Table 2.5 Comparing durations of short vowels 40
Table 2.6 Comparing durations of long vowels 41
Table 2.7 Comparing duration ranges across vocalic lengths 41
Table 2.8 Syllable types 43
Table 2.9 Consonant distribution at word and syllable boundaries 50
Table 2.10 Tautosyllabic consonant clusters 52
Table 2.11 Heterosyllabic two-consonant sequences 55
Table 2.12 Vowel sequences 57
Table 2.13 Phonemes/graphemes correspondences 75
Table 3.1 Noun categories according to possession 78
Table 3.2 Bound nouns 80
Table 3.3 Free nouns 81
Table 3.4 Nouns showing na-initial alternations 82
Table 3.5 Compound words: nouns 87
Table 3.6 Compound words: non-nominals 89
Table 3.7 Phrasal compounds 90
Table 3.8 Contrasting phrasal compounds \& possessive constructions 92
Table 3.9 Properties of Lelepa compounds 93
Table 3.10 Morphophonological processes with ki-ending verbs 97
Table 3.11 Morphophonological processes with non ki-ending verbs 99
Table 3.12 Transitivisation with $-k i$ 102
Table 3.13 Verbs alternating between a full and reduced form 104
Table 3.14 na-...-na nominalisation 107
Table $3.15 n(a)$-nominalisation 109
Table 3.16 Lexicalised substantives 112
Table 3.17 Substantives 112
Table 3.18 Possessive pronominals and possessive pronouns 115
Table 3.19 Possessive pronominals and corresponding substantives 117
Table 3.20 Determiners and demonstrative pronouns 118
Table 3.21 The functions of reduplication 124
Table 3.22 Non-analysable reduplicated forms 125
Table 4.1 Criteria establishing the class of nouns 128
Table 4.2 Some $n a$-initial nouns classified by semantic domain 130
Table 4.3 Place names with fused location prefix 132
Table 4.4 Obligatorily possessed kin terms 133
Table 4.5 Vocatives replacing kin terms 135
Table 4.6 Dyadic kin terms 136
Table 4.7 Criteria establishing the subclasses of verbs 138
Table 4.8 Post-verbs 140
Table 4.9 Allomorphs of 3SG.OBJ on verbs and post-verbs 141
Table 4.10 Criteria establishing the class of adjectives 144
Table 4.11 Underived adjectives 145
Table 4.12 Derived adjectives 146
Table 4.13 Personal pronouns 148
Table 4.14 Demonstrative pronouns 149
Table 4.15 Benefactive pronouns 151
Table 4.16 Criteria defining the class of adverbs 153
Table 4.17 Adverbs 154
Table 4.18 Sentential adverbs 164
Table 4.19 Prepositions 167
Table 4.20 Criteria establishing the class of directionals 171
Table 4.21 Directionals 172
Table 4.22 Criteria establishing the class of numerals 173
Table 4.23 Numbers 176
Table 4.24 Determiners 178
Table 6.1 Possessive constructions 221
Table 6.2 Possessor-indexing suffixes 222
Table 6.3 Free possessive pronominals 225
Table 7.1 Correlations between grammatical functions and grammatical relations 244
Table 7.2 Subject proclitics 245
Table 7.3 Bound object markers 247
Table 7.4 Properties of P and R arguments 250
Table 7.5 Argument coding 261
Table 7.6 Compared properties of core \& oblique arguments \& adjuncts 266
Table 7.7 Negative verbs and positive counterparts 280
Table 8.1 Verb classes 287
Table 8.2 Class 1 and Class 2 intransitives 289
Table 8.3 Class 2 intransitives and their causative counterparts 289
Table 8.4 Ambitransitive verbs 295
Table 8.5 Class 1 transitive verbs; ki-ending 300
Table 8.6 Class 1 transitive verbs; non ki-ending 302
Table 8.7 Class 2 transitive verbs 305
Table 8.8 Types of $-k i i^{\prime}$ 'TR' derivation 312
Table 8.9 Applicative derivation \& semantic role of the applied object 312
Table 8.10 De-transitivising reduplication 320
Table 8.11 Fixed transitivity alternations 321
Table 9.1 Aspect and modality particles 330
Table 9.2 Bound object markers 338
Table 9.3 Lexical conditioning of $\{=\mathrm{ea}\}$ / $\{$-na $\}$ '3sG.OBJ' 343
Table 9.4 Syncretism of $=s$ 346
Table 10.1 Semantic distinctions encoded by complex predicates 357
Table 10.2 Semantics of SVCs compared 357
Table 10.3 Auxiliary verbs 362
Table 10.4 The semantics of auxiliaries 368
Table 10.5 SVC formation (pattern 1) 377
Table 10.6 SVC formation (pattern 2) 378
Table 10.7 Semantics of post-verb constructions 384
Table 10.8 Functions of clause-final particles 394
Table 11.1 Verbs undergoing stem-initial mutation 411
Table 11.2 Ambitransitive verbs undergoing stem-initial mutation 415
Table 11.3 Lexemes used in lexical encoding of time 437
Table 12.1 Coordinators and subordinators 455
Table 12.2 Lelepa CTPs in a typological perspective 463

List of maps and figures

Map 1.1 Lelepa in Vanuatu 2
Map 1.2 Efate and the Shepherd Islands 3
Fig. 3.1 Compound words and semantic compositionality 88
Fig. 4.1 Position of phrasal adverbs in the verb complex 154
Fig. 4.2 Spatial adverbs 162
Fig. 5.1 Structure of NP_{N} 187
Fig. 5.2 Structure of $\mathrm{NP}_{\text {PRO }}$ 188
Fig. 5.3 Adjective order in Lelepa 203
Fig. 5.4 Dixon (1982) hierarchy of adjective order 203
Fig. 7.1 Basic clause structure 239
Fig. 7.2 NP positions 271
Fig. 9.1 The verb complex 327
Fig. 10.1 The layers of the clause 351
Fig. 10.2 Auxiliary construction 354
Fig. 10.3 Serial verb construction 355
Fig. 10.4 Post-verb construction 355
Fig. 10.5 Clause-final particle construction 355
Fig. 12.1 Intonation pattern of a subordinate clause 461
Fig. 12.2 Intonation pattern of two juxtaposed clauses 462

Glosses and abbreviations

1	first person	IPFV	imperfective
2	second person	IRR	irrealis
3	third person	KIN	kin term prefix
ADD	addressee	LOC	locative
AGAIN	iterative and emphatic	MAYBE	hypothetical modality
ASS	associative	MED	medial
BEN	benefactive	NEG	first negation particle
CERT	certainty	NEG2	second negation
COM	commitative		particle
COME	directional (towards	NH	non-human
	deictic centre)	NMLZ	nominaliser
COMP	complementiser	N.SPEC	non-specific
COP	copula	OBJ	object
CONJ.NUM	conjunction linking	OBL	oblique
	numerals	ORD	ordinal
DEF	definite	P	p-initial verb root
DEM	demonstrative	PL	plural
DIST	distal	p.name	personal/place name
DU	dual	POSS	possessive
DYAD	dyadic kin term	PRF	perfect
	formation prefix	PROX	proximal
EMPH	emphatic	R	realis
EXCL	exclusive	RED	reduplication
EXPL	expletive	REL	relativiser
F	f-initial verb	RR	reflexive/reciprocal
FIRST	initial/previous event	S	subject
FOC	focus	SBST	substantiviser
GO	directional (away from	SEQ	sequential
	deicticcentre)/durative	SG	singular
H	human	SOURCE	source preposition
HESIT	hesitation	STAT	stative
INCL	inclusive	Intensifier TILL ongoing	
INT	interjection	TR	transitiviser
INTERJ			

Chapter 1 - Introduction

1.1 The language and its speakers

1.1.1 Location

Lelepa is an Oceanic language spoken is central Vanuatu by about 500 people who live on two islands: Lelepa and Efate. Lelepa Island is located close to the western coast of Efate, in the centre of the Vanuatu archipelago (see map 1.1). It is a small limestone island of about 8 sq. km (Garanger 1972:38) with no rivers, but a few creeks that run after heavy rain. The island is dominated by a small peak culminating at 202 meters above sea level, and all the inhabitants live together in Natapao, a village located at the south-eastern tip of the island (see map 1.2).

On Efate, the main community of Lelepa speakers live in Mangaliliu, a village located on the western coast of Efate (see map 1.2). The traditional land of Lelepa people comprise Lelepa Island, Artok Island (named Retoka on map 1.2), and a stretch of Efate land going from Utaon on the western coast to the easternmost tip of Efate, named Tuktuk (this name does not appear on the map).

1.1.2 Genetic affiliation

Lelepa is an Oceanic language from the Austronesian family. It is part of the Central Eastern Oceanic linkage, which is currently divided into five groups:

- Southeast Solomonic family
- Utupua and Vanikoro
- Southern Oceanic linkage
- Central Pacific linkage
- Micronesian family

According to Lynch, Ross and Crowley (2002:108), these groups may actually be first-order Oceanic subgroups, as Central Eastern Oceanic is not well supported. Lelepa is part of the Southern Oceanic linkage, which also includes all the languages of Vanuatu and New Caledonia. This grouping is further subdivided into the North Vanuatu linkage and the Nuclear Southern Oceanic linkage. Lelepa is part of the latter, and its closest sister languages
appear to be Nakanamanga and South Efate. However, as these two languages are classified as part of distinct groups within Nuclear Southern Oceanic, the exact position of Lelepa within this larger linkage is not currently known. Nakanamanga is spoken in Moso, Nguna, on the north Coast of Efate and in the Shepherd Islands (a group of islands extending from Mataso to Tongoa), and South Efate is spoken in Erakor and on the south-eastern coast of Efate (see map 1.2).

Map 1.1 Lelepa in Vanuatu ${ }^{1}$

[^0]

Map 1.2. Efate and the Shepherd Islands
[outline taken from Lynch and Crowley (2001:108)]

1.1.3 Language name and language transmission

In this study, the language is referred to as 'Lelepa'; however, this term is not indigenous to the community of Lelepa speakers, who refer to their language with the collocations seen in (1), or simply as nafsana 'language':

a.	na-fsa-na=n ART-speak-NMLZ=POSS:NH 'The language of Lelepa.'	Allaapa Lelepa		
b.				
	na-fsa-na=n	ART-speak-NMLZ=POSS:NH	\quad	kia-gta
:---				
LOCAL-1PL.INCL				

The term 'Lelepa' was chosen here for practical reasons, because outside of their community, Lelepa people refer to themselves, their island and language by that name, and are also known by that name in Vanuatu.

On a Vanuatu scale, Lelepa is a fairly small language spoken by about five hundred people. According to the latest National Census of 2009, there are 387 people living on the island of Lelepa, in the single village of Natapao (Vanuatu National Statistics Office 2009:4). About one hundred Lelepa speakers live in the village of Mangaliliu, and a further small number of speakers live in the capital Port-Vila. On Lelepa, the village of Natapao comprises groupings of several traditional villages and was established as people left the interior of the island at the end of the $19^{\text {th }}$ Century, when Christianity started to spread. Mangaliliu was established much more recently, in 1983 (Chief Kalkot Mormor pers. comm.). There is no dialectal variation between Natapao and Mangaliliu, and daily contact occurs between residents of both settlements.

Most children in the community learn Lelepa as their first language, but the language is not taught in the local schools, except at the kindergarten level. Speakers often point out that language transmission is an issue in families in which the father originates from Lelepa while the mother comes from another language group. In such situations, the language of the household is Bislama, ${ }^{2}$ which often results in the children having Bislama as their first language. While exogamous marriage is the usual practice in Lelepa, in the past women marrying into the community used to learn the language, so that the dominant language in the family was Lelepa. In more recent times however, Bislama has crept in to become the dominant language in some households. This situation is regarded as the main risk factor for language endangerment by Lelepa people. During my fieldwork I have indeed observed that Bislama is the main language in some households; however, I have also witnessed many examples of children using Bislama with their mothers and Lelepa with other Lelepa speakers.

[^1]This shows that language transmission can be achieved even when the mother is not a Lelepa speaker. This, however, should not detract from the fact that language transmission is an issue for the future generation of Lelepa speakers.

1.1.4 Language ecology and language use

The languages of central Vanuatu (see map 1.2) are part of a dialect chain (Lynch and Crowley 2001:108) which involves South Efate, Nakanamanga, Lelepa and Namakir. In addition, two Polynesian outliers, Mele-Fila and Emae, are spoken in the region. Lelepa shares a language boundary with Mele-Fila to the south, ${ }^{3}$ and with Nakanamanga to the North. Lelepa does not share a direct language boundary with South Efate, but Lelepa and South Efate speakers have been in sustained contact throughout the history of the region. Geographically, Lelepa is stuck between Nakanamanga and South Efate, which are also much bigger languages, with 6,000 speakers for South Efate and 9,500 for Nakanamanga (Lynch, Ross and Crowley 2001:106).

When Christianity started to spread in the area at the end of the $19^{\text {th }}$ Century, Lelepa speakers used South Efate as a church and education language. Later, they turned to the Nguna variety of Nakanamanga for use in these two domains (George Munalpa \& Steven Mariofa pers. comm.). In contrast, Lelepa was never used as a church language nor education language. As a result, Lelepa people became very familiar with South Efate and Nguna, to the point that today, many people over the age of forty are fully competent in one of these two languages, if not both. Currently, neither South Efate nor Nakanamanga are used in education, and only Nguna remains as Church language, but now solely used for religious hymns. However, a strong connection between Lelepa speakers and these two languages remains, especially through marriage, as Nguna and South Efate women often marry into Lelepa. The other connection is through literacy. Although there is no strong writing tradition in the community, people tend to write in either South Efate or Nakanamanga, especially if they have been schooled in one of these languages. They also read in these two languages, as the few reading resources available are hymns and bible translations in Nguna and South Efate. An example of local writing is the diary of Chief Mormor, the chief of Mangaliliu in the eighties. His diary is written mostly in Nguna, with a few Bislama passages, probably because he was schooled in Nguna and also because it was the dominant church language. Another, more recent example of the strong connection with Nakanamanga can be seen with the local Lelepa

[^2]string band. ${ }^{4}$ The dozen young men who play in the band write songs in Bislama or Nakanamanga. When asked why they were not using Lelepa, they replied that Nguna was easier for them to sing in, because that was the language used by previous string-band members to write songs. Interestingly, the name of the string-band itself, Leo Rongo Wia, is Ngunese, and the band designed a tee-shirt with Ngunese slogans as well.

At the time of Independence in 1980, French and English became the languages of education in Vanuatu, and consequently schooling in Nguna was stopped for Lelepa children. Currently, Lelepa children are educated in either English or French in the two primary schools of the community: Lelo School is an English school located on Lelepa, while Amaroa School is a French school based in Mangaliliu. However there are two kindergartens on Lelepa in which Lelepa is the medium of education.

Inter-generational variation is a striking feature of Lelepa, as seen particularly in its phonology. The phonological process of vowel reduction (see 2.5.1) is widespread and can be observed when comparing the speech of different generations of speakers. Young speakers' speech reflects a stage in which the process has been fully applied, that is, vowels occurring in the relevant environment are reduced if not deleted altogether. In contrast, older speakers show considerable variation, and in their speech vowels either fully surface or are reduced but still pronounced, and less often deleted.

1.2 Typological profile

The phonemic inventory is of medium to small size, with fourteen consonants and five vowels. There are two typologically rare consonants, the labial-velars $/ \mathrm{kp}^{\mathrm{w}} /$ and $/ \mathrm{gm}^{\mathrm{w}} /$. Voicing of consonants is not contrastive and occurs in the vicinity of other voiced segments. Vowels /a e i o u/are regularly centralised before alveolars (except for /a/) and lengthened when stressed. Vowel length is contrastive for central /a/ only, but has a low functional load and tends to be neutralised in fast speech. Stress is predictable: primary stress falls on the penultimate mora, and a secondary stress is assigned every second mora to the left. Some words starting with the prefixed article na- 'ART' are exceptional and receive initial stress. The syllable is potentially complex. It minimally comprises a sonorant in the nucleus, up to three consonants in the onset and a maximum of two consonants in the coda. Only a single consonant in the coda is allowed if three consonants occur in the onset, and there are only a

[^3]few syllables with two consonants in the onset and two consonants in the coda. The most important phonological process is vowel reduction, which occurs in the immediate environment of stress and is loosely conditioned by inter-generational variation. It is a significant driver of language change, with younger speakers showing the tendency to reduce vowels drastically while older speakers tend to preserve full forms.

The morphological structure is agglutinative, but many grammatical features are encoded by independent particles, especially in the verb complex, which also has a few clitics surrounding the verb to encode participant reference. Other features encoded by particles in the verb complex are aspect, modality, negation, reflexivity/reciprocality, direction and posture/position. One of the few suffixes occurring on verbs is the transitiviser -ki 'TR', along with some object markers. There is more affixation in the nominal domain: inflectional affixes include possessor-indexing suffixes marking inalienable possession, the prefix $n a$ - 'ART' encoding genericity, and the nominaliser suffix -na 'NMLZ'. Nouns are distinguished morphologically on their ability to take possessor-indexing suffixes, in which case they are called bound nouns, and contrast with free nouns. Kin terms are the only bound nouns which must occur with these suffixes, while other bound nouns can occur as bare stems. Free nouns, in contrast, never take possessor-indexing suffixes. Compounding is a feature of both nouns and verbs, and compounds can be phonological (several roots combine into a single phonological word) or phrasal (several roots combine but each is phonologically independent).

Word classes are clearly defined, and the main classes are nouns and verbs. Typologically notable classes include a small closed class of adjectives, the class of directionals which encode spatial reference, and post-verbs which modify verbs and encode manner, aspect and intensification. Stative intransitive verbs occur as noun modifiers to encode typical adjectival meanings not encoded by the 'true' adjectives. Other word classes are pronouns, numerals, two classes of adverbs (phrasal and sentential), free possessive pronominals, determiners and prepositions. Nominals can be derived through nominalisation of verb roots, or through subtantivisation with te 'SBST'. Substantivisation derives referential items and applies to all non-referential classes of words; that is, all word classes except for nouns and pronouns.

There are two types of NPs depending on whether the head is a noun or a pronoun. NPs with head nouns can be complex while those with pronouns can only have a single modifier. NPs are left-headed, except for the distributive sara 'each' which occurs pre-head. Relative clauses are the final element of the NP. Both NP types follow a rigid order, but
variation exists in some possessive constructions in which the usual order possessumpossessor is reversed to encode intensification of the possessive relationship.

Possession in Oceanic languages is typically described in terms of the semantic distinction of inalienability, and a grammatical distinction, known as direct/indirect possession, that is determined by the position of possessor suffixes which occur either on the possessum noun or a relational classifier. While Lelepa shows this semantic opposition, the constructions have diverged and the opposition between direct and indirect possession is not relevant to the system. In particular, relational classifiers are not found in Lelepa, and a construction reflecting alienable relationships distinguishes between human and non-human possessors.

Subjects, objects and obliques are coded through word order and participant-indexing bound morphemes. Of typological interest is the lexical split dividing objects along two classes of transitive verbs. This split is likely to have its source in a semantic distinction between significantly affected Ps (i.e. patients) and less affected Ps (e.g. stimuli, locations, goals, themes). However, since borrowed transitive verbs are systematically classified with verbs taking less affected Ps regardless of the degree of affectedness of their P , this semantic division does not allow accurate predictions. The coding of object and oblique arguments with clitics is complex due to several interacting properties. First, both phonological and lexical conditioning of object markers makes the system more complex on the surface than it is underlyingly. Second, while there is a multiplicity of bound forms encoding the same relation (i.e. object), there is only a single form, $=s$, which encodes certain objects as well as obliques. The distribution of $=s$ shows a double case of syncretism, first in the marking of grammatical relations, but also in that of number, as $=s$ collapses singular and plural. Ditransitive alignment is secundative, with primary and secondary objects coded by order and distinct sets of bound object markers.

The order of core arguments in the clause is Subject-Verb-Primary Object-Secondary Object. Oblique arguments follow the object(s), and adjuncts occur in initial or final position in the clause. An unusual exception to this is the position of the beneficiary participant, which receives dedicated coding in terms of formal marking and position. It is encoded by the benefactive phrase, an adjunct realised either as a prepositional phrase introduced by mag 'BEN’ or by a benefactive pronoun. It occurs between the subject and the verb, an unusual position for an adjunct, and makes the verb complex a discontinuous structure. While crosslinguistically unusual in terms of its position and specialised semantics, similar constituents are
found in other central Vanuatu languages, which appear to make these languages distinctive in the Vanuatu context.

Like many of its sister languages, Lelepa has retained serial verb constructions, but has also developed other verbal constructions grouped in the class of complex predicates, which encode complex events in a single clause. They comprise constructions with auxiliary verbs, serial verbs, post-verbs and clause-final particles, and encode the types of distinctions denoted by serial verbs in other Oceanic languages.

Aspect and modality are central categories but are encoded by a range of different constructions. In contrast, tense is not a grammatical category, but time reference is encoded by temporal adverbs and adjunct NPs. Every clause is obligatorily marked for mood, while aspect is optionally expressed. Irrealis mood and epistemic modality are both encoded by means of preverbal particles, while other modalities and aspect can be encoded in various locations in the verb complex, and by various constructions. These include dedicated particles (epistemic modality, imperfective, perfect), as well as serial verb constructions, auxiliary constructions and other types of complex predicates encoding a wide range of aspectual and modal distinctions.

Coordination of clauses and NPs include conjunctive, disjunctive, adversative, sequential and simultaneity coordination. This is done by dedicated coordinators as well as asyndetic coordination. Subordinating structures comprise complement clauses, adverbial clauses and relative clauses. In terms of relativisation, the language relativises all positions in the NP Accessibility Hierarchy and uses a pronoun retention strategy for relativized arguments and a gapping strategy for relativized adjuncts.

1.3 Previous studies

There are few linguistic studies dedicated to Lelepa itself, but there are quite a few studies of the languages of the area. This section only addresses linguistic work dedicated to Lelepa.

Miller 1945 is a brief grammar sketch comprising brief lists of targeted vocabulary (body parts, kin terms, numbers, etc) and grammatical words (prepositions, adjectives, adverbs, etc).

Lacrampe 2009 is an unpublished MA thesis giving an account of the expression of possession. It is accessible here: https://digitalcollections.anu.edu.au/handle/10440/1026

Lacrampe 2011 is a published paper on vowel reduction showing that this phenomenon reflects inter-generational variation and language change. It is accessible here: $\underline{\text { https://digitalcollections.anu.edu.au/bitstream/1885/9402/5/Lacrampe Simplifying2012.pdf }}$

1.4 The present study

1.4.1 Fieldwork and methodology

This study presents an analysis of grammatical topics based on linguistic data collected over several periods of fieldwork in Natapao and Mangaliliu. The first period of fieldwork was conducted in 2007 and the final one in 2012, for a total of over thirteen months. There were two longer periods of fieldwork of four months each in 2009 and 2012.

Most of the data consists of texts produced by speakers, often as a result of my prompting. They comprise traditional narratives, personal life stories, procedural texts, natural conversations, public speeches, songs and lullabies. Traditional narratives are of two kinds: nakai are folktales involving humans, animals and local supernatural creatures such as the mutuama 'ogre' and anthropomorphised taboo stones. The other traditional narratives are naluokia. They are similar to proverbs in that they are the length of a sentence and contain messages relevant to everyday life on Lelepa. When recording naluokia, I would ask the speaker to explain their meaning in their own terms. Personal life stories are narratives in which a speaker would recount a particular event in his or her life, either on my suggestion or of their own choice. These include personal experiences such as travels to foreign countries, as well as events relating to historical events. Procedural texts always resulted from my prompting and consist of one or two speakers describing a traditional but still contemporary activity: mat weaving, cooking, fishing, hunting, gardening, house building and canoe making. For recordings of procedural texts I used video as much as possible. Natural conversations, in contrast, were not staged: I would take a walk in the village and if I found people chatting at the front of their house or under trees, I would simply seek their consent to record the conversation. I would place my recorder and microphone in a location as innocuous as possible and leave, then come back after a few minutes, to let the speakers familiarise themselves with such an unnatural intrusion. I would also participate in the conversation if invited or if I considered it appropriate. Public speeches often take place during traditional ceremonies such as weddings, funerals, chiefly title ordinations, and so forth. As such activities require a considerable amount of planning; I was able to arrange speakers' consent for my
recording in advance. As speakers became acquainted with my project I was increasingly invited to record particular events, either because the speaker has an interest in documenting a particular activity or simply saw it as a way to help me.

The other type of data consists of elicitation on topics of my choosing: nominal and verbal paradigms, noun phrases, serial verbs and other complex predicates, coordination and subordination. Those sessions were audio-recorded while I was taking notes at the same time. Elicitation was used in each fieldtrip; however, it is during the last visits that most targeted elicitation was conducted, following considerable analysis of the narratives and natural conversations. Elicitation sessions during the 2012 fieldtrip were conducted monolingually.

Recordings were transcribed in the field with speakers, and these transcriptions were transferred to digital files using the annotation software ELAN. ${ }^{5}$ Transcribing with speakers had many advantages: further questions on particular linguistic issues were able to be asked, orthographic conventions were discussed, and speakers could provide alternative formulations of particular pieces of discourse, especially to replace borrowings or when they detected a speech error. It should be noted that borrowings have been kept in the data used in this study as they represent valuable data. However, in the literacy resources jointly produced with speakers, borrowings were replaced with Lelepa words. ${ }^{6}$

1.4.2 Corpus and examples used in this study

During fieldtrips I recorded about 20.5 hours of texts. A large part of these recordings is organised in a searchable corpus of about 100 texts, which represents 13 hours of the total recordings. These are currently being archived with PARADISEC ${ }^{7}$ and ELDP ${ }^{8}$. The ELAN transcriptions were exported to Toolbox ${ }^{9}$ for interlinearisation and building of a dictionary (currently about 2,000 entries), then exported back in ELAN for further annotation. In this study, examples are presented in interlinearised form as seen in (2) and (3). The first line is in the practical orthography (see 2.6) and presents morphemic breaks. The second line gives glosses for each morpheme, and the third line is a free English translation. Examples from

[^4]natural texts have three lines, as in (2), while with elicited examples such as (3), a fourth line specifying '[elicited]'. It should also be noted that in chapter 2 on phonology, as well as in a few other places in this study, phonetic transcriptions of data are provided when relevant.
(2) Ur=to pat n-sale-na, ur=to taakae. 3PL.S=IPFV make ART-dance-NMLZ 3PL.S=IPFV dance 'They were having a dance ceremony, they were dancing.'
(3) np̃ou konou
head 1SG
'my head'
[elicited]

Chapter 2 - Phonology

2.1 Introduction

At the underlying level, the phonological system of Lelepa is typical of Oceanic languages. With fourteen consonants and five vowels, and a dominant penultimate stress pattern, the language fits the Oceanic picture quite well (Lynch, Ross and Crowley 2002:34-35). However, the system behaves in interesting ways, particularly with regards to the derivation of surface forms. Underlying forms are altered significantly to arrive at surface forms, and phonological and morphophonological processes play an important role. The most important phonological process is that of vowel deletion, which is widespread and probably the most significant driver of phonological change in the language, to the point that positing underlying forms is difficult in some cases (Lacrampe 2012). In addition, while there is a dominant penultimate stress pattern, there are also variations away from it, which contributes to making Lelepa different from other Oceanic languages.

The chapter is organised in six parts. Section 2.2 is dedicated to segmental phonology, providing minimal phonemic contrasts and describing the phonemes and their allophones. Section 2.3 discusses syllable structure and shows the different syllable types occurring in the language. Section 2.4 explores Lelepa phonotactics, segment distribution and stress. Section 2.5 analyses the most prominent phonological processes observed in the language. Finally, the orthographic system is introduced in section 2.6. Detailed phonetic transcriptions of data are given throughout, along with their phonemic representations. Note that phonetic transcriptions of all attested realisations are not always given, especially if a particular transcription is not relevant to the discussion at hand. Starting from chapter 3, all example sentences are given in their orthographic representation.

2.2 Segmental Phonology

2.2.1 Phoneme inventory

The phoneme inventories below present the fourteen consonants (Table 2.1) and the five vowels (Table 2.2) found in the language. The consonantal system is fairly typical of Oceanic in terms of number of places of articulations, but somewhat unusual in that the four plosives do
not contrast in voicing or other types of manner of articulation. Places of articulation of stops and nasals match, and the language has a contrast between the liquids $/ \mathrm{l} /$ and $/ \mathrm{r} /$. Labials, that is, labial-velars, bilabials and labiodentals make up the largest classes of sounds in the language. Nasals and liquids may be syllabic in certain environments (see 2.5.3). ${ }^{1}$ The series of stops and nasals include coarticulated labial-velars. These are cross-linguistically unusual but typical of the area. They are recorded in Lelepa's neighbours South Efate (Thieberger 2006:47, 51) and Nguna (Schütz 1969:15-16), as well as in more distant relatives such as Anejom (Lynch 2000:14), Lewo (Early 1994:49, 50), North-East Ambae (Hyslop 2001:28) and Mwotlap (François 2001:54), amongst others. The language also has two fricatives and two glides. The phonemic status of the glides and particularly of the palatal $/ \mathrm{j} /$ is not straightforward and needs some justification (see 2.2.3.5). Allophonic variation of consonants is discussed in 2.2.3.

	labial-velar	bilabial	labiodental	alveolar	palatal	velar
stop	$\widehat{\mathrm{kp}}^{\mathrm{w}}$	p		t		k
fricative			f	s		
nasal	Øm $^{\mathrm{w}}$	m		n		l
lateral				l		
trill				r		
glide	w				j	

Table 2.1. Consonants

With five phonemic vowels and contrastive length, the vocalic system is fairly typical of an Oceanic language. However, the system also behaves in its own ways, especially regarding vocalic realisation and length. First, there is quite a lot of variation in vocalic realisation - see 2.2.4.3 which discusses the main allophones of the vowels. A phonetic schwa also occurs in a number of environments: as an allophone of $/ \mathrm{e} /$, and as an epenthetic vowel separating consonant clusters both morpheme-internally and across morpheme boundaries. Second, while the vocalic system has contrastive vowel length, this feature has a low functional load. Table 2.2 shows that contrastive vowel length only exists for $/ \mathrm{a} /-/ \mathrm{aa} /$. Very few contrastive pairs are attested (see 2.2.4.1) and it is unclear if additional length contrasts exist beyond those posited in this table. As vowels are commonly lengthened when stressed, it is not straightforward to determine whether particular vowel realisations are phonemically short or long (see 2.2.4.3).

[^5]| | front | central | back |
| :---: | :---: | :---: | :---: |
| high | i | | u |
| mid | e | | o |
| low | | $\mathrm{a}-\mathrm{aa}$ | |

Table 2.2. Vowels

2.2.2 A preliminary note on final vowel reduction

Reduction of final vowels is widespread in the language and is relevant to many of the allophony rules concerning both consonants and vowels. Thus it is important to introduce this process briefly here (see 2.5.1.1 for a detailed discussion). On the surface, it is manifested by a range of realisations of the final vowels, which may be fully realised, devoiced, centralised (in the case of $/ \mathrm{i} /$ and $/ \mathrm{a} /$) or fully truncated. This is shown in (1). In this example, the single lexeme nati 'banana' is assigned two phonemic representations: a vowel-final one and a consonant-final one. Both representations point to a single vowel-final underlying form. Note also that in this example, the vowel-final representation has two phonetic realisations, one with final /i/ fully realised and the other with final /i/ devoiced:
(1) /nati/
/nat/
['na.ti]~['na.tit]
'banana'
'banana'

Final vowel reduction is not conditioned by a phonological feature (other than the immediate proximity of stress), but rather reflects a phonological change in progress in the language. It is found in the speech of all speakers, but more so in that of younger speakers. Older speakers on the other hand are more conservative and tend to use full, vowel-final forms more often. Since the change is in progress, final vowel reduction is optional. This is shown by the data given in this chapter, where two phonemic forms of the same lexeme may be given, a vowelfinal one and a consonant-final one.

A consequence of this phenomenon is that it can be difficult to know whether a particular surface form is underlyingly vowel-final or not. However, final vowels can be recovered in lexemes which host enclitics such as the nominaliser $=n a$ ' NMLZ ', the enclitic $=\mathrm{s}$ '3sG.OBJ; 3OBL', or the object enclitic =nia ‘3SG.OBJ'. In (2), the verb tina 'be.pregnant' is shown in its consonant-final form tim, and in its nominalised form natinana 'pregnancy.' During the enclitisation process, the final vowel of the root surfaces, showing that the underlying form of the verb is the vowel-final tina. In addition, this vowel surfaces in a stressed position, which forces a full realisation, and shows that stress is determined before final vowel deletion:

In (3), the verb maroa 'think' is shown with two distinct vowel-final forms, and in its nominalised form. Note that in the first phonetic form, maro receives final stress, which is not expected on CV-final forms (see 2.4.3). This is a clue that maro is a truncated form and that its underlying form is CVV final. This is seen in the following form maroa 'think' and in the nominalised form namaroana 'thought, idea':

(3)	/e=to maro/	['e.to ma.'ro]
/e=to maroa/	['e.to ma.'ro.we]	'3SG.S=IPFV think'
	/na=maroa=na/	[ne.,ma.ro.'wa.ne]

This process is also relevant to consonants and vowels preceding all final vowels. When a final vowel is truncated from an underlyingly CV-final form, the previous consonant finds itself in final position and its realisation is affected. Stops are the most affected class: alveolars may be aspirated or unreleased, while velars preceded by a back vowel may either be pushed back into the vocal tract and surface as uvular stops, or surface as velar fricatives, as seen in (4):
(4) /psruk/
[psruq] $\sim[$ psrux]
[e.'soq]~[e.'sox]

> 'speak'
> 'it jumped'

Other consonants are either slightly affected or not affected at all: fricatives may be slightly lengthened in final position after final vowel loss, while nasals do not vary between a final or non-final position. See 2.2.3 for a detailed discussion of consonant allophony.

When the final vowel is fully deleted, the process also affects preceding vowels if a consonant occurs between them, as with /sili/ and /sil/ 'enter' in (5). This example shows that following the deletion of final /i/, medial /i/ is centralised to [i], due to the fact that front and back vowel are centralised before an alveolar coda (see 2.2.4.2)
(5) \quad /sili/ \quad /sil/ \quad /sili=s/

['si.li] $\sim[$ 'si.li]	'enter'
[sil]	'enter'
[si.lis]	'enter=3OBL'

'enter'
'enter=3OBL'

2.2.3 Consonants

2.2.3.1 Stops

This section discusses the three stops articulated at a single place, while the co-articulated labial-velar plosive is discussed in 2.2.3.6. Voicing is not contrastive for all Lelepa stops, which can be realised as voiced in certain environments. Plosive contrast is shown in (6):
(6)
/kp ${ }^{\mathrm{w}}$ at=ia/
/pat=ia/
/taatia/
grandmother'
/kat=ia/
/pat=ia/
/kat=ia/
[${ }^{\mathrm{k} p}{ }^{\mathrm{w}}$ a.'ti.ja] $\sim\left[\right.$ kpp $^{\mathrm{w}}$ a.'ti]
'hit=3sG.OBJ'
[pa.'ti.ja]~[pa.'ti] 'make=3sG.OBJ'
[ta..'ti.ja]~[ta..'ti] 'paternal
[ka.'ti.ja]~[ka.'ti]
‘bite $=3$ SG.OBJ’

- Bilabial /p/

Example (9) shows that /p/ is mostly realised as a plain voiceless bilabial stop when occurring initially or medially:

```
/p/->[p]
    /pepe/ ['pe.pe] 'butterfly'
    /puka/ ['pu.qa] 'swell'
```

However, it is optionally voiced when following a nasal, occurring between a liquid and a vowel or intervocalically, as shown in (9):

$$
\begin{equation*}
/ \mathrm{p} / \rightarrow[\mathrm{p}] \sim[\mathrm{b}] /[+ \text { voice }] \ldots[+ \text { voice }] \tag{8}
\end{equation*}
$$

(9) $/ \mathrm{p} / \rightarrow[\mathrm{p}] \sim[\mathrm{b}]$
/npat/ [n.'pat $\left.{ }^{\text {h }}\right] \sim\left[\right.$ n.'bat $\left.{ }^{\text {h }}\right] \quad$ 'tooth'
/alpat/ [el.'pat $\left.{ }^{\text {h }}\right] \sim\left[\right.$ el.'bat $\left.{ }^{\text {h }}\right] \quad$ 'p.name'
/kapua/ [ke.'pu]~[ke.'bu]~[ke.'bu.we]~[ke.'pu.we] 'laplap'
/napua/ [ne.'pu.wa] [ne.'bu.wa]~[ne.'pu]~[ne.'bu] 'road'

Less frequently, /p/ occurs in word-final position, especially after loss of a final vowel as seen in (12). In this position it surfaces either aspirated or unreleased:
(10) $/ \mathrm{p} / \rightarrow\left[\mathrm{p}^{\mathrm{h}}\right] \sim\left[\mathrm{p}^{ }\right] / _\#$
(11) $\quad / \mathrm{p} / \rightarrow\left[\mathrm{p}^{\mathrm{h}}\right]$
/e=tap/ [e.'tap $\left.{ }^{\mathrm{h}}\right]$
/napap/
[e.'tap $\left.{ }^{\mathrm{h}}\right]$
$\left[\right.$ ne.'pap $\left.{ }^{\mathrm{h}}\right] \sim\left[\right.$ ne. $\left.{ }^{\text {bap }}{ }^{\mathrm{h}}\right]$

> 'taboo=3sG.S'
> 'shoulder'
(12) $/ \mathrm{p} / \rightarrow\left[\mathrm{p}^{\prime}\right]$ /nkapu/
[n.'kap]]~[n.'gap]] [n.'ka.pu]
'fire'
/taljopu/
[tel.'jop']~[tel.'jo.pu]
'turn around' /muntopu/
[m*n.'top']~[m*n.'to.pu]
'p.name'

- Alveolar / $\mathrm{t} /$
$/ \mathrm{t}$ / has a similar allophonic range as $/ \mathrm{p} /$, with unvoiced, voiced, aspirated and unreleased allophones. These allophones are realised in similar environments to the $/ \mathrm{p} /$ allophones. Thus $/ t /$ surfaces as a plain voiceless alveolar stop word-initially and medially, including when it occurs in a complex onset:
(13) $\quad / \mathrm{t} / \rightarrow[\mathrm{t}]$
/toto/ ['to.to] 'sea cucumber'
/atlak/
[a.'tlax]
'start'

When occurring between voiced segments, it is optionally voiced as shown in (14):
$/ \mathrm{t} / \rightarrow[\mathrm{t}] \sim[\mathrm{d}] /[+$ voice]_[+voice]
$/ t / \rightarrow[\mathrm{t}] \sim[\mathrm{d}]$
/nta/ [n.'ta]~[n.'da] 'all right'
/mtak/
$\left[{ }^{m} .{ }^{\prime} \mathrm{tak}^{\mathrm{h}} \sim\left[\mathrm{m}^{\prime} . \mathrm{dak}^{\mathrm{h}}\right]\right.$
'afraid'
/ntale/
[n.'ta.le] ~[n.'dale]
'taro'
/faatu/
['fa:.tu]~['fa..du]
'stone'
/atlake/
[e.'tla.ke] $\sim[$ e.'tlax] $\sim[$ e.'dlax]
'start'
$/ \mathrm{t} /$ is optionally aspirated or unreleased in word-final position:
(15) $/ \mathrm{t} / \rightarrow\left[\mathrm{t}^{\mathrm{h}}\right] \sim\left[\mathrm{t}^{ }\right] / _\#$
(16) $/ t / \rightarrow\left[\mathrm{t}^{\mathrm{n}}\right]$
/napat/ [ne.'path] 'tooth'
(17)
$/ t / \rightarrow\left[t^{\prime}\right]$
/nafat/ [ne.'fat'] 'bone’

- Velar $/ \mathrm{k} /$

Like /p/ and / $\mathrm{t} / \mathrm{/} / \mathrm{k} /$ has voiceless, voiced, aspirated and unreleased allophones. It surfaces as a plain voiceless velar stop before any segment if the preceding or following segment is voiceless:
(18) $/ \mathrm{k} / \rightarrow[\mathrm{k}] / \underset{/ \mathrm{C}}{\mathrm{C}}$
(19) $/ \mathrm{k} / \rightarrow[\mathrm{k}]$

/naktaf/	[nek.'taf]	'p.name'
/naskau/	[nes.'kaw]	'reef
/natkar/	[net.'kar]	'chiefly power'
/e=ksum=ia/~	[ek.su.'mi]~[ek.su.'mi.je]	
/e=ksum=i/	'3sG.s=husk=3sG.obj'	

When preceded and followed by voiced segments, $/ \mathrm{k} /$ optionally surfaces as $[\mathrm{g}]$, as shown in (20):

$$
\begin{array}{lll}
/ \mathrm{k} / \rightarrow[\mathrm{k}] \sim[\mathrm{g}] /[+ \text { voice }][\text { [+voice }] & \tag{20}\\
/ \mathrm{k} / \rightarrow[\mathrm{k}] \sim[\mathrm{g}] & & \\
\text { /nkasu//~/nkas/ } & \text { [n.'kas] }] \sim \text { nn.'gas] } & \text { 'tree' } \\
\text { /siko/ } & \text { ['si.ko]~['si.go] } & \text { 'squirrelfish' } \\
\text { /pakoa/ /pako/ } & \text { [pa.'ko.we]~[pa.'go.we] } & \text { 'shark' }
\end{array}
$$

In final position, $/ \mathrm{k} /$ surfaces as an aspirated or unreleased voiceless velar plosive:

(21)	$/ \mathrm{k} / \rightarrow\left[\mathrm{k}^{\mathrm{h}}\right] \sim\left[\mathrm{k}^{\text {' }}\right]$	[n..ker.'gik'] [$\mathrm{n} . \mathrm{ker} . \mathrm{gik}{ }^{\text {h] }}$] [n.ker.'gi.gi]	'children'
	/nkarkiki/~		
	/nkarkik/		
	/palseki/~	[pel.'sck'] \sim [pel.'sekh] [pel.'se.ki]	'paddle'
	/palsek/		

After back vowels and $/ \mathrm{a} / \mathrm{g} / \mathrm{k} /$ surfaces as a uvular plosive or fricative:

$/ \mathrm{k} / \rightarrow[\mathrm{q}] \sim[\chi]$		
/psruk/	[psruq] $\sim[p s r u \chi]$	'speak'
/e=sok/	[e.'sวq] ~[e.'sox]	'it jumped'
/makala/~	[ma.'qal] [ma.'xal] [me.'ka.le]	'sharp'
/makal/		
/msak/	[m.'saq] [m.'sax]	'sick'

Nevertheless, there can also be a fair amount of variation in the realisation of final $/ \mathrm{k} /$. Compare the three realisations of mtak 'afraid' in (24). They are taken from a wordlist in which the same speaker utters this word three times in a row, with three different realisations of $/ \mathrm{k} /$:

$$
\begin{equation*}
/ \mathrm{k} / \rightarrow\left[\mathrm{k}^{\mathrm{h}}\right] \sim\left[\mathrm{k}^{ }\right] \sim[\chi] / _\# \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
/ \mathrm{k} / \rightarrow\left[\mathrm{k}^{\mathrm{h}}\right] \tag{24}
\end{equation*}
$$

/mtak/

$$
\left[\mathrm{m}_{\mathrm{c}} . \mathrm{tak}^{\mathrm{h}}\right] \sim[\mathrm{m} . \operatorname{tak}] \sim[\mathrm{m} . \operatorname{ta\chi }]
$$

'afraid'

2.2.3.2 Nasals

Lelepa has four nasals, three of which are simple segments articulated at a single place of articulation (bilabial $/ \mathrm{m} /$, alveolar $/ \mathrm{n} /$ and velar $/ \mathrm{y} /$) and another one that is a complex segment, the coarticulated labial-velar nasal $/ \overparen{\jmath m}^{w} /$. The sub-minimal pairs given in (25) below show the contrast between these phonemes:

$/ \widehat{y m}^{\text {wae/ }}$		'away'
/mae/	[maj] ['ma.e]	'jump'
/nae/	[naj]~['na.e]	'3SG'
/naenae/	[ŋеј.''пај] [, [п..e.'ŋа.e]	'pant'

- Bilabial /m/
$/ \mathrm{m} /$ does not vary in its phonetic realisation and surfaces as [m] in all environments. Its distribution is not restricted and it combines with most segments. $/ \mathrm{m} /$ occurs in simple onsets, in second position in complex onsets and in codas.

$/ \mathrm{m} / \rightarrow[\mathrm{m}]$		
$/ \mathrm{mesa} /$	$[$ 'me.sa $]$	'today'
/mlat/	$[\mathrm{mlat}] \sim\left[\right.$ mlat $\left.^{\mathrm{h}}\right]$	'cold'
/lima/	['li.ma]	'five'
/namlas/	[nem.'las]	'forest'
/faam/	[fa:m]	'eat:F'
/naaram/	[na..'ram]	'and'

Word-initially, /m/is syllabified before obstruents. This syllabification is optionally realised with the addition of an epenthetic schwa before the nasal:
/m/ $\rightarrow[\mathrm{m}]$
/mpan/
/mtak/
/msak/

[m.'pan] [m.'ban]	
~ [әт.'pan]~[əャ.'ban]	'away'
[m.'tak $\left.{ }^{\text {h }}\right] \sim\left[ə m . ' \operatorname{tak}^{\mathrm{h}}\right]$	
	'afraid'
[m.'sak $\left.{ }^{\text {h }}\right] \sim\left[ə m . ' s a k^{\mathrm{h}}\right]$	
$\left[\mathrm{m}^{\prime} . \mathrm{zak}^{\mathrm{h}}\right] \sim\left[\right.$ m.'zak $\left.{ }^{\text {h }}\right]$	'sick'

- Alveolar /n/

Similarly to $/ \mathrm{m} /$, $/ \mathrm{n} /$ does not undergo allophonic variation and has an unrestricted distribution. It occurs in onsets, codas and as syllable nuclei before obstruents. Within words, it occurs initially, medially and finally:

$$
\begin{align*}
& \text { /n/ } \rightarrow[\mathrm{n}] \tag{28}\\
& \text { /nuwai/ } \\
& \text { /nlan/ } \\
& \text { /taanu/ } \\
& \text { /manfenfe/ } \\
& \text { /e=len/ } \\
& \text { /tan/ }
\end{align*}
$$

[nu.'wa.i]
[nlay]
['ta..nu]
[men.'fen.fe]
[e.'len]
[tan]
'water'
'wind'
'spit'
'thin'
'straight'
'downwards'

Like $/ \mathrm{m} /$, it is syllabified word-initially, before obstruents:

$/ \mathrm{n} / \rightarrow[\mathrm{n}]$		
/npat/		
		'tooth'
/nta/	[n.'ta]~[әп.'ta]~[n.'da]~[ən.'da]	'all right'
	[n.'kas]~[ən.'kas]	
	$\sim[\mathrm{n} . \mathrm{'gas}] \sim[ə n . ' \mathrm{gas}]$	'tree'
/nsfa/	[n.'sfa]~[ən.'sfa]	
	$\sim[n . ' s v a] \sim[ə n . ' s v a]$	'what'
/nfat/	[n.'fat ${ }^{\text {² }}$] \sim [ən.'fat ${ }^{\text {h }}$]	
		'bone'

- Velar / $\mathrm{g} /$

The voiced velar nasal $/ \mathrm{y} /$ has a wide distribution, but is slightly more restricted than the other nasals $/ \mathrm{n} /$ and $/ \mathrm{m} /$: it does not occur word-initially before obstruents, and thus does not undergo syllabification. Other than that, it combines with most other segments and occurs as
an onset, a coda and in consonant clusters. Within words, it occurs initially, medially and finally:
(30) $/ \mathrm{y} / \rightarrow[\mathrm{y}]$
/payau/ [pe.'yau] 'fish sp'
/not/
/nisu/ /lay/ / $\widehat{\mathrm{ym}}^{\mathrm{w}}$ latin/ /fatenlen/ /gruni/ /lyaki/ /nŋe/
[pe.'yau]
[$\mathrm{y} \boldsymbol{\mathrm { t }}$]
['yi.su]
[lay]
[$\mathrm{ym}^{\mathrm{w}} \mathrm{le}$.'tiy]
[.fa.ten.'lıy]
[yrun]
[l.'.ja.ki]
[ṇ.'ŋе]~[nə.'ye]
'fish sp’
'dark'
'squirrelfish'
'canoe nail'
'close'
'p.name'
'female'
'marry'
'DEF'

2.2.3.3 Fricatives

Lelepa has two fricatives, the labio-dental/f/and the alveolar / $\mathrm{s} /$. Contrasts between these two segments and stops are shown in (31):
(31) /fa/
[fa]
'go:IRR'
/sa/
[sa]
'bad'
/ta/
[ta]
'cut'

/ufa/	['u.fe]	'carry with /usa/ /uta/
	['use]	'rain'
['u.te]	'landwards'	
/fua/		
/sua/	['fu.we]	'blue fly'
/tua/	['su.we]	'PRF'
	['su.we]	'give'

- Labio-dental /f/
$/ f /$ is a voiceless labio-dental fricative which surfaces as $[\mathrm{f}]$ word-initially and finally, and optionally as $[\mathrm{v}]$ between voiced segments:
(32) $\quad / \mathrm{f} / \rightarrow[\mathrm{f}]$ /faatu/
/naktaf/
['fa:.tu] $\sim[$ 'fa:.du]
'stone' [nak.'taf] 'p.name'

$/ \mathrm{f} / \rightarrow[\mathrm{f}] \sim[\mathrm{v}]$
$/ \mathrm{kp}^{\mathrm{w}} \mathrm{a}=\mathrm{fa}$ /
$/ \mathrm{kp}^{\mathrm{w}} \mathrm{a}=$ fnoti/
/kafe/
/nalfa/

$\left[\mathrm{kxp}^{\mathrm{w}}{ }_{\mathrm{e} .}\right.$ 'fa] $] \sim\left[\mathrm{k}{ }^{\mathrm{w}}{ }^{\mathrm{w}}\right.$.'va]
'2SG.S:IRR=go:'
[kp ${ }^{\text {w }}$ ef.'not] $\sim\left[{ }^{\text {k }}{ }^{\text {w }}\right.$ ev.'not $]$

['ka.fe]~['ka.ve]
['nal.fa]~['nal.va]
'crab sp.'
'track'

- Alveolar /s/

Similarly to the other fricative, $/ \mathrm{s} /$ surfaces as a plain voiceless alveolar fricative $[\mathrm{s}]$ in most environments and is optionally voiced between voiced segments:

$$
\begin{align*}
& \text { /s/ } \rightarrow[\mathrm{s}] \tag{34}\\
& \text { /sey/ } \\
& \text { /sufate/ } \\
& \text { /ntas/ }
\end{align*}
$$

$[\mathrm{sen}]$	'yes'
[su.'fat]~ [su.'fa.te]	'south wind'
[n.'tas]~[n.'das]	'sea'

$/ \mathrm{s} / \rightarrow[\mathrm{z}] \sim[\mathrm{s}]$
/natusina/
/naŋsa/

[na.tu.'sin] \sim [na.tu.'zin]	
\sim	
['na.tu.'si.ne] $\sim[$ na.tu.'zi.ne]	'story'
['sa]. $[$ 'nan.za]	'when'

After / $\mathrm{t} /$, [s] undergoes optional palatalisation, a variation attested for a few speakers only:
$/ s / \rightarrow[s] \sim[6]$
/latsa/
['lat.sa]~['lat.ca] 'six'
(37)
$/ \mathrm{s} / \rightarrow[\mathrm{s}] \sim[[]$
$/$ mut suk=ia/
tightly=3sG.OBJ' \quad [.mut.su.'ki] $\sim[$ mut.ju.'ki] \quad 'fasten

2.2.3.4 Liquids

Lelepa has two liquids, the alveolar lateral /l/ and the alveolar trill / $\mathrm{r} /$. Contrast between these two phonemes is shown with the minimal pairs in (38):
(38)
/walaa/
[wa.'la:]
'spear'
/waraa/
[wa.'ra:]
'here'

/kul/	[kul]	'new skin'
/kur/	[kur]	'2pl.s'
/pra/	[pra]	'crash'
/pla/	[pla]	'pick'
/loa/	['lo.wa]~[lo]	'black'
/roa/	['ro.wa]~[ro]	'fall'

- Lateral /l/
$/ 1 /$ is an alveolar lateral which surfaces as []] in all environments. Similarly to nasals, /l/ is syllabified before obstruents, a process that can be avoided by the insertion of an epenthetic schwa. It has a wide distribution and occurs initially, medially and finally:
/lano/
/tolu/
/slae/
/kal/

['la.yo]
 ['to.lu]
 ['sla.e]
 [kal]

$\sim\left[1\right.$. 'vet $\left.{ }^{\text {h }}\right] \sim\left[\right.$ lă.'vet $\left.{ }^{\text {h }}\right] \sim\left[\right.$ ăl.'vet $\left.{ }^{\text {h }}\right] \quad$ 'nine'
[l.'get]~[ăl.'get]
'fly'
'three' 'help'
'tie'
'digging stick'
(40) $/ \mathrm{l} / \rightarrow[1] \sim[1]$
/lfot/
/lkot/

- Trill /r/
$/ \mathrm{r} /$ is an alveolar trill which, similarly to $/ 1 /$, does not present allophonic variation except when occurring initially before obstruents and $/ \widehat{g m}^{\mathrm{W}} /$, as a following coarticulated segment creates an additional environment for sonorant syllabification. It has a wide distribution and can occur in simple and complex onsets as well as codas.
(41) $\quad / \mathrm{r} / \rightarrow[\mathrm{r}]$
/rakua/
/paro/
/tera/
/nor/
/sral/
/tortor/

[re.'gu.we]	'crab'
['pa.ro]	'p.name'
['te.re]	'garden'
[yөr]	'block'
[sral]	'often'
[ter.'ter]	'sweat'

(42) $/ \mathrm{r} / \rightarrow[\mathrm{r}]$

2.2.3.5 Glides

Lelepa has two phonemic glides, the labial velar /w/ and the palatal $/ \mathrm{j} /$. It is important to distinguish these phonemes from the epenthetic glides $[\mathrm{w}]$ and $[\mathrm{j}]$, which occur as a result of a process of intervocalic glide insertion discussed in 2.5.2.2.

- Labial-velar /w/

Minimal contrasts between / w/ and other phonetically similar consonants are given below:
(43) $/ \mathrm{w} /-/ \mathrm{m} /-/ \widehat{n m}^{\mathrm{w}} /-/ \mathrm{p} /-/ \mathrm{k} /$
/wuru/~/wur/ ['wu.ru]~[wur] 'pass'
/muru/~/mur/ ['mu.ru]~[mur] 'laugh'
$/ \mathfrak{y m}^{\mathrm{w}} \mathrm{ur} / \quad\left[\mathrm{m}^{\mathrm{w}} \mathrm{ur}\right] \sim\left[\mathrm{m}^{\mathrm{w}} \mathrm{ur}\right] \quad$ sink'
/pura/~/pur/ ['pu.ra]~[pur]
'full'
/kur/
[kur]
'2pl.s'

$$
\begin{align*}
& \text { /w/-/kp }{ }^{w} \text { / } \tag{44}\\
& \text { /wat/ [wat] 'slap’ } \\
& \left./ \widehat{k p}^{\mathrm{w}} \text { ata/ } \sim / \mathrm{kp}^{\mathrm{w}} \text { at/ [} \mathrm{p}^{\mathrm{w}} \mathrm{at}\right] \sim\left[\mathrm{p}^{\mathrm{w}} \text { a.te }\right] \quad \text { 'another' } \\
& \begin{array}{lll}
\text { /wa/ } & {[\mathrm{wa}]} & \text { 'DEM' } \\
/ \mathrm{kp}^{\mathrm{w}} \text { a/ } & {\left[\mathrm{p}^{\mathrm{w}} \mathrm{a}\right]} & \text { '2SG.S:IRR' }
\end{array}
\end{align*}
$$

$/ \mathrm{w} /$ does not present allophonic variation and is realised as $[\mathrm{w}]$ in all environments it occurs in. The minimal pairs in (45) disambiguate /w/ and $/ \mathrm{u} /$. Note that the glide following / u / in these examples is epenthetic (see 2.5.2.2):
/wa/
/ua/
/रpwalwa/
$/ \mathrm{Kp}^{\mathrm{w}} \mathrm{a}=$ lua $/$
[wa]
['u.wa]
['pwal.wa] [${ }^{\mathrm{w}}$ a.'lu.we]
'DEM'
'ground oven'
'rockpool'
'2SG.S:IRR=vomit'

The distribution of $/ \mathrm{w} /$ is shown in (46). These examples show that $/ \mathrm{w} /$ occurs as an onset, word-initially and medially, but is not attested as a coda. However, note that [w] occurs in coda position as an allophone of $/ \mathrm{u} /$. Unacceptable surface forms are given to further disambiguate /w/ from /u/:

```
/walaa/
/wotanman/
/pawa/
/mowra/
/nows/
```

[wa.'la.]
[wo.ten.'man]
['pa.wa]
['mow.ra]
[nows]

*[.u.wa.'la:]	'spear'
*[u.,wo.tan.'man]	'p.name'
*[pa.'u.wa]	'fish sp.'
*[mo.'wu.ra]	'blow'
*[no.'wus]	'plant sp.'

- Palatal /j/

This phoneme has a much more restricted distribution than other phonemes of the language. Known occurrences of $/ \mathrm{j} /$ are only few; however, there is enough evidence to posit this segment as a phoneme. Compare the forms given in (47), in which both examples are given with acceptable and unacceptable surface forms. These show that $/ \mathrm{j} /$ is phonemically distinct from /i/ as it is unable to carry stress and cannot be the nucleus of a syllable. In the acceptable surface forms, stress falls on the penultimate mora as predicted by the stress rule (see 2.4.3.2). The unacceptable surface forms are realised as four-syllable words with stress falling on a vowel [i] which takes the position of $/ \mathrm{j} /$. This vowel is followed by [j], a regularly inserted epenthetic glide (see 2.5.2.2). Since these surface realisations are not acceptable, [j] is analysed as $/ \mathrm{j} /$ rather than $[\mathrm{i}]$:

/moutarju/	[mow.'tar.ju]	${ }^{*}$ [,mow.te.'ri.ju]	'p.name'
/marmarju/	[mer.'mar.ju]	${ }^{*}[$ mar.me.'ri.ju]	'p.name'

$/ \mathrm{j} /$ does not present any allophonic variation and is realised as [j] in all environment it occurs in. Its distribution is shown in (48): it occurs as a simple onset but not word-initially. Unacceptable surface forms are given to disambiguate $/ \mathrm{j} /$ from $/ \mathrm{i} /$:

(48) | /taljop/ | |
| ---: | :--- |
| | /mameja/ |
| /teteja/ | |
| | /mimija/ |
| | /nlanjot/ |

[tel.'jop]
[me.'me.je]
[te.'te.je]
[mi.'mi.je]
[nlen.'jet]
$*[$ [ta.li.'jop]
$*[$ ma.me.'i.je]
$*[$ te.te.'i.je]
$*[$ mi.mi.'i.je]
$*[$ nle.'ni.jet]
'turn around'
'father' 'mother'
'father'
'cyclone'

2.2.3.6 Co-articulated consonants

There are two co-articulated consonants in the language, the bilabial-velar stop $/ \mathrm{kp}^{\mathrm{w}} /$ and the bilabial-velar nasal $/ \mathfrak{g m}^{\mathrm{w}} /$. These two consonants are complex, being doubly-articulated as well as secondary articulated. Ladefoged and Maddieson 1996 observe that while the distinction between double and secondary articulation was made in early phonetic works (such as in

Abercrombie 1967), it is still crucial and observed in recent works (Ladefoged and Maddieson 1996:332, Kehrein 2006:705). In a double articulation, there are two articulatory gestures which have the same degree of stricture. Primary and secondary articulations are distinguished in that their articulatory gestures have different levels of stricture, the articulation with the greater level of stricture being the primary one, while the one with a lower level of stricture is termed secondary (Ladefoged and Maddieson 1996:328). Thus in the representation of the coarticulated $/ \mathrm{kp}^{\mathrm{w}} /$ and $/ \overparen{\mathrm{gm}}^{\mathrm{w}} /$, the superscript represents the primary articulation, which is doubly-articulated, while the ${ }^{w}$ represents the secondary articulation. Note that both phonemes have labialised and non-labialised allophones occurring before back vowels and liquids, as discussed below.

At the articulatory level, reasons for interpreting two subsequent articulatory gestures as a double articulation corresponding to a single segment rather than two gestures corresponding to two independent segments are often based on duration: a doubly-articulated segment should be more or less the same duration as a singly articulated segment, and duration should also be an important clue for distinguishing consonant clusters from doubly-articulated segments. It is generally agreed that consonant clusters are between one and a half to twice the duration of a co-articulated segment of the same type (Ladefoged and Maddieson 1996:334, citing Haggard 1973, Hardcastle and Roach 1977, Catford 1977). While no in-depth articulatory study was conducted on the Lelepa data regarding the durations of simple, doublyarticulated and sequences of two consonants, single and double articulations are perceptually closer to each other in duration than they are to sequences of consonants, which appear to be perceptually longer.

Another point of discussion looks at whether or not doubly-articulated segments consist in the simultaneous articulation of their gestures. While it is commonly said that there is simultaneous articulation in the realisation of these segments (Catford 1988:104, Kehrein 2006:705, Ladefoged and Maddieson 1996:328), language-specific studies of labial-velars have shown that the articulation of the gestures involved in these segments are not simultaneous, but that one gesture, the velar one, is earlier than the other. This is the case, for instance, in Yoruba (Painter 1978, Maddieson and Ladefoged 1989), Ibibio (Connell 1987, 1991), Mangbetu (Demolin 1991), and Ewe (Maddieson 1993). More recently, Connell (1994:446) suggests that regarding labial velars, "it is safe to say that the two component gestures are not simultaneous in the strict sense of the word, and that there is substantial, if not complete,
agreement that the velar closure and release, respectively, precedes those of the labial gesture." Similarly in Lelepa, the velar gesture present in the primary articulation of both $/ \mathrm{kp}^{\mathrm{w}} /$ and $/ \bigcap_{m}{ }^{\mathrm{w}} /$ precedes the labial gesture. Evidence for this is found in word-initial position for both phonemes, in which the primary articulation does not occur. In this position, the allophones $\left[\mathrm{p}^{\mathrm{w}}\right]$ and $\left[\mathrm{m}^{\mathrm{w}}\right]$ occur, but never $*\left[\mathrm{k}^{\mathrm{W}}\right]$ and $*\left[\mathrm{n}^{\mathrm{W}}\right]$. If the bilabial gesture preceded the velar one, then we would expect the allophones $*\left[\mathrm{k}^{\mathrm{W}}\right]$ and $*\left[\mathrm{y}^{\mathrm{W}}\right]$ instead, because the primary articulation does not occur in initial position. However this is not the case, as shown in (49):

/kpp ${ }^{\text {w }}$ a.rik/	[${ }^{\text {w }}{ }^{\text {a.'rik }}{ }^{\text {² }}$]	*[$\left.\mathrm{k}^{\mathrm{w}} \mathrm{a}^{.} \mathrm{rrik}{ }^{\text {] }}\right]$	'few'
/kp ${ }^{\text {w on/ }}$	[p^{w} כ甲]	$*\left[\mathrm{k}^{\mathrm{w}} \mathrm{\supset}\right.$] $]$	'night'
$/ \mathrm{gm}^{\text {w }}$ ol/	[$\mathrm{m}^{\mathrm{w}} \mathrm{ol}$]	*[${ }^{\text {w }}$ ol]	'just'
$/ \widehat{y m}^{\text {w }}$ aata/	['m ${ }^{\text {was.ta }}$]	*['y ${ }^{\text {w }}$.. ta]	'snake'

In addition to articulatory evidence, and in the absence of an in-depth articulatory study, evidence for positing doubly-articulated consonants instead of consonant sequences can be found in the phonology. A doubly-articulated consonant should behave similarly to a simple one with respects to the phonological processes at work in the language (Kehrein 2006:705).

- Voiceless labialised bilabial-velar stop $/ \mathrm{kp}^{\mathrm{w}} /$

It surfaces as $/ \mathrm{kp}^{\mathrm{w}}$ / word-medially, either intervocallically or after a consonant:

$$
\begin{equation*}
\underset{/ \mathrm{Kp}^{\mathrm{w}} / \rightarrow\left[\mathrm{Kp}^{\mathrm{w}}\right] / \mathrm{V} _\mathrm{V}}{/ \mathrm{C}_{-}} \tag{50}
\end{equation*}
$$

$/ \mathrm{lo}^{\prime} \mathrm{kpp}^{\mathrm{w}} \mathrm{a}=\mathrm{e} /$
[lo.'kp ${ }^{\text {w }}$ a.e]
/litkp ${ }^{\text {watok/ }}$
[lit. kp^{w} e. 'tok]
'see-3sg.obj’
'tree sp.'

Intervocalically and between voiced segments, it is optionally voiced:
(51) $/ \widehat{k p}^{w} / \rightarrow\left[\mathrm{gb}^{\mathrm{w}}\right] / \mathrm{V} _\mathrm{V}$
/[+voice]_[+voice]
/lo'kp ${ }^{\text {w }}$ a=e/ [lo.'gb $\left.{ }^{\mathrm{w}} \mathrm{a.e}\right] \quad$ 'see-3sg.obj'
/lkpwayor/ [l.'gbw ${ }^{\text {w.'nər] }}$ 'enclose'

The velar articulation is optionaly reduced when it is in medial position, before a CV syllable:
(52) $/ / \mathrm{kp}^{\mathrm{w}} / \rightarrow\left[\mathrm{k}^{\top} \mathrm{p}^{\mathrm{w}}\right] \sim\left[\mathrm{g} \mathrm{b}^{\mathrm{w}}\right]$ /nakp ${ }^{\text {w }}$ o/ $\quad\left[\right.$ 'na.g'b ${ }^{\mathrm{w}}$ o] 'be smelly'

The velar articulation is dropped initially before V :
(53) $/ \mathrm{kp}^{\mathrm{w}} / \rightarrow\left[\mathrm{p}^{\mathrm{w}}\right] / \# _V$

[$\mathrm{kp}^{\mathrm{w}} \mathrm{a}=\mathrm{to}$]	[${ }^{\text {w }}$ e.'to]	'2SG.S:IRR=stay'
[$\mathrm{kp}^{\text {w }}$ okae]	[p^{w}. ${ }^{\text {'ke.e] }}$]	'porcupinefish'

Rounding is preserved before $/ \mathrm{i} / \mathrm{l} / \mathrm{e} / \mathrm{l} / \mathrm{a} / \mathrm{but}$ lost before liquids and when it occurs in final position as a result of final vowel deletion:

$/ \mathrm{kp}^{\mathrm{w}} / \rightarrow\left[\mathrm{kp}^{\mathrm{w}}\right] \sim\left[\mathrm{p}^{\mathrm{w}}\right] / \ldots \mathrm{V}[-$ back $]$		
/ $\mathrm{kpp}^{\mathrm{w}} \mathrm{ili} /$	['p ${ }^{\text {i.li }}$]	'blink'
/kp wela/	['p ${ }^{\text {w }}$.le] $]$	'big'
/tikpp ${ }^{\text {a/ }}$	['ti.gb ${ }^{\text {w }}$]	'truss

$/ \mathrm{Kp}^{\mathrm{w}} / \rightarrow[\mathrm{Kp}] / _\mathrm{C}[+$ liquid $]$		
$/ \mathrm{Kp}^{\mathrm{w}}$ laka/	['Kpla.ke $]$	'buff-banded rail'
$/ \widehat{\mathrm{Kp}}^{\mathrm{w}}$ rata/	['Kpra.te]	'fish sp.'

$/ \widehat{k p}^{\mathrm{w}} / \rightarrow[\mathrm{kp}] / \ldots \#$		
$/$ naakp $^{\mathrm{w}} \mathrm{e} /$	$[$ naakp $]$	'war club'
$/$ nakp $^{\mathrm{w}} \mathrm{a}$ /	[nakp]	'creek'

In terms of distribution, $/ \mathrm{kp}^{\mathrm{w}}$ / only occurs word-initially and medially, not finally. It cannot be a coda. It occurs before any vowel, mostly before $/ \mathrm{a} /$, and rarely before $/ \mathrm{u} /$. It can form complex onset, and be C1 before liquids, and C2 after alveolars /s/, /t/ (see 2.4.1.2).

- Bilabial-velar nasal / $\mathfrak{y m}^{\mathrm{w}}$ /

In contrast to $/ \mathrm{kp}^{\mathrm{w}} /$, does not incur variations in voicing. As a voiced phoneme, it remains voiced in all environments, including in the immediate vicinity of a voiceless segment:
(57)

/naym ${ }^{\text {walfar/ }}$
/natarmate

['وTm ${ }^{\text {waa.te }}$]
[.na. $\mathrm{gm}^{\mathrm{w}} \mathrm{el}$.'far]
[net.'গm ${ }^{\text {wa.te] }}$
'snake'
'charcoal'
'peace.ceremony'

However, like $/ \mathbb{K p}^{\mathrm{w}} /$, when it occurs finally as a result of final vowel deletion, rounding is lost:
(58) $/ \mathrm{hm}^{\mathrm{w}} / \rightarrow[\mathrm{hm}] / \ldots \#$

2.2.4 Vowels

2.2.4.1 Minimal vowel contrasts

There are five vowels in the language, with a contrast in length between $/ \mathrm{a} / \mathrm{and} / \mathrm{aa} /$. The main variation in vocalic realisation is the centralisation of front and back vowels (see 2.2.4.2). Minimal and sub-minimal pairs are given for short vowels in table 2.3, and for long vowels in table 2.4:

/i/	/e/	/a/	/o/	/u/
/fi/ 'COP:IRR'	/fe/ 'count:IRR'	/fa/ 'go:IRR'	/fo/ 'SEQ.F'	/fu/ 'hold:IRR'
/pi/ 'COP'	/pe/ 'count'	/pa/ 'go'	/po/ 'SEQ.F'	/pu/ 'hold'
/Kp ${ }^{\text {wil/ }}$ / 'blink'	/kel/ 'dig'	/kal/ ‘digging stick'		/kul/ 'cover'
/liko/ 'hang'		/laka/ 'look'	/lo-ki/ 'look-TR'	/luku/ 'hole'
/kis/ 'press'		/kase/ 'sweet'	/kos/ 'husker'	
$\begin{aligned} & \text { /tina/ } \\ & \text { 'pregnant' } \end{aligned}$	$\begin{aligned} & \hline \text { 'ten/ } \\ & \text { 'SBST.POSs:NH' } \end{aligned}$	/tan/ 'downwards'	/napton/ 'belly button'	/tun/ 'bury'
$\begin{aligned} & \text { /napir/ 'tree } \\ & \text { sp.' } \end{aligned}$		$\begin{array}{\|l\|l} \hline \text { /nakpp war/ } \\ \text { 'p.name' } \\ \hline \end{array}$		$\begin{aligned} & \text { /napur/ } \\ & \text { 'shell' } \end{aligned}$
	/lesi/ 'coral'	/las/ 'container'	/los/ 'bathe'	

Table 2.3. Short vowels contrasts

/a/	/aa/
/mala/ 'time'	/maala/ 'bird sp.'
/nar-a/ 'hand-3sG.POss'	/naara/ '3pL'
/fat/ 'make'	/faatu/ 'stone'
/naKp ${ }^{\text {w }}$ a/ 'creek'	/naaKpp ${ }^{\text {e }}$ e/ 'club'

Table 2.4. Long vowel contrasts

2.2.4.2 Vowel allophony

This section discusses the main allophonic variations for the vowel phonemes, which are primarily conditioned by (i) syllable shape (whether syllables are open or closed, and which consonants occur as onsets and codas), and (ii) stress. These factors do not affect all vowels equally. For instance, stress plays an important role in the realisation of $/ a /$ and $/ e /$ but not in the realisation of other vowels. Likewise, the presence of particular consonants as onsets and codas affects the realisation of all vowels except $/ \mathrm{a} /$. In a CVC syllable, it is the place of articulation of onset and coda consonants which conditions the realisation of vowels: when any vowel except $/ \mathrm{a} /$ is the nucleus of a closed syllable in which the coda is an alveolar, that vowel is centralised while keeping its features of height and rounding. Back vowels conform to this rule except when they are preceded by a velar consonant in the onset, in which case they are not centralised. Since closed syllables are common in Lelepa and alveolars form the second largest class in the sound system, this environment is encountered often, and this explains the important vocalic variation found on the surface. This conditioning is illustrated by the rule in (59), which is henceforth referred to as the centralisation rule. Examples of the application of this rule are given in the discussion below.
(59) V $\left\{\begin{array}{l}{[+ \text { front }] \rightarrow[+ \text { central }] / \$ \mathrm{C} _C[\text { _alveolar }] \$} \\ {[+ \text { back }] \rightarrow[+ \text { central }] / \$ C[- \text { velar }] \ldots C[+ \text { alveolar }] \$}\end{array}\right.$

- /i/
/i/ is a high unrounded vowel, with [i], [i] and [j] as its main allophones. In open syllables, it surfaces as [i], as well as in closed syllables whose coda is not an alveolar consonant:

/i $/ \rightarrow$ [i]		
/koria/	[ko.'ri.je]	'dog'
/nina/	['ni.ne]	'then'
/lima/	['li.me]	'li.ko]
/liko/	$\left[\mathrm{m}^{\text {w le.'tig }]}\right.$	'five'
$/ \mathrm{ym}^{\text {wl latin/ }}$		'hang'
		'close'

In contrast, in closed syllables with alveolar codas, the centralisation rule in (59) applies, and /i/ surfaces as [i]:
(61) $/ \mathrm{i} / \rightarrow[\mathrm{i}]$

/aninta/	[e.'nin.te]
/kinta/	['kin.te]
/pistaf/	[pis.taf]
/kis/	[kis]
/nawil/	[ne.'wil]

```
'1PL.INCL.POSS'
'1PL.INCL'
'speak to'
'poke'
`skin'
```

When monosyllabic alveolar-ending stems such as kis 'poke' host an enclitic, resyllabification occurs and the environment for the centralisation rule is not created. That is, the coda of the syllable forming the root becomes the onset of the next syllable. In (62), kis 'poke' is shown hosting the object enclitic =ia '3sG:OBJ'. In this process, the /i/from the host becomes the nucleus of an open syllable in the encliticised word and is thus realised as [i]:
(62) /kis/
[kis]
/kis=ia/
[ki.'si.je]

```
'poke'
'poke=3SG.OBJ'
```

In fast speech, after a stressed open syllable and before a vowel, /i/ surfaces as the palatal glide [j]. In the example below, skei 'INDEF' is realised as [sk ε] as there is no pause between the final $/ \mathrm{i} /$ and the next morpheme $u r=$ '3PL.S.R=':

/i $/ \rightarrow[\mathrm{j}]$		
[tma.'raw.tə	'sk $\varepsilon \mathrm{j}$	ru: $]$
/tamarauta	skei	ur/
couple 'A couple they...'	INDEF	3pL.S=

In contrast, before a pause, final /i/ is realised as [i]. In the example below, /skei/ 'INDEF' occurs sentence finally and is followed by a significant pause (in milliseconds). This environment allows for the final /i/ to be realised as [i]:
(64) $\quad / \mathrm{i} / \rightarrow[\mathrm{i}]$

[,ar.pid.'lag (24.490 ms)	'narre	Øŭ.'run	gi.gə	'ske.i]
/ar=pitlak	naara	nrun	kik	skei/
3Du.s=have	3pl	female	small	INDEF
'They had a little daughter,'				

Other examples of lexemes for which reduction of /i/ to [j] occurs in the same environment are given below:

$$
\begin{array}{ll}
{[' t a . i] \sim[\text { taj] }} & \text { 'sibling' } \\
{[\text { na.'tro.i] } \sim \text { na.'troj] }} & \text { 'young person' }
\end{array}
$$

Example (66) shows the nominalised form of natroi, with the final i of natroi being stressed and realised as [i] in natroina 'youth':
/natroi-na/ [na.tro.'i.na] *[na.'troj.na] 'young.person-NMLZ'

- /e/
/e/ is a mid-high unrounded vowel, and is realised as $[e],[9],[\varepsilon]$ or [[] . This depends on whether /e/ is stressed and whether it occurs in an open or closed syllable. In open syllables, /e/ surfaces as [e]:

/e/ \rightarrow [e]		
/tera/	['te.re]	'garden'
/lesi/	$[$ 'le.si]	'coral'
/kerak/	$[$ ke.'rak $]$	'prow'

In contrast, in stressed and closed syllables, it is realised as [ε] except if the following coda is an alveolar, in which case the centralisation rule applies and /e/ is centralised to [9]:
$/ \mathrm{e} / \rightarrow[\varepsilon]$
/tekta/
/neika/
/nafjef/
/fatenlen/
/annemi/

['tck.te] $\left[n \varepsilon j k^{\mathrm{h}}\right] \sim[\mathrm{n} \varepsilon j . \mathrm{ka}]$ [nef.'jsf] [,fa.ten.'lıy] [ер.'nعm]

'behind'
'fish'
'plant sp.'
'p.name'
'1pL.EXCL.Poss'
$/ \mathrm{e} / \rightarrow$ [9]
/namena/
/ftes/
/per/
[na.'mэn]~[ne.'me.ne]
[ft9s]
[pэr]
[.na.kər.'kэr]
'tongue'
'different'
'plait'
/nakerker/
'sand'

As shown with /i/, when alveolar-ending monosyllabic stems host enclitics, the encliticised forms are resyllabified. In (70), compare the stems tel 'tell', Kel 'dig with digging stick' and per
'plait' with the encliticised forms tel=ia 'tell=3sG:O', keel=ia 'dig with digging stick=3SG:O' and per=ia 'plait=3SG:O': the centralisation rule applies to the stems but not to the encliticised forms, as after encliticisation, the vowel of the stems /e/ occurs in an open, unstressed syllable and is then realised as [e] or optionally as [ə]:

(70)	/tel/	[t9l]	'tell'
	/tel=ia/	[te.'li.je] [tə.'li.je]	'tell=3sG.OBJ'
	/kel/	[kgl]	'dig'
	/kel=ia/	[ke.'li.je]~[kə.'li.je]	'dig=3sG.OBJ'
	/per/	[p9r]	'plait'
	/per=ia/	[pe.'ri.je]~[рә.'li.je]	'plait=3sG.OBJ'

When occurring before or after a stressed syllable, /e/ is optionally reduced to schwa. As discussed in more details in 2.5.1, schwa reduction of /e/ is the first step in a reduction process which may end with full vowel deletion. Note that in such an environment, /e/ is centralised to schwa but not to mid-high central [9], as for the centralisation rule to apply /e/ needs to be stressed (this is not the case of $/ \mathrm{i} /$ nor of the back vowels $/ \mathrm{o} / \mathrm{and} / \mathrm{u} /$):
(71) $/ \mathrm{e} / \rightarrow[$] $]$

/e=mou/	[e.'mo.u]~[ə.'mo.u]	'3SG.S=wet'
/namerina/	[,na.me.'ri.ne] [1na.mə.'ri.ne]	'way'
/taare/	['ta..re] ['tai.rə]~[tarr]	'white'
/nakerker/	[,na.ker.'kөr]~[na.kər.'kөr]	'sand'
/a=sralesko=s/	[e.,sra.les.'kəs] [e.,sra.ləs.'kəs]	
	'1sG.S=believe=3SG.OBJ'	

- $/ \mathrm{a} /$

The low central $/ \mathrm{a} /$ is the commonest vowel in the corpus and has the allophones [a] and [e]. In contrast to the other vowels in the system, it is not affected by the centralisation rule, as it already has the feature [+central]. When occurring in a stressed syllable, $/ \mathrm{a} /$ is realised as [a]:

$/ \mathrm{a} / \rightarrow[\mathrm{a}]$		
/nap̃al/	[ne.'kp ${ }^{\text {wal] }}$	'guts'
/pati/	['pa.ti]	'four'
/m̃aata/	['وmm ${ }^{\text {asi.te] }}$	'snake'
/nfar/	[n.'far]	'germinated coconut'

In an unstressed syllable, $/ \mathrm{a} /$ is reduced to $[\mathrm{e}]$ (or deleted altogether, see 2.5.1):

[ne.'pap] $\sim[\mathrm{nn}$. .'pap]	'shoulder'
[kpwe.'lak] $\sim\left[\mathrm{kp} \mathrm{k}^{\text {w }}\right.$ lak] $]$	'afraid'
[men.'du.we]	'flying fox'
['nam.te]	'eye'
[n.'pad.ne]	'tooth-3SG.POSs'

- /o/
$/ \mathrm{o}$ / is a mid-back vowel which has four allophones: the back vowels $[\mathrm{o}$] and [$\mathrm{\rho}$], the central vowel $[\theta]$ and the semivowel $[\mathrm{w}]$. As the nucleus of open syllables it is realised as $[\mathrm{o}]$, whether or not these syllables are stressed:

```
/o/->[o]
/natoroa/
/lopa/
/nawowa/
/koria/
/siko/
/taros=ia/
```

[.na.to.'ro.we]
['lo.pe]
[ne.'wo.we]
[ko.'ri]~ [ko.'ri.je]
['si.ko]
[.ta.ro.'si.je] $\sim[$ [ta.ro.'si]
'edge of cliff
'p. name'
'plant sp.'
'dog'
'fish sp.'
'invoke=3sG.OBj'

In closed syllables with a non-alveolar consonant in the coda, /o/ is lowered to [ρ]:
(75) $\quad / \mathrm{o} / \rightarrow[\mathrm{J}]$
/artok/ [er.'tok] 'p.name'
/mom/ [mom] 'breast'
/narop/ [na.'rop] 'p.name'
/lop̃a/
[lokp ${ }^{\text {w }}$]
'see'

In contrast, in closed syllables with an alveolar in the coda, the centralisation rule applies and $/ \mathrm{o} /$ is centralised to $[\Theta]$:
(76) $/ \mathrm{o} / \rightarrow[\theta]$
/napto-na/ [nep.'ten]~[nep.'to.ne] 'belly button'
/los/
/matol/
[les]
'bathe'
/kotor/
'thick'
[ko.'tөr]
'k.o.basket'

As stated in (59), the centralisation rule applies to back vowels as long as they are not preceded by a velar in the onset. When preceded by a velar, /o/ is realised as [0] as in other closed syllables which do not have an alveolar coda:
(77) $/ \mathrm{o} / \rightarrow[\mathrm{\rho}]$
/ŋวt/ [ŋכt] 'black'
/natkon/ [nat.'kכn] 'village'
/kor/
[kər]
'closed'
/nor/
[$\ddagger \supset r]$
'block'

When /o/ occurs in a monosyllabic, alveolar-ending stem which is encliticised, resyllabification occurs and the environment for the centralisation rule does not apply anymore. This is shown in the example below where / o / occurring in loso 'bathe' is realised as $[\theta]$ in the bare stem and as $[0]$ when the stem hosts the oblique clitic $=s$ ' 3 OBL':
(78) /loso/
[les]
'bathe'
/loso=s/
[lo.'ses]
'bathe=30bl'

Finally, / $/$ / is realised as $[\mathrm{w}]$ when unstressed and occurring intervocalically:
(79) /lao=ea/
[la.'we.e]~[la.'we]
'spear=3sG.OBj'

- /u/
$/ \mathrm{u} /$ is a high back vowel which surfaces as $[\mathrm{u}]$, $[\mathrm{u}]$ or $[\mathrm{w}]$. In open syllables, it is always realised as [u], as well as in closed syllables which do not have an alveolar coda:
(80) $/ \mathrm{u} / \rightarrow[\mathrm{u}]$ /ura/ ['u.re] 'prawn’
/kapua/ [ka.'pu.e] 'trad. pudding,
laplap'
/fatuym ${ }^{\text {w }}$ a/
/mursuksuk/
[fa.'tu. $\mathrm{hm}^{\mathrm{w}} \mathrm{e}$]
'p.name'
[,mur.suk.'suk] 'prepare'

In contrast, when $/ \mathrm{u} /$ occurs in a closed syllable with a non-velar consonant in the onset and an alveolar in coda position, the centralisation rule applies and / $\mathrm{u} /$ is centralised to [u$]$:

```
/u/->[#]
/ftunu/
/mus/
/sura/
```

/namuna/ [na.'m\#n]~[na.'mu.ne] 'tide’

[na.'mun] $\sim[$ na.'mu.ne $]$	'tide'
$[\mathrm{ft} \mathrm{m}] \sim[$ 'ftu.nu $]$	'hot:IRR, sore:IRR'
$[\mathrm{m} t \mathrm{~s}]$	'dive'
$[\mathrm{str}] \sim[$ 'su.re $]$	'defecate'

However, with a velar in the onset, the centralisation rule does not apply:
(82) /kul/
[kul] 'new skin'

As shown with other front and back vowels, when /u/ occurs in an alveolar-final monosyllabic root hosting an enclitic, resyllabification occurs and the alveolar coda becomes the onset of the following syllable. In this case, $/ \mathrm{u} /$ is realised as $[\mathrm{u}]$ as seen with ptunus 'sore $=3$ OBL' and musus 'dive $=3$ OBL' hosting the enclitic $=s$ ' 3 OBL':
(83)
/ptunu/
/ptunu=s
/ptunu=s/
/musu/
/musu=s/
/plus/
/plus=ia/
[pt\#n] ['ptu.nu]
[ptu.'nus]
[mus]~['mu.su]
[mu.'sts]
[plus]
[plu.'si.je]

> 'sore'
> 'sore=3OBL'
'dive'
'dive $=3$ OBL'

$$
\begin{aligned}
& \text { 'wipe' } \\
& \text { 'wipe=3sG.OBJ' }
\end{aligned}
$$

Finally, in fast speech and when consecutive to a stressed vowel, /u/ is optionally realised as [w]. Note that in the phonetic transcriptions of roaleu, only the last occurrence of [w] is an allophone of $/ \mathrm{u} /$, while the others are epenthetic. Similarly, in the phonetic transcriptions of puasa, $[\mathrm{w}]$ is an allophone of $/ \mathrm{u} /$ in the third variant only, while in the first and second variant $[\mathrm{w}]$ is epenthetic:

$/ \mathrm{u} / \rightarrow[\mathrm{w}]$		
/mau/	['ma.u] [maw]	'NEG2'
/fau/	['fa.u] [faw]	'new'
/roaleu/	[1ro.we.'le.u] [1ro.we.'lcw]	'echo'
/puasa/	[pu.'wa.s]~ [pu.'wa.se] ['pwa.se]	'buff-banded rail'

Example (85) shows the verb tua 'give' occurring without and with an object enclitic. Without the enclitic, $/ \mathrm{u} /$ is realised as $[\mathrm{u}$] as it is stressed. However, when hosting an enclitic, stress moves to the next syllable and /u/ precedes stress, thereby surfacing as [w]:
(85) /tua/
/tua=e/
['tu.we] $\sim[t u]$
$[$ tu.'wa.e] $\sim[$ 'twa.e]

$$
\begin{aligned}
& \text { 'give' } \\
& \text { 'give=3sG.OBJ' }
\end{aligned}
$$

2.2.4.3 Vowel length

Contrastive vowel length is established for the central vowels /a/ - /aa/ (see 2.2.4.1 for minimal pairs). When addressing vowel length, it is important to distinguish a phonemically long vowel phoneme from a short vowel phoneme that is phonetically lengthened because it carries stress. Stress is realised as a combination of length, pitch and intensity in Lelepa: in a stressed syllable, the vowel will be longer and higher in pitch and intensity than the vowel of an unstressed syllable. In light of this, length variations of short vowels should be predictable: on the surface, a short vowel is short when it does not carry stress, and lengthened when stressed. In a phonemic system with both short and long vowels, it is not straightforward to make these predictions, because the presence of phonemic length and the fact that stress lengthens vowels entails that four distinct lengths can be predicted on the surface:

- Unstressed short vowels are the shortest of all vowels and their length is not affected by stress;
- Stressed short vowels are lengthened under the effect of stress;
- Unstressed long vowels are longer than unstressed short vowels, and their length is not resulting from the effects of stress;
- Stressed long vowels are possibly additionally lengthened by stress.

Several questions arise from these four possibilities. First, are all four vocalic lengths actually found on the surface? Second, does stress actually affect both short and long vowels? That is, while stressed short vowels are lengthened, is it also the case that long vowels are additionally lengthened when stressed? Third, is there a length difference between unstressed long vowels and stressed short vowels? To answer these questions, vowel measurements were taken with Praat and are presented in the tables below. Vowels were measured in citation forms and reduced vowels (pretonic and final vowels) were not measured. In table 2.5, the length of stressed and unstressed short vowels is compared in open and closed syllables. Length is given in milliseconds for measured vowels (in bold in each example). The table shows that for vowels occurring in the same syllable types (open or closed), stress affects vowel length: whether a short vowel occurs in an open or a closed syllable, it is longer when stressed. The table also shows that the presence of a coda affects length: a stressed vowel is longer in open
syllables than in closed syllables, and the same observation holds for unstressed vowels. However, these observations only reveal tendencies: in some cases, differences in length for vowels which would be predicted to differ significantly due to their environment do not differ greatly. For instance, there is little length difference between the unstressed vowels of katam 'outside' and sarsar 'everywhere', despite the fact that the former occurs in an open syllable and the latter in a closed one. However, with stressed syllables, length differences between vowels occurring in open and closed syllables are particularly significant. From the table, we can extract the length ranges for short vowels in each environment:

1. Unstressed, closed syllable: $0.040-0.052$
2. Unstressed, open syllable: $0.046-0.077$
3. Stressed, closed syllable: $0.064-0.109$
4. Stressed, open syllable: $0.131-0.171$

From these measurements, the predictions above are verified: stressed vowels tend to be longer than unstressed ones, and vowels occurring in closed syllables tend to be shorter than those occurring in open syllables. In sum, short vowels can be classified in length, according to whether they occur in open or closed syllables and whether they are stressed or not, as listed above.

Syllable types	unstressed short vowels (duration in ms)		stressed short vowels (duration in ms)	
open	/tolu/ 'three'	0.077	/tolu/ 'three'	0.158
	/pati/ 'four'	0.071	/tolu/ 'three'	0.163
	/nasara/ 'dancing ground'	0.067	/nasara/ 'dancing ground'	0.131
	/nayaru/ 'mouth'	0.070	/nayaru/ 'mouth'	0.171
	/nasifar/ 'banana sp'	0.070	/mila/ 'red'	0.141
	/kotor/ 'k.o. basket'	0.046	/fua/ 'fly sp.'	0.171
	/katam/ 'outside'	0.055	/nakp ${ }^{\text {a }}$ / 'creek'	0.150
closed	/makenkini/ 'itch'	0.048	/kinta/ '1PL.INCL'	0.064
	/ natketken/ 'fin'	0.040	/lgak/ 'marry'	0.070
	/sarsar/ 'everywhere'	0.051	/sarsar/ 'everywhere'	0.074
	/nafarkal/ 'nuclear family'	0.052	/naysa/ 'when'	0.073
			/katam/ 'outside'	0.083
			/limon/ 'p.name'	0.071
			/kotor/ 'ko. basket'	0.109

Table 2.5. Comparing durations of short vowels

The discussion now turns to long vowels, whose length is compared in table 2.6. Note that long vowels in closed unstressed syllables are not attested, while there is only one example of a stressed long vowel in a closed syllable. Regarding long vowels attested in the other environments, the observations made for short vowels are valid for long vowels, and they can be classified in the same way:

1. Unstressed, open syllable: $0.138-0.188$
2. Stressed, closed syllable: $0.187-0.214$
3. Stressed, open syllable: $0.212-0.295$

The length ranges for long vowels overlap only slightly, pointing to a lesser effect of syllable type and stress than with short vowels.

Syllable types	unstressed long vowels (duration in ms)		stressed long vowels (duration in ms)	
open	/paamia/	0.179	/maanu/ 'bird'	0.254
	/faalua/ 'current'		/naakp ${ }^{\text {w e }}$ / 'war club'	0.213
	/paapua/ 'maternal grandfather'	0.188	/laasa/ 'container'	0.216
	/taatia/ 'maternal grandmother'	0.138	/naasu/ 'bow'	0.212
	/taasak/ 'come ashore'	0.148	/maala/ 'bird sp.'	0.246
	/taakae/ 'dance'	0.166	/lopaa/ 'p.name'	0.241
closed			/faam/ 'eat'	0.214

Table 2.6. Comparing durations of long vowels

We can now compare short and long vowels (table 2.7). While the measurements taken were not done within a large-scale investigation, the results show a distinction between short and long vowels on the surface. In each of the different environments, long vowels are phonetically longer than short ones. The fact that the longest short vowel is over ten ms shorter than the shortest long vowel suggests that there are two phonemic categories of vowels according to length. Along with minimal pairs, this is a piece of evidence for positing vowel length as an emic category. Some issues remain, however, particularly within each length value. For instance, table 2.7 shows that the short vowels in unstressed, open and closed syllables overlap in their duration range, as do stressed long vowels.

	Unstressed syllables		Stressed syllables	
	short vowels	long vowels	short vowels	long vowels
open syllables	$0.046-0.077$	$0.138-0.188$	$0.131-0.171$	$0.212-0.295$
closed syllables	$0.040-0.052$	N/A	$0.064-0.109$	$0.187-0.214$

Table 2.7. Comparing duration ranges across vocalic lengths

Finally, note that out of the realm of citation forms, long vowels are perceptually difficult to establish, especially in unstressed syllables.

2.3 Syllable structure

2.3.1 Introduction

Syllables are represented using C and V, where C is a consonant and V a syllable nucleus. A syllable nucleus (V) can be filled with a short vowel, a long vowel, a diphthong or a syllabic nasal or liquid. Codas can be simple (one consonant) or complex (two consonants). Long vowels are regarded as tautosyllabic, as shown by the surface alternations of forms such as /waraa/ in (86). Like all vowel-final forms in the language, /waraa/ is affected by a process of final vowel deletion (see 2.5.1). However, it never surface as *[war], but can have its final vowel shortened as seen in (86):
/wa.raa/
[wa.'ra:]~[wa.'ra] 'here'

A number of attested syllable types are given in (87). These are all single morphemes with unproblematic syllabifications, although some data have alternative syllabifications, a monosyllabic and a disyllabic one. While the disyllabic structures correspond to the underlying structures of these words, the monosyllables are due to a process of final vowel deletion. This is the case of gisu which can be realised as CV.CV or CVC, and of fterki 'wife' and psruki 'speak'. Note that while fterki is chosen to illustrate the CCVCC pattern, this pattern only occurs after this word has had its final vowel deleted. Similarly, psruki illustrates the CCCVC pattern only when its final vowel is deleted. As vowel deletion is widespread in the language, it is necessary to take it into account when investigating syllabification in the language. While (87) represents a fair number of syllables types, certain types such as CV and CVC are very common, while others, such as CCVCC and CCCVC, are rare.

(87)	V	/akoto/	[a.'ko.to]	'p.name'
	CV	/nisu/	['ıi.su]~ [y is]	'fish sp.'
	CCV	/psa/	[psa]	'speak'
	VC	/ar/	[ar]	'rainbow'
	CVC	/lay/	[lay]	'upwards'
	CVCC	/self/	[sslf]	'be beside'
	CCVC	/psak/	[psak]	'elevate'
	CCVCC	/fterki/	[ft9rk] ~['ftor.ki]	'wife'
	CCCVC	/psruki/	[psruk] [['psru.ki]	'speak'

From the data above, the provisional syllable schema in (88) can be derived. The first restriction on this schema is that it is not attested in its maximal shape. There are no forms with three consonants in the onset, a nucleus and two consonants in the coda. Other than this, there are a number of other restrictions discussed in 2.3.2 and summarised in 2.3.3.
(88) (C)(C)(C)V(C)(C)

To see what restrictions exist on syllable types and their combinations, it is useful to look at a less constrained set of data than in (87). Using morphologically complex forms allows for the observation of certain sequences which may not appear in simple roots, and including polysyllabic words allows for the observation of combinations of syllable types. This reveals the supplementary syllable type CCCV in the reduplicated verb fsrusruki 'discuss'. Including heavy syllables also allows for the observation of diphthongs, long vowels and possible combinations with codas. Examples of such syllable types are given in table 2.8:

	Underlying form	Surface realisation	gloss
V	/aupa/	['aw.pa]~['a.ŭ.pa]	'p.name'
CV	/pai/	['pa.i]~[paj]	'stingray'
CCV	/skei/	['ske.i]~[skej]	'INDEF'
CCCV	/fsru \sim sruki-nia/	[fsru.,sru.ka.'ni]	'discuss-3sG.OBJ
VC	/artok/	[ar.'tok]	'p.name'
CVC	/namta=n/	[nem.'tan]	'eye= Poss:NH'
	/faam/	[fa:m]	'eat:F'
CVCC	/self/	[sslf]	'be.beside'
CCVC	/pseiki/	['psej.ki]~[psejk]	'teach'
CCVCC	/mlaksa/	[''mlak.se]~[mlaks]	'blue'
CCCVC	/fsruki/	['fsru.ki]~[fsruk]	'speak:IRR'

Table 2.8. Syllable types: morphologically complex forms and heavy syllables

2.3.2 Syllable types

2.3.2.1 Nucleus-only syllables

- V

There are very few monosyllabic lexemes consisting of a single vowel. Examples are the subject proclitics $a=$ '1SG.S' and $e=$ '3SG.S', which are not free morphemes but cliticise to a host. Monosyllabic lexemes in which the single syllable consists of only a vowel do not exist in Lelepa. As (89) below shows, all phonemic vowels can occur as the only segment of a V syllable, in lexemes of at least two syllables. This is also the case of a few diphthongs and syllabic consonants. This syllable type mostly occurs as either the first or last syllable in polysyllabic words, but is also attested medially.
(89)

/e=to/	[e.'to]
/uta/	['u.ta]
/felea/	[fe.'le.a]
/nseiseina/	[n.,se.se.'i.na]
/rsan=ia/	[r.sa.'pi.ja]
/ao/	['a.ŏ]~[aw]

$$
\begin{aligned}
& \text { '3sG.S=stay' } \\
& \text { 'to land' } \\
& \text { 'argue' } \\
& \text { 'meeting' } \\
& \text { 'drag=3SG:OBJ' } \\
& \text { 'yes' }
\end{aligned}
$$

2.3.2.2 Open syllables

- CV

Any combination of a consonant and a vowel can occur as this syllable type, as well as nonphonemic diphthongs (see 2.4.2). This is also one of the most common syllable types. Example (90) shows that all vowels, including diphthongs and long vowels occur in this syllable type. This pattern can be replicated up to four times to form monomorphemic words:

(90)	/ $\mathrm{kp}^{\mathrm{w}}{ }^{\text {o/ }}$	[$\mathrm{kp}^{\mathrm{w}}{ }^{\text {o }}$]	'fall[rain]'
	/ta/	[ta]	'cut'
	/fe/	[fe]	'count'
	/si/	[si]	'peel, tear'
	/llu/	[1:u]	'return'
	/maala/	['ma:.le]	'bird sp.'
	/nisu/	['ทi.su]	'fish sp.'
	/walaa/	[wa.'la:]	'spear'
	/makala/	[me.'xa.la]	'spider'
	/naym ${ }^{\text {w }}$ a $\mathrm{kp}^{\text {w }}$ e/	[na.'¢m ${ }^{\text {wa.kp }}{ }^{\text {w }}$ e]	'Tahitian chestnut'
	/moutarju/	[mow.'tar.ju]	'p.name'
	/nasuym ${ }^{\text {w }}$ a/	[na.'su. $\mathrm{ym}^{\text {w }}$ a]	'house'
	/saraym ${ }^{\text {w }}$ ofm ${ }^{\text {w }}$ o/		'p.name'
	/munariki/	[.mu.ne.'ri.ki]	'p.name'
	/raparapa/	[ra.pe.'ra.pe]	'sea bug'

- CCV

This pattern is well represented without being as common as CV or CVC. The first consonant can either be a plosive, a nasal or a fricative and the second consonant is commonly a liquid but can be a fricative or a stop as well, and more rarely a glide. Note that in this pattern, a sonorant cannot be followed by an obstruent, as sonorants are syllabified in this environment. This pattern is attested initially, finally and can be reduplicated. Nuclei can be filled with a vowel or a diphthong (see 2.4.1.2 on the restrictions on consonant distribution in consonant clusters).
/mro/
/pla/
/pla=e/
/troi/
/ mlatiy /
/nmatena/
/frakp ${ }^{\text {w }} \mathrm{o}$ /
/flafla/
/taplaa/

[mro]
[pla]
['pla.e.]~[plaj]
['tro.i]~[troj]
[$\mathrm{ym}^{\text {w }} \mathrm{la}$. 'tin]
[nma.'ten]
['fra.Kp ${ }^{\text {w }}$ \% $]$
['fla.fle]
[ta.'pla:]

'do again'
'pick'
'pick=3sG.OB'
'young man'
'close'
'funeral'
'bedbug'
'be.blocked'
'like.this'

- CCCV

This pattern is very rare, and only attested for the two lexemes shown in (92). It forms the first syllable of the verb fsruki 'speak' and the reduplicated form fsrusruki 'discuss'. The form frusruki is achieved by partly reduplicating the first syllable of fsruki: the initial consonant / $\mathrm{f} /$ is dropped. The reduplicated pattern CCCV.CCV is obtained from an original CCCV:

```
/fsruki/
/fsru~sruki-nia/
```

```
['fsru.ki]~[fsruk] 'speak'
```

['fsru.ki]~[fsruk] 'speak'
[fsru.,sru.kə.'ni.je]~[fsru.,sru.kə.'ni] `discuss-3SG.OBJ`

```
[fsru.,sru.kə.'ni.je]~[fsru.,sru.kə.'ni] `discuss-3SG.OBJ`
```


2.3.2.3 Closed syllables

- VC

This pattern occurs only initially and is not common with monomorphemic words. In contrast, morphologically complex words which exhibit this pattern are more common, and most often consist of a vowel-initial subject proclitic followed by a verb root or another verbal constituent. As seen in (93), attested realisations of this pattern have either $/ \mathrm{a} / \mathrm{l} / \mathrm{o} / \mathrm{l} / \mathrm{u} /$ as their nucleus and $/ \mathrm{t} / \mathrm{/} / \mathrm{y} / \mathrm{g} / \mathrm{f} /$, or $/ \mathrm{r} /$ as their coda. Only short vowels occur in this pattern:
/annou/
/artok/
/oftau/
/atlay/
/ur=to rsu/
[ag.'now]~ [ay.'no.ŭ]
[ar.'tok] 'p.name'

$$
\text { [Jf.'taw] } \sim[\text { Jf.'ta.u] } \quad \text { 'k.o.bird' }
$$

[at.'lay] 'month'
[ur.,to.rə.'su] '3pl.s=IPFV shift'

- CVC

Along with CV, this is the most common type. There are few restrictions on it, as any consonant can occur in its onset and coda positions, and any vowel as well as diphthongs can form its nucleus. This pattern can be underlying, or result from final vowel deletion, as seen with lotu 'pray' in (94). In addition, it can be reduplicated and combine with other syllable patterns, and occur initially, medially and finally:

/lay/
/faam/
/faus/
/lotu/
/munalpa/
/notfan/
/marmar/
$/ \widehat{n m}^{\text {w }}$ ulym ${ }^{\text {w }}$ ul/
/na. Kp^{w} ar/
/tataliy/

[lay] [fa:m] [faws]~['fa.ŭs] [let]~['lo.tu] [mu.'nal.pa] [ŋっt.'fan] [mar.'mar] $\left[\mathfrak{y m}^{w} \mathrm{ul} .{ }^{\prime} \mathrm{ym}^{\mathrm{w}} \mathrm{u}\right.$ [ne.'kp ${ }^{\mathrm{w}} \mathrm{ar}$] [ta.te.'lin]

[^6]- CVCC

This is a marginal pattern, with all known forms given in (95). The nucleus of this syllable type can only be a short vowel. When this pattern combines with other syllables, resyllabification
may occur. This is shown in (96) with self 'be.beside', surki 'hide' and kint 'pinch'. When taking object markers, these forms are resyllabified so that the final consonant of the root becomes the onset of the following syllable:
(95) $\begin{array}{ll}\text { /self/ } \\ & \text { /surki/ } \\ & \text { /taŋs/ } \\ & \text { /kint/ } \\ & \text { /pay-ki/ } \\ & \text { / } \mathrm{ym}^{\mathrm{w}} \text { latiŋ-ki/ }\end{array}$
(96) /self=ia/
/surki-nia/
/kint=ia/
[solf] $]$
$[$ surk $] \sim[$ 'sur.ki $]$
$[$ tans $]$
$[$ kint $]$
$[$ paŋk $]$
$\left[\right.$ gm $^{\text {w }}$ le.'tink $]$
[ssl.'fi.je]~[ssl.'fi]
[sur.kə.'ni.je]~ [sur.kə.'ni]
[kin.'ti.je]~ [kin.'ti]

> 'be beside'
> 'hide'
> 'cry'
> 'pinch'
> 'climb-TR'
> 'close-TR'
'be beside $=3$ SG. OBJ '
‘hide-3sG.OBJ’
'pinch=3SG.OBJ'

- CCVC

This is a fairly common pattern. All short vowels can form the nucleus as well as diphthongs. Stops, nasals, liquids and fricatives can occur as either C1 or C 2 in the onset and in the coda as well. However, combinations of sonorants + obstruents are not allowed as sonorants syllabify in this environment:

(97)	plak/	[plak]
/mlati/	$[\mathrm{mlat}]$	'be with'
/nmartana/	$[$ nmar.'ta.na $]$	'cold'
/sraus/	$[$ sraws $] \sim[$ ['sra.ŭs $]$	'belly-3sG.POSS'
/ftaur/	$[\mathrm{ftawr}] \sim[$ 'fta.ŭr $]$	'repeat'
/ftunu/	$[\mathrm{ften}]$	'marry'
/pnoti/	$[\mathrm{pnot}]$	'sore'
/trus/	$[$ trus $]$	'come'
/sraki/	$[\mathrm{srak}]$	'leave'
/nlak/	$[$ nlak]	'hang'
		'trunk'

This pattern is resyllabified when roots take an enclitic or a suffix, as seen in (98):
(98) /trus=ia/

> [tru.'si]~[tru.'si.je]
> [sra.kə.'ni]~ [sra.kə.'ni.je]
> ['nlak.na]~[nla.'gan]
'leave=3sG.OBJ'
'hang=3sG.OBJ
'trunk-3SG.Poss'

- CCVCC

This is a rare pattern, with all attested forms listed in (99) below. It only occurs as a result of final vowel deletion, and is not attested in underlying forms:
/mlaksa/
/tkarki/

[mlaks] $\sim[$ 'mlak.se $]$	'blue, green'
[tkark] \sim ['tkar.ke]	'last born'
[tkalp] $\sim[$ 'tkal.pe $]$	'first born'
[ftgrk] $\sim[$ 'ftor.ki]	'wife'

- CCCVC

Similarly to CCVCC, this is a rare pattern that is only realised after deletion of the final vowel of underlying forms. There are only two known forms occurring in the corpus, as shown in (100):
(100) /fsruki/
[fsruk]~['fsru.ki]
'speak:IRR'
/psruki/
[psruk]~['psru.ki]
'speak'

2.3.3 Summary: the Lelepa syllable

The review of the different syllable types above showed that the nucleus of a syllable can be a short or long vowel, a diphthong or a sonorant (n, m, r, l) and that a syllable can have an optional onset and an optional coda. While both onsets and codas can be complex, syllable complexity tends to be in the onset rather than in the coda. ${ }^{2}$ Syllables can be onsetless or codaless, but they are less commonly both. Complex onsets have up to three consonants, while complex codas have a maximum of two consonants. Complex codas only occur if an onset is present as well. In contrast, complex onsets are attested to occur in open syllables and in syllables with simple or complex codas. The structure of the Lelepa syllable is represented in (101) and the constraints on this schema are given in (102). Note that in this schema, C_{1} and C_{4} are respectively the onset and coda of a CVC syllable:
(101) $\left(\mathrm{C}_{1}\right)\left(\mathrm{C}_{2}\right)\left(\mathrm{C}_{3}\right) \mathrm{V}\left(\mathrm{C}_{4}\right)\left(\mathrm{C}_{5}\right)$

[^7](102) Restrictions on syllable structure
C_{1}

- Can be /j/ syllable-initially but not word-initially
- Cannot be a nasal or liquid if C_{2} is a plosive or a fricative
- If C_{2} is present, can either be a plosive, a nasal, a fricative, a liquid or a glide
- Otherwise, can be any consonant if C_{2} is not present

C2

- If C_{3} is present, can only be /s/
- Cannot be a plosive or a fricative if C_{1} is a nasal or a liquid
- Otherwise, can either be a plosive, a nasal, a fricative, a liquid or a glide C_{3}
- Can only occur if C_{2} is present
- Never occurs if C_{5} is present
- Can only be /r/

V

- Cannot be a long vowel or diphthong if there is a complex coda
- Can be a syllabified consonant before an obstruent
- Otherwise, can be a short vowel, a long vowel or a diphthong

C4

- Cannot be $/ \mathrm{kp}^{\mathrm{w}} /$
- If both C_{2} and C_{5} are present, cannot be a glide
- If C_{3} is present, can only be $/ \mathrm{k} /$
- Otherwise, can be any consonant

C5

- Does not occur if C_{1} is not present
- Does not occur if C_{3} is present
- Can only be a plosive or a fricative

2.4 Phonotactics

2.4.1 Consonant distribution

2.4.1.1 Simple onsets and simple codas

Table 2.9 below shows that most consonants can occur as simple onsets and simple codas, word-initially, medially and finally. However, it also shows that there are some restrictions on four consonants: the labial-velars $/ \mathrm{kp}^{\mathrm{w}} /$ and $/ \overparen{g m}^{\mathrm{w}} /$ and the glides $/ \mathrm{w} /$ and $/ \mathrm{j} /$. Underlyingly, they cannot occur as codas, except for $/ \mathfrak{g m}^{w} /$ which can be a coda as long as it is wordinternally. $/ \mathrm{j}$ / is additionally constrained in that it only occurs as a word-medial onset. The labial-velars can be codas after final-vowel deletion, as in /lopa/ 'see' realised as [lokp ${ }^{\mathrm{w}}$] and /nasuma/ 'house' realised as [na.'suŋmn ${ }^{w}$. Similarly, $[w]$ and [j] occur as codas as allophones of /u/ and /i/ (see 2.2.4.2).

	word-initial	word-final	syllable-initial (word-internally)	syllable-final (word-internally)
/ $\mathrm{kp}^{\text {w }}$ /	/ $\mathrm{kp}^{\text {way }}$ / 'inside'	-	/fra.kp ${ }^{\text {w }}$ o/ 'bedbug'	-
$/ \widehat{y m}^{\text {w }}$ /	/ $\mathrm{ym}^{\text {w }}$ a.e/ 'away'	-	chestnut'	/naym ${ }^{\text {w }}$.ka/ 'fish sp'
/w/	/wa.laa/ 'spear'	-	/na.to.wi.a/ 'ancestors'	-
/p/	/pa.ya.u/ 'fish sp'	/na.rop/ 'p.name'	/lo.pu/ 'bamboo'	/nap.kal/ 'hibiscus'
/m/	$\begin{aligned} & \text { /ma.tu.ru/ } \\ & \text { 'sleep' } \end{aligned}$	/ke.nem/ '1pL.EXC'	/na.mu.na/ 'high tide'	/nam.las/ 'bush'
/f/	/faa.tu/ 'stone'	/sruf/ 'suck.up'	/ $\mathrm{kp}^{\text {w }}$ a.fun/ 'p.name'	/naf.nag/ 'food'
/t/	/ta.ko/ 'yard'		/na.ta. $\widehat{y m}^{\mathrm{w}}$ ol/ 'people'	/fat.ka.u/ 'p.name'
/n/	/ni.na/ 'then'	/pan/ 'go'	/ka.nas/ 'mullet'	$\begin{aligned} & \text { /mun.to.pu/ } \\ & \text { 'p.name' } \end{aligned}$
/s/	/su.fa.te/ 'south wind'	/n.tas/ 'sea'	/si.sa/ 'shellfish sp.'	/pis.taf/ 'talk'
/l/	/les.ko/ 'truth'	/tal/ 'roll'	/ta.la.ki/ 'avoid'	/pal.se/ 'paddle'
/r/	/ra.ru.a/ 'canoe'	/ko.tor/ 'k.o. basket'	/sa.rik/ 'a little'	/kp ${ }^{w}$ ar.ka.pe/ 'fish sp'
/j/	-	-	/tar.ju/ 'p.name'	-
/k/	/ko.fa / 'shelter'	/ke.rak/ 'prow'	/taa.ka.e/ 'dance'	/wok.man/ 'fish sp'
/n/	/yot/ 'black'	/a.roy/ 'surgeonfish'	/sra.yo/ 'things'	$\begin{aligned} & \text { /aŋ.nem/ } \\ & \text { '1PL.POSS.EXCL' } \end{aligned}$

Table 2.9. Consonant distribution at word and syllable boundaries

2.4.1.2 Consonant combinations

This section looks at how consonants combine with each other, and particularly which consonant sequences are permitted in the language and in which environments. The analysis of the different syllable types in 2.3 showed that Lelepa allows tautosyllabic consonant sequences (henceforth consonant clusters) of up to three consonants in the onset and of two consonants in the coda, with restrictions on their occurrence and composition summarised in 2.3.3. This is remarkable for an Oceanic language, as Oceanic languages tend to have a CV syllable structure (Lynch, Ross and Crowley 2002:34). However, the closely related South Efate shows a similar syllable structure to Lelepa (Thieberger 2006:58). In addition, some Oceanic languages such as Kokota (Palmer 2009) also have consonant clusters but present a more limited range than Lelepa and South Efate. For instance, Kokota clusters must have an obstruent as their first consonant followed by a voiced coronal sonorant (Palmer 2009:21), while in Lelepa such strong constraints do not apply. In addition to tautosyllabic consonant clusters (see table 2.10), the language allows consonant sequences over syllable boundaries, which I refer to as heterosyllabic consonant sequences (see table 2.11). Both consonant clusters and heterosyllabic consonant sequences are discussed in turn below.

- Tautosyllabic consonant clusters

Table 2.10 gives all attested tautosyllabic two-consonant clusters. Three-consonant clusters are marginal and discussed below. Note that all clusters in table 2.10 are underlying ones. It is possible that clusters in which one of the consonants is not underlying occur: this is the case when an underlying vowel surfaces as the glides [w] or [j], as in /neika/ > [nejk] 'fish' and $/$ maora/ > [mawr] 'broken'. The table lists both clusters occurring in the onset and in the coda. Coda clusters are represented in the table by a circled plus sign. They are a minor pattern in the language, with six known coda clusters over a total of forty-six clusters. The table also distinguishes between heterorganic clusters (in white areas in the table) which are preferred over homorganic ones (in grey areas), with thirty-five attested heterorganic clusters against eleven homorganic ones.

Of the possible homorganic clusters, only those with alveolar segments and a single combination of velar /k/ and labial-velar /w/ occur; no labial homorganic clusters were found:

- Clusters of alveolars /tn/, /tl/, /tr/, /nt/, /nl/, /nr/, /sl/, /sr/, /lt/, /ll/
- Clusters of velars (labial-velars and velars) $/ \mathrm{kw} /$

Heterorganic clusters can be described as combinations of classes of segments:

- labials+alveolars $/ \tilde{\mathrm{p}} /, / \mathrm{pt} /, / \mathrm{ml} /$, $/ \tilde{\mathrm{ml}} /$, /fr/, etc
- alveolars+labials: / $\mathrm{t} \mathrm{p} /$, /tp/, /tf/, /sf/, /rm $\tilde{m} /$, etc
- alveolars+velars: /tk/, /sk/, /ry/, /rk/, etc
- velars+alveolars: /ks/, /kr/, /gs/, /gr/
- labials+velars: /pk/, /fk/

While these clusters are well attested, they do not always surface as clusters: see 2.5.2.1 for a discussion showing that some of these underlying clusters can be interrupted by an epenthetic schwa.

		Consonant 2													
		$\widehat{\mathbf{k p}}{ }^{w}$	$\mathfrak{\eta m}^{\mathbf{w}}$	W	p	m	f	t	\mathbf{n}	S	1	\mathbf{r}	j	k	\boldsymbol{J}
$\begin{aligned} & \text { H } \\ & \text { H } \\ & \text { B } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Kp^{w}		-	-	-	-	-	-	-	-	+	-	-	-	-
	$\mathfrak{1 m}^{\mathbf{w}}$	-		-	-	-	-	-	-	-	+	+	-	-	-
	W	-	-		-	-	-	-	-	-	-	-	-	-	-
	p	-	-	-		-	-	+	+	+	+	+	-	+	-
	m	-	-	-	-		-	-	-	-	+	+	-	-	-
	f	-	-	-	-	-		$+$	+	+	+	+	-	+	-
	t	+	+	-	+	-	$+$		$+$	-	+	+	+	+	-
	n	-	-	-	-	-	-	+		-	+	t	-	-	-
	S	+	-	-	-	-	+	-	-		+	+	-	+	+
	1	-	-	-	\pm	-	\pm	+	-	-	+	-	-	(-
	r	-	+	-	-	-	-	-	-	-	-	+	-	\pm	-
	j	-	-	-	-	-	-	-	-	-	-	-		-	-
	\mathbf{k}	-	-	+	-	-	-	-	-	+	-	+	-		-
	1	-	-	-	-	-	-	-	-	\pm	-	+	-	-	

Table 2.10. Tautosyllabic consonant clusters

Before turning to heterosyllabic consonant sequences, a brief mention of tautosyllabic threeconsonants clusters is in order. These clusters are very marginal and occur strictly as onsets in the two lexemes psruki 'speak' and fsruki 'speak:IRR' given in (100) above. These can be simplified on the surface following processes of resyllabification or optional consonant deletion. Both psruki and fruki are verb roots and can occur with a variety of verb complex elements. In (103), psruki forms a phonological word with a subject proclitic and two aspectual markers, which are both realised as open CV syllables. This leads to its resyllabification as
initial p becomes the coda of the preceding syllable, while [sruk] occurs as the final syllable of the word:

(103)	['tu.po	'top	'sruk	,naf.se.'nan	'mal.fa]
	/tu=po	to	psruki	nafsana $=$ n	malfa/
	1PL.INCL.S=SEQ	IPFV	speak	language $=$ POSS:NH	space
	${ }^{\prime}$ Then, we were	eaking	bile pho		

Another way for this cluster to be simplified is by dropping one of its consonants. This is shown in (104):

(104)	['les	eb.'sug	nef.'san	'kp ${ }^{\text {w }}$ at]
	/Losa	e=psruki	nafsana	kp ${ }^{\text {wata/ }}$
	p.name	3sG.S=speak	language	different
	${ }^{\prime}$ Leosa sp	different lang	age.'	

While (103) and (104) show a tendency to simplify complex onsets such as that of psruki, there are cases such as (105) in which the integrity of this cluster is preserved. This is explained by the fact that the morpheme preceding psruki ends in a closed syllable which has enough weight to attract stress. Psruki is then realised as its own phonological word, and the onset cluster is preserved:

(105)	[.ta.yes.'tat 'psruk] /ta=ya=stat 1PL.INCL.s=SEQ=IPFV psruki/ 'Let's start speaking.'

- Heterosyllabic consonant sequences

These arise when a syllable with a coda is followed by a syllable with an onset, as in (106):
(106) (C)VC.C(C)V(C)

Given the number of syllable types with consonant clusters attested in Lelepa, positing heterosyllabic consonant sequences rather than tautosyllabic consonant clusters needs some justification, especially with disyllabic and trisyllabic words with medial consonant sequences. For instance, lexemes such as nafsan 'language, talk' or gotfan 'afternoon' could be syllabified as /na.fsan/ and /go.tfan/ since /fs/ and /tf/ are attested onsets (see table 2.10 above), but could also be syllabified as /naf.san/ 'language, talk' or / got.fan/ 'afternoon' since CVC is an attested
syllable type in the language, and one of the most common ones (see Thieberger 2006:57 for a similar issue in South Efate). Keeping in mind that determining an unambiguous syllabification may not always be possible, there are two principles which help in positing heterosyllabic consonant clusters over tautosyllabic ones in the environment shown in (106):
i. The existence of particular tautosyllabic consonant clusters in monosyllabic words
ii. The occurrence of one or the other allophones of $/ \mathrm{o} /$ and $/ \mathrm{e} /:[\mathrm{o}]$ and $[\mathrm{e}]$ in open syllables and $[\supset]$ and $[\varepsilon]$ in closed syllables.

Principle (i.) makes the assumption that consonant clusters in monosyllabic words keep their integrity and are not resyllabified when occurring in words of several syllables. ${ }^{3}$ Principle (ii.) is only relevant for two vowels in the system, namely /o/ and /e/. Thus both (i.) and (ii.) have their limitations; however, it is still possible to predict a correct syllabification in many cases. Table 2.11 below shows heterosyllabic consonant sequences resulting from the application of (i) and (ii) above. In this table, consonant 1 is the coda of a syllable and consonant 2 is the onset of the following syllable, ' + ' means that the sequence is underlying, and ' X ' means that the sequence is not underlying and only occurs on the surface after the application of phonological processes of vowel deletion.

[^8]| | | Consonant 2 | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | $\mathrm{Kp}^{\text {w }}$ | $\widehat{\text { ¢m }}^{\text {w }}$ | w | p | m | f | t | n | s | 1 | r | j | k | n | |
| $\begin{aligned} & \vec{H} \\ & \text { تِ } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\mathrm{Kp}^{\text {w }}$ | - | - | X | - | X | - | + | - | + | + | + | - | - | X | |
| | $\widehat{y m}^{w}$ | - | - | - | - | - | - | + | - | - | X | - | - | + | - | |
| | w | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
| | p | - | - | - | $+$ | - | - | + | + | + | + | + | - | + | - | |
| | m | - | - | - | + | - | - | + | + | + | + | + | - | - | - | |
| | f | - | - | + | - | + | - | + | + | + | + | + | + | + | - | |
| | t | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
| | n | + | + | - | + | + | + | + | + | + | + | + | - | + | + | |
| | s | + | X | + | - | + | + | - | + | - | + | + | - | + | + | |
| | 1 | + | + | + | - | + | + | + | + | + | + | + | + | + | + | |
| | r | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
| | j | - | X | - | - | - | - | - | - | - | - | X | - | - | X | |
| | k | - | - | X | - | + | + | + | + | + | + | + | - | + | $+$ | |
| | η | - | + | + | + | + | + | + | + | + | + | + | + | + | - | |

Table 2.11. Heterosyllabic two-consonant sequences

While table 2.11 summarises heterosyllabic sequences of two consonants, some lexemes exhibit heterosyllabic sequences of three consonants. Sequences of more than three consonants are not attested in the language. Syllabification of both examples in (108) is achieved by using principles (i) and (ii), as well the rule syllabifying sonorants occurring before obstruents word-initially. Sequences of three consonants are realised as follows:
(107) CCC \rightarrow C.CC
(108)
/nakortlay/ /nalyurfrau/ /nsfa/
[na.'kər.tlay]
[nal.yur.'frau]
[n.'sfa]

$$
\begin{aligned}
& \text { 'sky' } \\
& \text { 'fish sp.' } \\
& \text { 'what' }
\end{aligned}
$$

2.4.2 Vowel distribution

As seen in 2.3 , the nucleus of a heavy syllable can be a short vowel in a closed syllable, a long vowel, or a two-vowel sequence realised as a diphthong. Table 2.12 presents all vowel combinations in the language, with unattested sequences labelled "N/A". Twenty-two combinations are attested, out of twenty-five possible ones (unattested vowel sequences are $i i$, $u u$, 00 and $i u$). Two distinct phonological processes occur when vowel combines: diphthongisation and glide insertion. ${ }^{4}$ Vowel sequences may be realised as diphthongs on the surface if the first vowel is lower than the second. This is an optional process that generally takes place in fast speech, and the table shows that vowel sequences can also be realised over syllable boundaries. This process occurs with /ai/, /ae/, /au/, /ao/, /ei/, /eu/, /oi/ and /ou/. In these sequences, the second vowel is realised as the glide [j] if it is a front vowel and as $[\mathrm{w}]$ if it is a back vowel. In contrast, if the first vowel is higher than the second, epenthetic glide insertion occurs. This is true in sequences with high vowels in first position: /ia/, /ue/, /ua/, /uo/. The sequence is realised over two syllables, and the palatal glide [j] is inserted after /i/ while the labial-velar glide [w] is inserted after back vowels. Note that the process does not apply after non-high /e/ (see 2.5.2.2). Long vowels are regarded as phonemic (see 2.2.4, 2.3) and tautosyllabic: they form the nucleus of heavy syllables.

[^9]| $\begin{aligned} & \mathrm{ii} \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$ | ie
 /tie/
 [tĭ.'je] ~[tje]
 ‘do’ | ia /wia/ ['wi.je] 'good' | io $\begin{aligned} & \text { /ña=msugi=ou/ } \\ & {[\text { pkpwam.,su.gi.'jo.ŭ }]} \\ & \text { '2SG.S:IRR=carry=1SG.OBJ' } \end{aligned}$ | $\begin{aligned} & \text { iu } \\ & \mathrm{N} / \mathrm{A} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| ei
 /seisei/
 [,se.i.'.se.1] $~$
 [sej.'sej]
 'meet'
 /nseiseina/
 [n.,se.se.'i.na]
 'meeting' | ee
 /ee/
 ['e.e]
 'no' | ea
 /prea/
 ['pre.a]
 'wash' | eo
 /takeo/
 [ta.'ke.o]
 'k.o. fish' | $\begin{aligned} & \text { eu } \\ & / \mathrm{e}=\mathrm{ukp}^{w} \mathrm{a} / \\ & \text { [e.'ukp } \left.^{w} \mathrm{e}\right] \\ & \text { '3sG.S=kick' } \end{aligned}$ |
| ai
 /nakai/
 [na.'ka.i]~
 [na.'kaj]
 'traditional story' | ae
 /tae/
 [ta.e]~[taj]
 'know'
 /nataena/
 [,na.te.'e.na]
 'knowledge' | aa occurs as phonemic long vowel (see 2.2.4, 2.3) | $\begin{aligned} & \text { ao } \\ & \text { /ao/ } \\ & {[\text { ['a.o] } \sim[\mathrm{aw}]} \\ & \text { 'yes' } \end{aligned}$ | ```au /mau/ ['ma.u]~[maw] 'NEG2'``` |
| oi
 /troi/
 ['tro.i]~[troj]
 'young man'
 /natroina/
 [na.tro.'i.na]
 'youth' | $\begin{aligned} & \text { oe } \\ & \text { /e=lao=ea/ } \\ & \text { /e.la.'we.a/ } \\ & \text { ‘3sG.S=spear } \\ & =3 \text { sG.OBJ’ } \end{aligned}$ | oa
 /naloana/
 [.na.lo.'wa.na]
 'ceremony' | $\begin{aligned} & \hline \text { oo } \\ & \text { N/A } \end{aligned}$ | ```ou /mou/ ['mo.u] ~[mow] 'wet'``` |
| ui
 /puilt/
 [pu.'wilt]
 'paint' | ue
 /suer/
 [su.'wer]
 'tell off' | ua /suara/ [su.'wa.ra] 'walk' | ```uo /e=martuo=ko/ [e.mar.tu.'wo.ko] '3SG.s=breathe=2SG.OBJ'``` | $\begin{aligned} & \text { uu } \\ & \text { N/A } \end{aligned}$ |

Table 2.12. Vowel sequences

There is no need to posit phonemic diphthongs in the language, as diphthongisation is an optional process, loosely conditioned by speech speed: fast speech tends to correlate with diphthong formation. Additional evidence is provided by morphological expansion of some roots. In table 2.12, nominalised forms of verbs such as seisei 'meet' and tae 'know' show that the underlying forms of these verbs are not ${ }^{*}$ sejsej and ${ }^{*}$ taj. While occurring as verbs, these forms can be optionally realised with the diphthongs [ej] and [aj] as their syllable nuclei. However, when nominalised, the verbs host the nominalising enclitic $=n a$ ' $N M L Z$ ' and the final vowels of the roots are now in position of receiving stress, and are not realised as glides but as full vowels, as in nseiseina 'meeting' (see also 2.4.3.3 on the status of diphthongs).

Finally, sequences of more than two vowels are uncommon and limited to four vowels. They occur in processes of affixation or cliticisation. As shown in (109), they are not realised as sequences of three full syllabic vowels:
(109) /lua=e/
/e=oufaki/
/lao=ea/

['lwa.e]
[e.ow.'fak]
[la.'we]

$$
\begin{aligned}
& \text { 'vomit=TR' } \\
& \text { '3sG.s=bury' } \\
& \text { 'spear=3sG.OBJ' }
\end{aligned}
$$

2.4.3 Word stress

2.4.3.1 Preliminaries

I follow Ladefoged (2001:131), for a simple and general definition of stress:
[stress] applies not to individual vowels and consonants but to whole syllables - whatever they might be. A stressed syllable is produced with a greater amount of energy than an unstressed syllable, and it is more prominent in the flow of speech.

There are three factors which determine syllable prominence in Lelepa: vowel duration, intensity (or loudness) and pitch. A stressed syllable has a lengthened vowel and is pronounced with a higher intensity and pitch than an adjacent, unstressed syllable. Note that all three phonetic correlates do not obligatorily co-occur on any given stressed syllable. Stressed syllables always have a higher level of intensity and pitch than unstressed ones, but in fast speech, length differences between vowels tend to be reduced.

A very common pattern for stress in Oceanic languages is to fall on the penultimate syllable (Lynch, Ross and Crowley 2002:35). In Vanuatu, examples are Lolovoli (Hyslop 2001:37), Naman (Crowley 2006), and Sye (Crowley 1998a:17). However, looking at a sample of Vanuatu languages shows a range of different patterns. First, some languages have several stress patterns and may include penultimate stress as the dominant pattern or conversely as the minor one. Examples are Lewo, in which stress assignment is predominantly on the penultimate syllable with other minor but regular patterns (Early 1994:66), South Efate which has several stress patterns including initial stress as the dominant pattern and penultimate syllable stress as a restricted one (Thieberger 2006:65-66), while Abma has word stress sensitive to syllable weight: in words with open syllables and short vowels, stress is penultimate, but if long vowels occur they take precedence and carry stress, regardless of their
position in the word (Schneider 2010:35). Second, some languages differ more radically in that they do not show penultimate stress at all: in Mwotlap word stress falls on the last syllable (François 2001:79) and in Nahavaq there is no evidence for either contrastive or fixed word stress (Dimock 2009:45). Finally, other languages are in a process of change in their stress system: this is the case of the Solomon Islands language Kokota (Palmer 2009:30-37).

In Lelepa, stress is best described using moraic theory (Hayes 1995). Morae are units of weight assigned to syllables. Syllables can be light or heavy, with light syllables containing a single mora and heavy syllables containing more than one mora. While onsets do not count as morae, syllable nuclei and codas do. Light syllables are open and their nucleus is filled by a short vowel. In contrast, heavy syllables can be open or closed. A heavy syllable that is open contains either a long vowel or a diphthong as its nucleus, while a closed heavy syllable can be formed with a short vowel, a long vowel or a diphthong as its nucleus, and up to two consonants in the coda (however, long vowels and diphthongs cannot be the nucleus of a syllable with a complex coda). As stress is attracted to the penultimate mora, it is not relevant to distinguish between different types of heavy syllables. In Lelepa, stress is not contrastive and the language has several predictable stress patterns, with penultimate stress the predominant pattern.

2.4.3.2 Dominant stress pattern

In this pattern, stress falls on the penultimate mora. All words in (110) are formed with light syllables and primary stress falls on the penultimate mora, which in this case occurs in the penultimate syllable. In words of four syllables and over, a secondary stress falls two morae to the left of the penultimate mora:
/mesa/ /yisu/ /puka/ /flafla/ $/ \mathrm{ym}^{\text {w }}$ aata/ /napua/ /maroa/ /makala/ /keleti/ /raparapa/ /munariki/ /masafia/
['me.se]
['ni.su]
['pu.qe]
['fla.fle]
['ŋm ${ }^{\text {w }}$ a..te]
[ne.'pu.we]
[me.'ro.we]
[me.'xa.le]
[ke.'le.ti]
[,ra.pe.'ra.pe]
[1mu.ne.'ri.ki]
[,ma.se.'vi.je]
'today'
'squirrelfish'
'swell'
'blocked'
'snake'
'road'
'p.name'
'spider'
'k.o.shell'
'sea bug'
'p.name'
'p.name'

The same pattern of primary stress assignment is observed in words whose penultimate syllable is heavy and whose final syllable is light, as in (111). In such forms, the penultimate syllable contains the penultimate mora and it attracts stress:
(111) /aninta/
/kinta/
/manfenfe/
/nalpalpa/
[a.'ŋin.te]
['kin.te]
[men.'frn.fe]
[nel.'pal.pe]
'1pl.incl.poss’
'1PL.INCL’
'be.thin'
'mud'

In lexemes with a light penultimate syllable and a heavy final one, stress is assigned to the final heavy syllable as it contains the penultimate mora:
(112)
/annem/
/napap/
/natul/
/saluaser/
/tatalin/
[еп.'nem]
[ne.'pap ${ }^{\text {h }}$]
[ne.'tul]
[se.,lu.we.'ser]
[.ta.te.'lin]
'1PL.EXCL.POSS’
'shoulder'
'egg'
‘lionfish’
'batfish'

Lexemes with both heavy penultimate and final syllables also show that the relevant factor is mora position. In (113), stress falls on the final syllable of words as it contains the penultimate mora:

```
(113) /naktaf/
/naptona/
/ }\mp@subsup{\textrm{gm}}{}{\textrm{w}}\mathrm{ on\m}\mp@subsup{m}{}{w}\mathrm{ on/
/nmalmal/
/alpat/
/gotfan/
/mannem/
/makenkin/
/mankurkur/
```

[nap.'ton]
[$\mathfrak{y m}^{\text {w }}$ on. $\mathrm{ybm}^{\text {w }} \mathrm{on}$]
[nmel.'mal]
[el.'pat]
[ŋวt.'fan]
[mey.'nem]
[.ma.kgn.'kin]
[.man.kur.'kur]

'p.name'
'belly button'
'yellow'
'cry'
'pinch'
'blue’
'1PL.EXCL.BEN'
'itchy'
[,man.kur.'kur]
'p.name'
'belly button'
'yellow'
'cry'
'pinch'
'blue'
'1PL.EXCL.BEN'
'itchy'
'bat'

A unit receiving a single primary stress is a phonological word. While primary and secondary stress have the same phonetic correlates, they can be distinguished by virtue of the fact that the values of these correlates are higher with primary stress.

2.4.3.3 Exceptions to the dominant stress pattern

There are two deviations from the predominant pattern of penultimate stress. The first concerns lexemes whose penultimate mora is immediately preceded by $/ \mathrm{a} /$, and the second
concerns $n(a)$-initial words. In the first case, words contain two vowels in a row, as in maua 'p.name', maole 'spread' and maeto 'angry'. The first vowel is /a/ while the second can be any other vowel. The second vowel is in penultimate mora position and expected to receive stress, but this does not occur as the two vowels diphthongise, because the first vowel/a/ is lower than the following one (see 2.4.2). Stress is then assigned after diphtongisation, as shown in (114):

```
(114)
    /pai\etaa/
    /Maina/
    /raika/
    /na\etataina/
    /tamataira/
    /tap̃aet/
    /ntae-na/
    /taos/
    /naota/
    /malmauna/
    /tamaraota/
    /temauna/
    /mtauki/
```



```
'conch shell'
'p.name'
'spearfish'
`brain'
'siblings'
'hit'
'poo-3sG.POSS'
'be like'
'chief
'now'
'couple'
'everyone'
'fear'
```

The phonetic transcriptions in (114) give two alternative transcriptions for each example, the first with the vowel following /a/ realised as a glide in the stressed syllable, while in the second transcription the same vowel is realised as shorter and non-syllabic. While these sequences could be analysed as phonemic diphthongs, there are reasons why it seems best to treat them as sequences of two underlying vowels. First, these diphthongs are fully predictable: if /a/ immediately occurs before any vowel, diphthongisation occurs and then the diphtong carries stress. If this environment is changed, for instance if another vowel such as /o/ occurs instead of $/ \mathrm{a} /$, diphthongisation does not occur and /o/ does not receive stress. This is seen in (66):

$$
\begin{equation*}
\text { /natroina/ } \quad[\text { ne.tro.'i.ne }] \quad *[\text { ne.'troj.ne }] \quad \text { youth' } \tag{115}
\end{equation*}
$$

Second, there is variation in the realisation of the vowel following $/ \mathrm{a} /$: in fast speech, it is realised as a glide, while in careful speech it is clearly realised as a vowel, only shorter and unstressed, as seen in the second phonetic transcription of examples in (114). If there were no variation in the pronunciation of these syllables and a glide always followed the $/ \mathrm{a} /$, then there would be better grounds to consider analysing these as phonemic diphthongs. However, the
variation in pronunciation suggests that these segments may in fact be underlying vowels rather than glides. Finally, there are historical clues which point to a vocalic origin of the surface glides. For instance, it is likely that raika partly reflects POc *ikan 'fish', as shown in (116):

```
/raika/
['raj.ke]~['ră̆.ke] 'spearfish'
ra<*? \(+\mathrm{ika}<{ }^{*} \mathrm{ikan}\)
```

In conclusion, these sequences are analysed as surface diphthongs of two underlying vowels instead of underlying diphthongs because of their predictable shape. If we consider that stress is assigned after diphthongisation, then this phenomenon can be explained and not considered as an exception anymore, as it is arguable that there is no violation to the rule, since diphthongs are attested syllable nuclei and receive stress.

A real exception to the stress pattern concerns na-initial nouns. Nouns with this shape are found all over Vanuatu and were formed by the fusion of an early article of the form ${ }^{*} n a$ to the root (Crowley 1985, Lynch 2001). In Lelepa, these nouns represent a sizeable portion of the class of nouns in the current corpus (about 43%) and are peculiar in that their stress pattern is variable: while many of them have the regular penultimate stress pattern as in (117), others receive stress on their initial na syllable, as in (118):
(117)
/nawowa/
/nasara/
/nafsana/
/nafsatrana/
/nafinta/
/namarta/
/nanoai/
/naptau/
/niasu/
[ne.'wo.we]
[ne.'sa.re]
[nef.'sa.ne]
[.naf.se.'tra.ne]
[ne.'fin.te]
[ne.'mar.te]
[ne.no.'wa.i] ~ [ne.no.'waj]
[nep.'ta.u] ~ [nep.'taw]
[ni.'ja.su] \sim [ni.'jas]
'leaf
'dancing ground'
'language'
'youth'
'silent person'
'belly'
'male'
'breadfruit'
'bailer'

(118) /nasu乌ึm ${ }^{\text {a }}$ /	['na.su.ym ${ }^{\text {w }}$ e]	'house'
/napaya/	['na.pe.ŋ㇒]	'banyan tree'
/nakp ${ }^{\text {w }}$ o-na/	['na.kpp ${ }^{\text {onene }}$]	'smell-3sG.POSs'
/nafie/	['na.fi.je]	'plant sp'
/nafte-na/	['naf.tə.ne]	'rib-3sG.POSS'
/naym ${ }^{\text {w }}$ a-na/	['na.引m ${ }^{\mathrm{w}}$ e.ne]	'liver-3sG.Poss'
/naoa/	['na.we] ['na.wo.e]	'vein'
/naym ${ }^{\text {w }}$ oru/	['na.ŋิm ${ }^{\text {w }}$ orru]	'deepness'
/natan/	['na.ten]	'spirit'
/nasoŋo/	['na.sojo]~['na.soy]	'rubbish'

Nouns in (118) violate the penultimate stress rule and it is difficult to find a motivation for such an exception. For instance, nouns with similar syllable structure are found in both (117) and (118). Both nawowa 'leaf' and nasogo 'rubbish' have the same CV.CV.CV syllable structure, yet the latter is an exception to the penultimate stress rule. Similarly, nafsana 'language' and naftena 'ribs' both have a CVC.CV.CV structure but different stress patterns, with naftena having initial stress. This clearly shows that syllable structure is not determining the variation. In addition, there is also some variation in stress assignment for certain na-initial nouns, as seen in (119). These nouns are attested in the corpus with regular stress (as in their first transcription variant) and irregular stress (as in their second transcription variant):

```
(119)
/nalia/
/name-na/
/naym}\mp@subsup{}{}{w}\textrm{a}\mathrm{ a-na/
/napat/
/nerue/
```

```
[ne.'li.je]~['na.li.je]
[ne.'me.ne]~['na.mə.ne]
[ne.'ŋm \({ }^{\mathrm{w}}\) e.ne] ~['na.ŋm \({ }^{\mathrm{w}}\) e.ne]
[ne.'pat]~['na.pet]
[nə.'ru.we]~['ne.ru.we]
```

```
'place'
'tongue-3SG.POSS'
`liver-3SG.POSS`
'tooth'
'twins'
```


2.4.3.4 Final vowel reduction and stress assignment

There is a widespread process of final vowel reduction (see 2.5.1.1), and the present section discusses stress assignment on forms undergoing this process. As this process deletes the final mora, it may have effects on stress assignment. After application of this process, many lexemes which are underlyingly CV-final surface as consonant-final. There is no effect on stress assignment in this case, as the final syllable now contains two morae, and stress falls on the same mora as with vowel-final forms. This is seen in (120):
(120)

```
/nati/
/nfarke/
/ntafara/
/\moru/
/muntopu/
/mtaso/
```

[nat]~['nati]	'banana'
[n.'fark] ~[n.'far.kə]	'canoe deck'
[nte.'far]~[n.te.'fa.re]	'wave'
[$\left.\mathrm{ym}^{\mathrm{w}} \mathrm{or}\right] \sim\left[\mathrm{hm}^{\text {w }}\right.$ orru]	'hole'
[mun.'top'] [mun.'to.pu]	'p.name'
[m.'tas] [m.'ta.so]	'p.name'

In contrast, with lexemes whose last syllable consists of a vowel with no coda, final vowel deletion results in a surface pattern of final stress, as seen in (121). This means that stress is assigned first, then final vowel deletion applies. This also means that these forms may give the mistaken impression that there is an underlying pattern of final stress in the language:
(121) /rarua/
[ra.'ru] $\sim[$ ra.'ru.we $]$
$[$ ko.'ri $] \sim[$ ko.'ri.je $]$
$[$ we.'ra $] \sim[$ we.'ra: $]$
$[$ lo] \sim 'lo.we $]$
$[f e . ' l e] \sim[f e . ' l e . e] ~$
$[k u . ' s u] \sim[k u . ' s u . w e]$

$$
\begin{aligned}
& \text { 'canoe' } \\
& \text { 'dog' } \\
& \text { 'here' } \\
& \text { 'black' } \\
& \text { 'cave' } \\
& \text { 'rat' }
\end{aligned}
$$

2.5 Phonological processes

2.5.1 Vowel reduction

Vowel reduction refers to the reduction and deletion of vowels: both processes are interlinked, as reduction is the stage preceding deletion. The environment in which this process operates is the immediate surroundings of syllables receiving primary stress. Thus, in certain conditions, vowels occurring both before and after a stressed syllable may be deleted. While this process is widespread and the main phonological process in the language, it is optional: many lexemes attested to undergo the process are also attested not undergoing it, and the process is more likely to be attested in the speech of younger speakers. That said, the process does apply across all generations of speakers.

2.5.1.1 Final vowel reduction

After a consonant, any vowel in word-final position can be deleted, as seen in many examples in this chapter, as well as in (122). High and back vowels are either realised as full vowels or not at all in this position, while $/ \mathrm{e} /$ and $/ \mathrm{a} /$ also have the reduced forms $[\partial]$ and $[\mathrm{e}$], respectively:

(122)	/poti/	['po.ti]~[pıt]	'banana sp'
	/nmaloyo/	[nma.'lo.øo]~[nma.'lon]	'darkness'
	/lopu/	['lo.pu]~[lop]	'bamboo'
	/nife/	['ni.fə]~[nif]	'fan'
	/neika/	['ncj.ke] [n¢jk]	'fish'

After a vowel, there are more restrictions governing the application of the process. In this environment, high and back vowels are never fully deleted but are reduced to glides: /i/ is reduced to the palatal glide [j] while the back vowels are reduced to the labial-velar glide [w]:
(123) /takanei/
/skei/
/katou/
/kafrau/
/llao/
/fatkao/

[.ta.ke.'ne.i] [tte.ke.'ncj]	'banana sp.'
['ske.i] [[skej]	'INDEF; one'
[ke.'to.u]~[ke.'tow]	'hermit crab'
[kef.'ra.u]~[kef.'raw]	'crawl'
['la.o]~[law]	'spider'
[fet.'ka.o]~[fet.'kaw]	'p.name'

For final /e/, the process applies in different ways according to the nature of the preceding vowel. After a high vowel, final /e/can be deleted outright as in (124), but in contrast after /a/ it can be reduced to [j] but not deleted, as in (125). Note that there are no final oe sequences in the language:

(124)	/nafie/ $/ \widehat{y m}^{\text {w }}$ atietie/ /kusue/	[ne.'fi.je]~[ne.'fi] [$\widehat{\eta m}^{\text {we.t.ti.je.'ti.je] }} \sim\left[. \widehat{y m}^{\text {w }}\right.$ a.ti.'ti] [ku.'su.we] [ku.'su]	'k.o. leaf 'smouth' 'rat'
(125)	/marae/	[me.'ra.e]~[me.'raj]	'eel'
	$/ \mathrm{gm}^{\text {wae }}$ /		'far'
	/tae/	['ta.e]~[taj]	'know'

Finally, when final /a/ immediately follows a vowel, it may be either reduced to [e$]$ or deleted altogether. In fast speech, /a/ tends to be deleted, while in more careful speech it is likely to be only reduced:
(126)
/nekia/
/wia/
/farea/
/slafea/
/katoa/
/maroa/
/napua/
/rua/
/nekia/
/wia/
/farea/
/slafea/
/katoa/
/maroa/
/rua/
[ne.'ki.je]~[ne.'ki]
['wi.je]~['wi]
[fe.'re.e]~[fe.'re]
[sle.'fe.e]~[sle.'fe]
[ke.'to.we]~[ke.'to]
[me.'ro.we] $\sim[\mathrm{me}$. 'ro $]$
[ne.'pu.we]~[ne.'pu]
['ru.we $] \sim[$ 'ru]
'pandanus'
'good'
'chiefly house'
'before'
'p.name'
'think'
'road'
'two'

2.5.1.2 Pretonic vowel reduction

Vowels filling the nucleus of a syllable preceding a syllable receiving primary stress are also regularly reduced or deleted. This process applies equally to monomorphemic and morphologically complex words. However, it is significantly more constrained than final vowel deletion. In particular, this process is sensitive to both the number of syllables and the syllable structure of a word. First, the pretonic vowel is not deleted in words of three syllables or less, as shown in (127):

(127)	/fatuym ${ }^{\text {w }} \mathrm{a}$ /	[fe.'tu.ym $\left.{ }^{\text {w }} \mathrm{e}\right] \sim\left[\mathrm{fe} .{ }^{\text {'tuym }}{ }^{\text {w }}\right.$]		'p.name'
	/falea/	[fe.'le.e] [ff.'le]	*['fle.e] ${ }^{\text {c/fle] }}$	'cave'
	/panei/	[pe.'ne.i]~[pe.'nej]	*['pne.i] * [pnej]	'come'

In words of four or more syllables with CV syllables, the process applies with no restrictions, as seen in (128):

/ $\mathrm{ym}^{\text {w }}$ alaym ${ }^{\text {c }}$ ala/	[$\mathrm{hm}^{\text {w }}$ el.' $\mathrm{hrm}^{\text {w }} \mathrm{al}$]	'naked'
/na-muru-na/	[nem.'run]	'N.SPEC-laugh-NMLZ'

It also applies if the syllables surrounding the stressed syllable are simply V , as long as the stressed syllable is CV:
(129)
$/ \widehat{y m}^{w}$ atietie/
[. $\widehat{y m}^{w}$ a.ti.'ti]
'smooth'

However, it does not happen if the stressed syllable has no onset:

/natroina/	[na.tro.'i.ne]	$*$ [ne.'tri.ne]	'youth'
/nataena/	[na.te.'e.ne]	${ }^{[\text {[ne.'te.ne] }}$	'knowledge'

The shape of the stressed syllable is not the only important criterion. The shape of the syllable preceding the pretonic one is also important: if this syllable has a shape different from CV or V , the process does not apply. The reason for this is that it would create a complex consonant cluster, and while three-consonant clusters are attested, they are very rare (see 2.4.1.2). For instance, in (131) the syllable preceding the pretonic one is closed, and the process does not apply:

(131)

/ nm $^{\text {w }}$ askosko/
/nafaklinana/
/nafankp ${ }^{\text {w }}$ atana/

[$\mathrm{ym}^{\text {w }}$. .'kos.ko]	*['ŋm ${ }^{\text {w }}$ skjs.ko]	'mature'
[ne.,fak.li.'na.ne]	*[1na.fek.'lya.ne]	'departure'
[ne.fan.kp ${ }^{\text {w }}$. ${ }^{\text {'ta.ne] }}$	*[1na.fen.'kp ${ }^{\text {w }}$ ta.ne]	'difference'

Similarly, if the syllable preceding the pretonic one is open but has a complex onset, the process does not apply either:

(132)	/ $\mathrm{ym}^{\text {w }}$ latin/	[gm^{w} le. ${ }^{\text {'tip }}$]	*['ŋm ${ }^{\text {w }}$ l.tin]	'close'
	/sralesko/	[sre.'lcs.ko]	*[srles.ko]	'believe'
	/nafsatrana/	[,na.fse.'tra.ne]	*[nef.'stra.ne]	'answer'

2.5.2 Epenthesis

Epenthesis is a process inserting non-underlying segments within words. There are two distinct epenthesis processes in the language, according to the type of the epenthetic segment: vowel epenthesis (see 2.5.2.1) on the one hand and glide epenthesis (see 2.5.2.2) on the other. The main function of epenthesis is to break sequences of like segments: vowel epenthesis occurs to break consonant clusters, while glide epenthesis occurs to break vowel sequences.

2.5.2.1 Vowel epenthesis

Vowel epenthesis consists of the insertion of a non-lexical vowel in certain environments. In Lelepa, it can be the result of either phonological or morphophonological processes. As it changes the phonetic shape of words, it has an impact on surface syllable structure: with the addition of a vowel, the syllable count of a word is increased by one syllable. However, note that a syllable in which the nucleus is epenthetic does not receive stress. Vowel epenthesis occurs to break consonant clusters. It was shown in 2.4.1.2 that consonant clusters are allowed in the language, however they are also disprefered and speakers will avoid them. Vowel epenthesis is conditioned by the sonority of the consonants forming a sequence, and whether
consonant sequences are tautosyllabic or heterosyllabic. A formulation of the sonority hierarchy is shown in (133), after Kenstowicz (1994:254). Vowels have the highest levels of sonority, while obstruents have the lowest:
(133) The sonority hierarchy (Kenstowicz 1994:254)

VOWELS > GLIDES > LIQUIDS > NASALS > OBSTRUENTS

Kenstowicz's sonority hierarchy ranks classes of sounds in terms of their sonority, and states that the class of obstruents has the lowest level of sonority. Recall that the class of obstruents is fairly large in the language (six members), unlike other classes of consonants (two glides, two liquids, four nasals), thus it would be useful to distinguish different degrees of sonority among obstruents. This is what Parker's $(2002: 235)$ sonority scale proposes:
(134) Sonority scale (Parker 2002:235)

LOW VOWELS $>$ MID VOWELS $>$ HIGH VOWELS $>$ SCHWA $>$
GLIDES $>$ LATERALS $>$ FLAPS $>$ TRILLS $>$ NASALS $>$
GLOTTAL FRICATIVE > VOICED FRICATIVES > VOICED STOPS > VOICELESS FRICATIVES > VOICELESS STOPS \& AFFRICATES

Armed with Parker's sonority scale, it is possible to make more fine-grained analyses of the sonority of obstruents combinations. The sonority sequencing principle (Clement 1990:285, Blevins 1995:210) makes predictions on syllabicity based on the sonority of the segments surrounding the syllable peak (or nucleus):
(135) Sonority Sequencing Principle (Blevins 1995:210)

BETWEEN ANY MEMBER OF THE SYLLABLE AND THE SYLLABLE PEAK, A SONORITY RISE OR PLATEAU MUST OCCUR.

This means that in a syllable of the shape $C_{1} C_{2} V, C_{1}$ must have a lower or equal sonority than C_{2}. In case C_{1} has a lower sonority than C_{2}, there is a sonority rise, while with equal sonority levels there is a sonority plateau. Finally, when the C_{1} has a higher sonority than C_{2}, a sonority reversal occurs and the sonority sequencing principle is violated. A common environment for vowel epenthesis to occur in Lelepa is a sonority plateau. In (136), the word-initial clusters are formed with phonemes from the same classes of sounds (nasal-nasal and stop-stop). These clusters form a sonority plateau and may be interrupted by an epenthetic schwa:
(136)
/njea/
/nmatena/
/tkarki/

[nye]~[nə.'ŋe]	'DEF'
[nme.'ten] [nə.me.'tعn]	'funeral'
[tkark]~[tə.'kark]	'last born'
[tkalp]~[tə.'kalp]	'first born'
	'open'

In syllables with complex onsets in which a rise in sonority occurs, there are no instances of vowel epenthesis:
(137)
/pnak/
/psa/
/fsa/
/plake/
/kp ${ }^{\text {w }}$ laka/
[pnak]
[psa]
$[\mathrm{fsa}]$
['plak]
['kpla.ke]

'steal'
'speak'
'speak:IRR'
'go.with'
'buff-banded rail'

There are a few clusters which represent sonority reversals in the language. Such clusters are violation of the sonority sequencing principle. The language deals with them in various ways, including vowel epenthesis and consonant syllabification (see 2.5.3). First, certain sequences are syllabified as part of a complex onset. They represent violations of the sonority sequencing principle, as seen in (138). The noun fterki 'wife' is a rare case in which a syllable presenting a sonority reversal in the onset occurs, and optional epenthesis can occur to solve this violation:
(138) /fterki/ [ftørk] ~[fə.'tørk]~['ftør.ki]~ [fə.'tэr.ki] 'wife'

Second, there are forms such as the aspect particle mro 'AGAIN' which do not occur in isolation and minimally need a subject proclitic and a verb to occur in a construction. As seen in (139) and (140), mro is resyllabified, and the onset cluster $/ \mathrm{mr} /$ is broken, with $/ \mathrm{m} /$ acting as a coda and /r/ as an onset. In (139), the subject proclitic is vowel final and no epenthesis is needed, as it acts as the nucleus of the first syllable, which has $/ \mathrm{m} /$ of $m r o$ as a coda:

(139)	['am.ro	'net	ner.' ${ }^{\text {cp }}{ }^{\text {w }}$ an	ke.'ru]
	$A=m r o$	net	narp̃an	ke=rua,
	1SG.S=again	plane	side	ORD=two
	${ }^{\text {'I }}$ plane the o	side		

But it is also possible for mro to be preceded by a consonant-final subject proclitic, as seen in (140). In this example, there is potentially a sonority reversal in the sequence $/ \mathrm{rm} /$. To deal
with this, an epenthetic schwa is inserted between the proclitic and the aspect particle, which results in breaking the cluster presenting a sonority reversal:

(140)	['a.rəm.ro	'pa	re.'ru	'wok	'la.kun]
	$\mathrm{ar}=\mathrm{mro}$	pa	ra=rua	wok	Lagoon
	3Du.s=again	go	3Du.s=two	work	p.name
	'They both we	to	rk at the La	Hotel.'	

So far, vowel epenthesis was shown to occur to break two kinds of consonant sequences, those forming sonority plateaus and reversals. However, this process is only one of the processes the language calls upon to deal with prohibited sequences, as 2.5 .3 shows that certain prohibited sequences are resolved by consonant syllabification.

2.5.2.2 Glide epenthesis

The phones [w] and [j] are regularly inserted between vowels when particular vowels are in sequence. The occurrence of these epenthetic glides depends on the height difference of the two vowels in sequence: if any of the high or mid vowels $/ \mathrm{i} / \mathrm{L} / \mathrm{o} / \mathrm{or} / \mathrm{u} /$ is followed by a lower vowel, then glide insertion occurs. The selection of either [j] or $[\mathrm{w}]$ depends on the frontness or backness of the first vowel in the sequence: the palatal [j] is inserted following a front vowel, but labial-velar [w] is inserted after back vowels. Note that the sequence iu is not attested. Example (141) shows insertion of $[\mathrm{j}]$ between $/ \mathrm{i} /$ and $/ \mathrm{a} /$ and $/ \mathrm{i} /$ and $/ \mathrm{o} /$:
(141) /nia/
['yi.je]
['wi.je]
[.ma.se.'vi.je]
[ye.'i.jo]
[e.we.lo.fi.'jJw]
'3SG.S=wave=1SG.OBJ'

```
'dolphin'
'good'
'p.name'
'fine'
```

 /masafia/
 / jaio/
 /e=walof=iou/
[,e.we.,lo.fi.'jכw]
'3SG.S=wave=1SG.OBJ'

Example (142) shows that $[\mathrm{w}]$ is inserted between $/ \mathrm{u} /$ and $/ \mathrm{a} / \mathrm{c} / \mathrm{o} /$ and $/ \mathrm{a} / \mathrm{and} / \mathrm{u} /$ and $/ \mathrm{e} /$:
(142) /rua/ /suara/ /saluaser/ /maroa/
/toa/ /natue/

```
['ru.we]
[su.'war]
[se.lu.we.'ser]
[me.'ro.we]
['to.we]
    [ne.'tu.we]
```

'two'
'walk'
'fish sp’
'p.name'
'chicken' 'plant sp.'

Glide insertion does not occur between vowels of the same height as shown in (143), nor in sequences in which the first vowel is lower than the second one, as in (144):

/takeo/	[te.'ke.o]	*[te.'ke.jo]	'fish sp.'
/tai/	['ta.i]	*['ta.ji] * ['ta.wi]	'sibling'
/tae/	['ta.e]	*['ta.je]~*['ta.we]	'know'
/ $\mathrm{kp}^{\text {w }} \mathrm{a}=$ owfak/	[, $\mathrm{kp}^{\text {wa }}$ a.ow.'fak]	$*\left[, \mathrm{kp}^{\text {wa }}\right.$ a.jow'fak] $\sim^{*}\left[\right.$, $\mathrm{kp}^{\text {w }}$ a.wow'fak]	. $:$:IRR= bury'
$/ \widehat{k p}^{\text {w }} \mathrm{a}=\mathrm{ukp}^{\text {w }} \mathrm{a} /$	[$\mathrm{kpp}^{\text {w }}$.'.u. $\mathrm{kp}^{\text {w }} \mathrm{e}$]		
/e=ukp ${ }^{\text {w }}$ /	'2SG.S:IRR=kick' [e.'u. Kp w e]	*[e.'ju.kp ${ }^{\text {w }}$ e]	'3SG.S=kick'

2.5.3 Consonant syllabification

Consonant syllabification is another process used to avoid consonant clusters that violate the sonority sequencing principle. In this process, the sonorants $/ \mathrm{n} /, / \mathrm{m} /, / \mathfrak{g m}^{\mathrm{W}} /, / \mathrm{l} / \mathrm{r} / \mathrm{r} /$ are syllabified before obstruents $/ \mathrm{kp}^{\mathrm{W}} / \mathrm{s} / \mathrm{p} /, / \mathrm{t} /, / \mathrm{k} /, / \mathrm{f} /$ and $/ \mathrm{s} /$. Recall that $/ \mathrm{y} /$ is not attested in first position in onset clusters, and the sequences such as $* / \mathrm{mkp}^{\mathrm{W}} /$ and $* / \mathrm{mf} /$ are not attested.

(145)	/ntas/	[n.'tas]~[n.'das]	'sea'
	/nkapu/	[n.'kap̉] [ņ.'gap] \sim [n.'ka.pu]	'fire'
	/nsfa/	[n.'sfa]~[ən.'sfa]	
		$\sim[$ n.'sva $] \sim[ə n . ' s v a]$	'what'
(146)	/mpan/	[m.'pan] [m.'ban]	'away'
	/mtak/	[m.'tak $\left.{ }^{\mathrm{h}}\right] \sim\left[\mathrm{m}^{\prime} . \mathrm{'dak}^{\mathrm{h}}\right]$	'afraid'
	/mkalkal/	[m.kel.'kal] [m.gel.'gal]	'itchy'
	/msak/	$\left[\mathrm{m}^{\prime} . \mathrm{sak}^{\mathrm{h}}\right] \sim\left[\mathrm{m}^{\prime} . \mathrm{zak}^{\mathrm{h}}\right]$	'sick'

2.5.4 Vowel harmony

Vowel harmony is a minor process: it is limited to the verb complex, and to certain morphemes occurring in the verb complex. In this process, the vowels of certain elements of the verb complex harmonise with the vowel of certain subject proclitics. Morphemes involved in vowel harmony include subject proclitics with the high back vowel /u/ (that is, k.u= ' 2 SG.s'; $t u=$ '1DU.EXCL.S' $u r=$ '1PL.INCL.S'; $u r=$ '3PL.S'). These proclitics trigger the assimilation of the vowel of the modality particle $k a t$ 'CERT', the verb to 'stay', and the clause-final particle to
'STAT'. In (147) and (148), the vowel of the particle kat assimilates to that of the subject proclitic:

[ku.'ku.ta	til	sren.'maw.ne	ne.'pan]
Ku=kat	til	sranmauna	nan-na.
2sG.S=CERT	tell	everything	Ass-3sG.Poss

'You told everything about it.'
(148)

[ur.'ku.tə	'pel.sə	pen.'mعi]
ur=kat	palse	panmei
3pr....CERT	paddle	come
'They paddled towards us.'		

In (149), the vowels of both the verb to 'stay' and the clause-final particle to 'STAT' have assimilated to that of the subject proclitic:
(149)

[.te.me.'tu	an'nem	ur.'tus	'tu]
Te=matua	annem	ur=to=s	to
SBST =old 1PL.EXCL.POSS	3pL.s=stay=3OBL	STAT	
'Our ancestors stayed there.'			

Proximity to the subject proclitic is not a condition for the vowel harmony to occur. As seen in (150), the clause-final particle occurs twice, and is separated from the verb by the oblique natkon 'village' and by the adverbs $\tilde{m o l}$ and tapla 'like this':
(150) Naara ur=kut tu natkon tu,

3PL 3pl.s=CERT stay village STAT
ur=kut tu m̃ol tapla tu,
3PL.S=CERT stay just like.this STAT
'They stayed in the village, they just stayed like this.'

2.5.5 Gemination

The liquids $/ 1 /$ and $/ \mathrm{r} /$ as well as the plosive $/ \mathrm{p} /$ occur as geminates in a small number of roots:
(151) $\begin{aligned} & \text { /llu/ } \\ & \text { /llao/ } \\ & \text { /rri/ } \\ & \text { /nappa/ } \\ & \text { /lalla/ }\end{aligned}$
/llu/
/llao/
/rri/
/nappa/
/lalla/
[l:u]
['la.o.o]
[ri]
['nap.pe]
['lal.le]
['lal.le]
'return'
'spider'
'fly'
'timber'
'shellfish sp.'

Gemination is contrastive, as seen in (152):

(152) /llao/	['lia.o]	'spider'
/lao/	['la.o]	'stand'
/rri/	$[$ rii]	'fly'
/ri/	$[$ ri]	'dig'

Gemination also occurs at morpheme boundaries, when roots combine with affixes and clitics:
['nan.ne] 'offspring-3sG.POSS’
(154)
3PL.S=shift=3SG.OBJ
‘They brought it.'
[]

[ur..su.'ni	pe.'nєj]
/ur=rsun=ia	panei/

pe.'n $\varepsilon j]$
panei/
COME

In addition, when two same vowels are in the underlying $\mathrm{VL}_{1} \mathrm{~V}_{1} \mathrm{~L}_{1} \mathrm{~V}_{1} \mathrm{~V}_{2}$ (where L is a liquid), V_{1} is deleted and the sequence $\mathrm{VL}_{1} \mathrm{~L}_{1} \mathrm{~V}_{2}$ surfaces: the liquids are not separated by a vowel and are pronounced as a geminate consonant, as seen below.
/manaliliu/ /allaapa/

[me.'pal.lu]	'Mangaliliu'
['al.le:.pae]	'Lelepa'

The surface forms of these lexemes illustrate this process of vowel deletion. Note that these two lexemes, being place names for two major locations in Vanuatu, are widely used in everyday conversation by Lelepa speakers outside of their language group. Interestingly, when Lelepa speakers use these words in a different language, such as Bislama or English, this process does not occur and the words surface as ['le.le.pa] and [me.,na.li.'lju], which is the pronunciation used in those other languages.

2.6 Orthography

The orthography used in this study is largely based on the orthography designed by the missionary Peter Milne based in Nguna, which is still in use today. The main feature of that orthography is the use of characters with tildas to represent the labial-velars. These graphemes have been adopted in a number of Vanuatu languages which have comparable phonemes (e.g.

South Efate and Nguna). As seen in table 2.13, most phonemes are represented phonetically except for the labial-velar stops / $\mathrm{kp}{ }^{\mathrm{w}} /$ which is represented as $\langle\tilde{\mathrm{p}}\rangle$, the labial-velar nasal $/ \hat{\mathrm{g}}^{\mathrm{w}} /$ is represented as $\langle\tilde{\mathrm{m}}\rangle$, the velar nasal $/ \mathrm{g} /$ is represented as $\langle\mathrm{g}\rangle$, the palatal $/ \mathrm{j} /$ is represented as $\langle\mathrm{i}\rangle$, and the labial-velar glide $/ \mathrm{w} /$ is represented as $\langle\mathrm{w}\rangle$. Phonemic vowel length is represented by the digraph <aa>.

phoneme	grapheme	phoneme	grapheme
/K¢p ${ }^{\text {w/ }}$	< ${ }^{\text {p }}$ >	/i/	<i>
/p/	<p>	/e/	<e>
/t/	<t>	/a/	<a>
/k/	<k>	/aa/	<aa>
/f/	<f>	/o/	<0>
/s/	<s>	/u/	<u>
$/ \mathrm{ym}^{\mathrm{W}}$ /	$<\tilde{\mathrm{m}}>$		
/m/	<m>		
/n/	<n>		
/n/	<g>		
/l/	<l>		
/r/	<r>		
/w/	<w>		
/j/	<i>		

Table 2.13. Phonemes/graphemes correspondences

Phonemic vowels in pretonic and final position (see 2.5.1) are always represented in the orthography, because their occurence in speech is conditioned by inter-generational variation rather than by phonological constraints. Alternative representations have been avoided so that learners do not need to learn several representations of the same word. In contrast, the final consonants of verbs participating in final consonant loss are never written when not pronounced (see 3.3.5). Epenthetic segments are not represented, except for borrowings.

Chapter 3 - Morphology

3.1 Introduction

Lelepa morphology mostly concerns nouns and verbs, and presents inflectional and derivational processes. As expected for an Oceanic language, Lelepa comprises possessive marking on nouns, valency and participant reference marking on verbs, as well as nominalisation strategies. Reduplication is present but is only a minor process. A distinction of typological interest is the contrast between nominalisation and substantivisation (after Lemaréchal 1989). The former derives nouns from verbs, while the latter derives referential noun phrases from non-referential lexemes such as verbs, adverbs, adjectives, determiners and possessives. Substantivisation is not widely reported in Oceanic languages but has been described in the Vanuatu language Mwotlap (François 2001) and in the non-Oceanic Austronesian languages Palauan (Lemaréchal 1989:39) and Tagalog (Lemaréchal 1989:21). It is also present in Indo-European languages such as Lezgian (Haspelmath 1993). The chapter is organised in three main parts: noun morphology, which is inflectional, is discussed in 3.2, while verb morphology, which involves both inflectional and cliticisation processes, is discussed in 3.3. Section 3.4 discusses derivational processes such as nominalisation in 3.4.1 and substantivisation in 3.4.2. The formation of locational nouns is discussed in 3.4.3, and that of ordinal adjectives in 3.4.4. Finally, reduplication is discussed in 3.4.5.

3.2 Noun morphology

The two main inflectional operations found on nouns are possessive suffixation (3.2.1) and article prefixation (3.2.2). Nominal compounding is discussed in 3.2.3.

3.2.1 Nouns and possessive morphology

Nouns can be grouped in two subclasses, bound and free, according to their morphological behaviour in possessive constructions, as seen in table 3.1:

Noun class	Morphological behaviour
Bound nouns	Can take possessive suffixes
Free nouns	Never take possessive suffixes

Table 3.1. Noun categories according to possession

Bound nouns encode body parts, kin terms and some part of wholes and are recognised on their ability to occur in the type of possessive construction shown in (1) (see also 6.3.1). While kin terms must occur in possessive constructions (see 4.2.4), this is not a requirement for other bound nouns. Bound nouns occur in possessive constructions in which the possessor is directly encoded as a suffix on the possessed noun, as in (1). In this example, the suffix - $\tilde{m} a$ '2sG.poss' encodes the possessor of natu 'leg' for person and number:
(1) Oooo, napis toa nge e=to natu-m̃a, ku=kano suara.
oh cheek chicken DEF 3SG.S=IPFV leg-2SG.POSS 2SG.S=cannot walk
'Oh, (when) chicken cheeks (i.e. a type of skin infection) were on your leg, you couldn't walk.'

In contrast, free nouns cannot take possessor suffixes. Their pronominal possessor is encoded by a free possessive pronominal. This is shown in (2) and (3): in (2), the possessed noun toa 'chicken' is followed by the free possessive pronominal nag '2sG.POSs', while (3) is ingrammatical as toa can never take a possessor suffix:
(2) $A=p n a k$ toa nag.

1SG.S=steal chicken 2SG.POSS
'I stole your chicken.'
[elicited]
(3)

```
*A=pnak toa-m̃a
    1SG.S=steal chicken-2SG.POSS
    'I stole your chicken.'
    [elicited]
```

It is important to note that bound nouns do not require a suffix to encode the possessor, to teh exception of obligatorily possessed kin terms which always occur with a possessor suffix (see 4.2.4). In (4), natu 'leg' is followed by a lexical noun encoding the possessor of the leg:
(4) Ar=to, na-mu-na $\mathrm{e}=\mathrm{kat}$ panei mu gor natu ofa wara. 3DU.S=stayN.SPEC-go.in-NMLZ 3SG.S=CERT COME go.in cover leg heron here 'They stayed, then the tide came in and covered the legs of the heron up to here.'

Further, bound nouns are not required to occur in a possessive construction, to the exception of obligatorily possessed kin terms. In (5), nдpou 'head' occurs in a possessive construction similar to the one in (1): it takes a possessive suffix encoding a third person singular possessor. In (6), it is followed by the ordinal adjective ke-rua 'ORD-two' and does not occur in a possessive construction. Note that npou can refer to a body part, but also to the top part of an object as in (5) and (6), in which it refers to the topsides of a mat:

Tu=ga	fat
1PL.INCL.S=IRR \quad make:IRR	
'We will do its topsides first.'	

np̃ou-na gafea.
head-3SG.POSS IRR.be.first:IRR
(6) Mala np̃ou ke-rua $\mathrm{e}=\mathrm{ga}$ nou,
time head ORD-two 3SG.S=IRR be.finished
'When the second topside is finished,'

The category of free nouns is illustrated by rarua 'canoe'. It occurs unpossessed in (7), possessed with a pronominal possessor in (8), but would be ungrammatical if possessed with a possessor suffix as in (9):

Ur=seiki	rarua,	ur=put	nlai	naara.
3pL.s=push	canoe	3pL.S=pull	sail	3PL
'They pushed	canoe,	pulled their		

(8) $\tilde{\mathrm{P}} \mathrm{a}=\mathrm{fa}$

2SG.S:IRR=go:IRR prae rarua
aginta!
'You'll break our canoe!'
canoe
1PL.INCL.Poss split
(oull break our canoe.

'You'll break our canoe!'
[Elicited]
Table 3.2 shows that bound nouns tend to refer to body parts (including body products and other elements associated to the self), some kinship terms and some parts of wholes. The table also shows that bound nouns referring to body parts and products are, for the most part, nainitial. This is also the case with parts of inanimates' wholes. In contrast, kin terms are not nainitial, which is expected given that no article was reconstructed for human common noun in Proto Oceanic (Lynch, Ross and Crowley 2002:70). See 3.2.2 and 4.2.2 for more on na-initial nouns:

Body parts		Parts of wholes			Kin terms
ñou-na	'head3sG.POSS'	naul-la	'leaf-3sG.poss’	sul-la	'grandchild-3sG.POSS'
namata-na	'eye-3SG.POSS'	nlak-na	'stump- 3SG.POSS'	$a-t i-n a$	'KIN- maternal.gdmother- 3sG.POSS'
nar-ra	'hand3sG.POSS'	nran-na	'branch- 3sG.POSS'	$a-p u-n a$	'KIN-maternal.gdfather3sG.Poss’
nalkop-na	'liver3sG.POSS'	nakiat-na	'boom- 3SG.POSS'	gore-na	'sister-3sG.POSS'
nlas-na	'genitals3sG.POSS'	nfarke-na	'deck- 3sG.POSS'	pal-la	'brother-3SG.POSS'
nfat-na	'bone3sG.Poss'	nafrat-na	'rafter- 3sG.POSS'	apel-la	'mother-3sG.POSS'
nra-na	'blood3sG.Poss'			a-lo-na	'KIN-maternal.uncle3sG.Poss' 'KIN-
ntai-na	'poo- 3SG.POSS'			$a-t u-n a$	paternal.gdmother3sG.POSS'
name-na	'urine- 3sG.POSS'			tam̃asmáa-na	'paternal.aunt3sG.Poss'
mul-la	'skin3sG.Poss'			tu-na	'sister.in.law-3sG.POSS'
nalo-na	'voice3sG.POSS'			ntawi-na	'brother.in.law3SG.POSS'

Table 3.2. Bound nouns

In contrast, free nouns encode all other referents. As seen in table 3.3, free nouns encoding human referents, names of natural species and other natural items, common objects, place/personal names and nouns encoding other referents can be $n a$-initial or not.

Humans	Natural world	Common objects	Place and personal names	Other
nagrun 'woman' nanoai 'man' nkarkik. 'children' nafinta 'silent person' naota 'chief marka 'old man' fterki 'married woman' kano 'man' tatau 'baby'	napaga 'banyan tree' nakaflea 'malay apple tree' nagul 'goatfish' nam̃ka 'moray eel' naplasa 'reef crevasse' elo 'sun' kura 'tree sp.' lopu 'bamboo' aru 'rainbow runner' rakua 'crab'	naala 'basket' naãe e 'war club' namit 'mat' nagao 'tongues' nafie 'wrapping leaf kerak 'canoe prow' fefe 'oven cover' for 'k.o.basket' farea 'chiefly house' kapua 'laplap'	Napar 'personal name' Narop 'personal name' Namuan 'personal name' Naktaf 'place name' Natapao 'place name' Tareinuwa 'personal name' Maina 'personal name' Leitot 'personal name' Katoa 'place name' Alpat 'place name'	nafarkal 'bush spirit' nafsana 'language' naforfor 'bundle' nakai 'traditional story' nmas 'season' patera 'top' pai 'secret' palua 'cavity' sla 'time' faofao 'title'

Table 3.3. Free nouns

Free nouns cannot take possessor suffixes, as shown in (9). In contrast, bound nouns can take suffixes or free possessive pronominal to encode the possessor, depending on whether or not the possessive relationship is alienable or not, as shown in (10) and (11) with the bound noun nagi 'name'. In (10), the possessor and possessum are closely linked: there is a single person in the world holding the name Steven Mariofa. This is marked by directly suffixing nagi with the possessor suffix -go '1SG.POss':

```
(10) Konou, nagi-go Steven Mariofa.
    1SG name-1SG.POSS p.name p.name
    'Me, my name is Steven Mariofa.'
```

In contrast, in (11) the possessive relationship is different: nagi aginta refers to the name Munalpa that is shared within a group of people. ${ }^{1}$ While the speaker says that he bears the name Munalpa, he also conveys that this name is not inalienable, as nagi is followed by the free possessive pronoun aginta '1PL.INCL.POSS':

[^10]| Konou, nagi | konou, | $\mathrm{a}=\mathrm{pi}$ | Munalpa. | Nagi | aginta | Kastom. | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1SG | name | 1SG | 1SG.S=COP | p.name | name | 1PL.INCL.POSS | Kastom |
| 'Me, my name, I am Munalpa. (This is) our customary name' | | | | | | | |

3.2.2 The residual article $n(a)$ -

Two prefixes of the form na- occur on nouns and verbs. Their functions are different: on nouns, na-marks the referent as non-specific and is an article. In contrast, when occurring on verbs, $n a$ - derives nouns and is a nominaliser. The functions of the article $n a$ - are discussed here while the nominaliser $n a$ - is discussed in 3.4.1.2.

Two articles, ${ }^{*} n a$ and ${ }^{*} a$, have been reconstructed for Proto Oceanic (Crowley 1985). * $N a$ is reflected in Lelepa since about 43% of nouns in the corpus are $n a$-initial. While $n a$ is often fossilised, with a few nouns it is inflectional. In this case, nouns can drop their initial nain two circumstances: when they occur in compounds, and when they mark a specific referent. A specific referent is a particular entity in the world, while a non-specific referent is a class of objects. The nouns in table 3.4 occur with na- to mark a non-specific referent and drop it to signal that their referent is specific. For these nouns, na-is analysable as a marker of nonspecificity. However, since the great majority of $n a$-initial nouns do not show this alternation (see 4.2.2), $n a$ - is not posited as a productive non-specific article across the category of Lelepa nouns.

Specific nouns		Non-specific nouns	
suma	'house'	na-sum̃a	'N.SPEC-house'
grun	'woman'	na-grun	'N.SPEC-woman'
mul-la	'skin-3DG.POss'	na-mul-la	'N.SPEC-skin-3DG.POSs'
sul-la	'grandchild-3SG.POSs'	na-sul-la	'N.SPEC-grandchild-3sG.POSS'
mtapus	'orphan'	na-mtapus	'N.SPEC-orphan'
magfai	'half	na-magfai	'N.SPEC-half
morn	'hole'	na-moru	'N.SPEC-hole; deepness'
plasa	'reef crevasse'	na-prlasa	'N.SPEC-reef.crevasse'
lak	'stump'	n-lak	'N.SPEC-stump'

Table 3.4. Nouns showing na-initial alternations

The alternation is shown in examples (12) to (17). In (12), na-sumia 'N.SPEC-house' has a nonspecific referent, as it refers to the class of objects known as houses. In contrast, in (13) the initial na- is dropped and suma 'house' refers to a specific house, that of the mother and her son:
(12) Naara ur=lakae ur=po pat na-suma tapla.

3PL 3PL.S=see 3PL.S=SEQ make N.SPEC-house like this 'They realised that they would make houses like this.'
(13) Tetei nae $\mathrm{e}=$ po slat=ia pa-ki sum̃a pa. mother 3SG.POSS 3SG.S=SEQ carry=3SG.O go-TR house GO 'Then, his mother took him home.'

Similarly in (14), nagrun refers to a property of the referent of tkalpa 'first born' rather than to a particular woman in the world, so the referent of nagrun is viewed as non-specific:
(14) Tkalpa agnou e=pi
na-grun.
first.born 1SG.POSS 3SG.S=COP N.SPEC-woman
'My first-born is a woman.' [elicited]

In contrast, in (15) grun occurs without na- and encodes a specific referent. In addition, it also occurs with nge marking the referent as definite:

(15)	E=lo	wia-ki	grun	nge	$\mathrm{e}=$ to
3SG.S=look	be.good-TR	woman	DEF	3SG.S=IPFV	dakae.
'He was interested in the woman who was dancing.'					

In (16), the referent of na-mtapus ' N. SPEC-orphan' is non-specific and encodes a quality of the referent of $e=$ ' 3 SG.S' and nae ' 3 SG', rather than encoding the same referent:

(16) Nae, e=pi na-mtapus.
 3sG 3SG.S=COP N.SPEC-orphan

'As for him, he is an orphan.'
[Elicited]

In contrast, the referent of mtapus in (17) is specific. It does not denote a class of referents like namtapus does in (16), but has a specific referent in the real world:

Mtapus
orphan $=$ plo
3SG.S=STILL

'The orphan is still asleep.' lie | wan |
| :--- |
| [Elicited] |

When they drop $n a$, the nouns in table 3.4 do not show a generalised behaviour. For instance, (16) and (17) showed that namtapus and mtapus can occur with no NP modifiers. However, this is not the case with nagrun and grun. While nagrun is able to head NPs without modifiers as in (14), grun is analytically bound and needs to occur with a syntactic formative such as a determiner such as in (15) and (18):

Example (19) shows that grun cannot head NPs without modifiers:
(19) *Grun $k u=$ pat=ia pan pa, e=kat pa-ki sei pa? woman $2 \mathrm{sG} . \mathrm{S}=$ make $=3 \mathrm{SG} . \mathrm{OBJ}$ GO GO $3 \mathrm{SG} . \mathrm{S}=$ CERT go-TR where GO 'The woman you went out with for a while, where did she go?' [Elicited]

The other instance in which na- is dropped is in compounds. There are two types of nominal compounds in the language, compound words and phrasal compounds (see 3.2.3). While each type differs, they also share certain properties such as dropping the na of some $n a$-initial nouns involved in compounding. In (20), grun occurs with the adjectival verb kiki 'be small' to form the compound word grunkiki ' 'girl':

| E=lop̃a=e | se | e=pi | grunkiki |
| :--- | :--- | :--- | :--- | | wia. |
| :--- |
| 3SG.S=see=3SG.OBJ |
| COMP |
| 'He saw that she was a lovely girl.' |

In (21), mtapus is used to form the phrasal compound kanokiki mtapus 'orphan boy':

Tena,	$\mathrm{e}=\mathrm{pi}$	kanokik	mtapus	skei.
SBST.DEM	3SG.S=COP	boy	orphan	INDEF
'As for this one, he is an orphan boy.'				
[Elicited]				

It is worthwhile recalling here that the article system reconstructed for Proto Oceanic includes the forms ${ }^{*} n a$ and ${ }^{*} a$ (Crowley 1985). Exactly what both of these forms marked, and in which environments they occurred is currently unclear (Lynch, Ross and Crowley 2002:70-72). While Lelepa has reanalysed $n a$ - in the productive process of nominalisation (see 3.4.1.1), it shows
historical remains of POc *na in the marking of non-specificity. ${ }^{2}$ Crowley (1985) proposed a typology of Oceanic languages according to the way they reflect the POc ${ }^{*} n a /{ }^{*} a$ alternation. Lelepa fits the following type (Crowley 1985:161): "a residual, non-productive system, involving a morphologically fused reflex of ${ }^{*} n a$ or ${ }^{*} a$, which is attached only before some nouns, and is possibly separable with some nouns, and is used only in some marginal constructions."

3.2.3 Nominal compounding

Compounding happens when two or more roots/lexemes are juxtaposed to form a single stem/word. There are two types of nominal compounds: compound words and phrasal compounds. ${ }^{3}$ The main criterion distinguishing both types is phonological: while compound words form a single phonological word (see 2.4.3.2), the nouns used to form phrasal compounds keep their status as independent phonological words. Thus in (22), kanokiki 'boy' is a compound word while marka naota 'old chief' is a phrasal compound:

kano-kiki man-be.small	[,ka.no.'kiki]	'boy'
marka naota old.man chief [elicited]	['mar.ke 'naŏ.te]	'old chief

Example (22) also shows that phrasal compounds are formed with nouns, while compound words are formed with a noun and a modifier taken from a variety of word classes: Kanokiki is formed with the noun kano and the intransitive verb kiki 'be small', while marka naota is formed with two nouns. Both kanokiki and marka naota are endocentric: they refer to an item that is part of a larger class referred to by one of the elements of the compound (Aikhenvald 2007:30). Thus kanokiki refers to a member of the class of men, while marka naota 'old chief is a kind of chief. While the majority of compounds in the language are endocentric, there are a

[^11]few exocentric compounds, which differ in that they 'denote something which is different from either of their components' (Aikhenvald 2007:30). An example of this is nmatrai 'backside', formed with the nouns nmat 'back' and rai 'face'.

Morphologically, compounds consist of juxtaposed lexemes with no intervening morpheme. While both types of compounds are formed in this way, certain possessive constructions consist of two juxtaposed nouns as well, like phrasal compounds. Section 3.2.3.2 will discuss criteria to distinguish phrasal compounds from such possessive constructions.

Each type of compound is discussed in turn, using Aikhenvald's (2007) four criteria to identify compounding processes across languages: phonological unity, morphological unity, morphosyntactic unity and semantic compositionality. While these criteria are useful, they are not all equally relevant to describing nominal compounding in Lelepa. For instance, phonological unity is a property of compound words only.

3.2.3.1 Compound words

Compound words are found predominantly in the class of nouns. Compounds belonging to other word classes are briefly discussed at the end of this section. Compound words form a single phonological word, a common property of compounds across languages (Aikhenvald 2007:25). Table 3.5 shows that compound words are formed with a noun contributing the main referential information, and with another element modifying the noun, generally denoting a quality of the referent. Frequently, this modifier is an intransitive verb, as seen with the pair kanokiki 'boy' and kanotaare 'white man, Westerner': kano 'man' is a noun, and both kiki 'be small' and taare 'be white' are intransitive verbs. However, the modifier can also be a noun, as shown with urantas 'lobster' and uranuwai 'freshwater prawn': ura 'prawn' is a noun, as are ntas 'sea' and nuwai 'water, river'. Similarly, in nmatrai 'back side', both nmat 'back' and nrai 'face' are nouns. As expected cross-liguistically (Aickhenvald 2007:26), compound words also follow a fixed order, which in Lelepa is head-modifier. Compounds are most often made of two elements. Notice that sòupoumila 'red-headed honeyeater' is made up of three elements: its internal struture consists of the lexemes sou 'honeyeater', ñou 'head' and mila 'red'. Note that $n \tilde{p} o u$ loses initial n - in the compounding process. No compounds with four elements or more are known.

Compound	Gloss	Formation	
keanotáare	'white person'	kano 'man' + taare 'be white'	noun + verb
kànokiki	'boy'	kano 'man' + kiki 'be small'	noun + verb
grunkiki	'girl'	grun 'woman' + kiki 'be small'	noun + verb
sònpoumila	'red-headed honeyeater'	sou 'honeyeater' + ñou 'head' + mila 'be red'	noun + verb
nàlgurfráu	'needlefish'	nalgur 'mouth' + frau 'be long'	noun + verb
nàlgurnit	'barracuda'	nalgur 'mouth' + mit 'be short'	noun + verb
forpagón	'k.o.basket'	for 'k.o.basket' + pagon '?	noun + verb
mantúa	'flying fox’	maanu 'bird' + tua '?	noun + verb
mànkurkúr	'cave bat'	maanu 'bird' + kurkur '?'	noun + verb
nkarkik	'children'		noun + verb
tùmamláksa	'green jobfish'	tuma '? + mlaksa 'be blue, green'	noun + verb
neikmláksa	'parrotfish'	neika 'fish' + mlaksa 'be blue, green'	noun + verb
neikmáeto	'unicornfish'	neika 'fish' + maeto 'be angry'	noun + verb
ùrantás	'lobster'	ura 'prawn' + ntas 'sea'	noun + noun
ùranuwái	'freshwater prawn'	ura 'prawn' + nuwai 'river'	noun + noun
nmàtrái	'backside'	nmat 'back' + rai 'face'	noun + noun

Table 3.5. Compound words: nouns

Some compound words are fully analyzable and semantically compositional: kanotaare 'white person', kanokiki 'boy' and grunkiki 'girl' are formed with lexemes which can otherwise function on their own and the overall meaning of these compounds is predicted from the meaning of each element. Other compounds, such as nalgurwit 'barracuda' and nalgurfrau 'needlefish' are also fully analyzable, but their degree of semantic compositionality is less: nothing in the meaning of their elements refers to fish species. Yet the meaning of the compound does refer to important characteristics of these fish: barracuda have a short snout while needlefish have a long one.

In contrast, some compounds are not fully analyzable: forpagon 'k.o.basket' is made up of the noun /for/ 'k.o.basket' and the form / pagon/ '?' not attested to occur on its own. This is also the case of mantua and mankurkur, which refer to flying species formed with the noun maanu 'bird' and a second element not attested elsewhere. Although these compounds are not semantically compositional, they are still endocentric, as part of their meaning does refer to a particular class of referents, such as baskets and flying species. ${ }^{4}$ Sometimes, in non-analyzable compounds, it is the first element that is not attested as a meaningful morpheme. In nkarkiki 'children' and tumamlaksa 'green jobfish', nkar and tum̃a are not attested on their own, while the

[^12]intransitive verbs kiki 'be small' and mlaksa 'green, blue' refer to a particular characteristic of their referent: tumamlaksa have a silvery-blue color and nkarkiki are small.

The discussion above has shown that semantic compositionality is not a general property of all nominal compound words in Lelepa. The compounds in table 3.5 suggest that semantic compositionality can be regarded as a continuum, from fully compositional compounds such as kanotaare 'white man' to other compounds such as nkarkiki which are not fully analyzable and so are non-compositional. Other compounds, such as nalgurnit 'barracuda', sit somewhere in the middle in this continuum: they are neither fully compositional nor fully non-compositional. This is schematised in fig. 3.1:

Fig. 3.1 Compound words and semantic compositionality

Compositional		Non-compositional
kanotaare	nalgurmit	nkarkiki
man+be white > 'white person	mouth+be short > 'barracuda'	?+be small > child
İoumila honeyeater+head+be	nalgurfrau	tumamlaksa
red $>$ 'red-headed honeyeater	mouth+be long > 'needlefish'	?+be blue > green

Finally, note that some compound words are not nominals, but adverbs and numerals. They are exemplified in table 3.6:

Compound	Gloss	Formation	Word class
slaféa	'before'	sla 'time' (noun) + fea 'be first' (adjectival verb)	adverb
malféa	'before'	mala 'time' (noun) + fea 'be first' (adjectival verb)	adverb
màlangéa	'then'	mala 'time' (noun) + ngea 'DEF' (determiner)	adverb
tàplangéa	'like.this'	tapla 'like.this' (verb) + ngea 'DEF' (determiner)	adverb
malmáuna	'now'	tapla 'like.this' (verb) + mauna 'all' (adjective)	adverb
warmáuna	'everywhere'	waraa 'here' (adverb) + mauna 'all' (adjective)	adverb
sragmáuna	'everything'	srago 'things' (noun) + mauna 'all' (adjective)	adverb
skimau	'one'	skei 'INDEF' (determiner) + mau 'all' (verb)	numeral

Table 3.6. Compound words: non-nominals

3.2.3.2 Phrasal compounds

Recall that phrasal compounds are distinguished from compound words as they do not form a single phonological word. Instead, each element of a phrasal compound is a phonological
word, as seen in table 3.7. These compounds are most frequently formed with two nouns, but there are examples such as nafasana tap 'gospel', nafsana matua 'folktale' and nasuma tap 'church' which are made up of a noun and a verb. The elements of phrasal compounds follow the same fixed order as compound words: the head occurs first and the modifier follows. ${ }^{5}$ Phrasal compounds are also endocentric. For instance, nafsana matua 'folktale' and nafsana tap 'gospel' refer to two kinds of talk: a folktale is an old talk, while the gospel is a taboo, or sacred, talk.

Compound	Gloss	Formation	
márka náota	'honourable chief	marka 'old man' + naota 'chief	noun + noun
márka	'the old	marka 'old man' + Pakotau 'p.name'	noun + noun
Pákotau márka tuáma	Pakotau' 'male ogre'	marka 'old man' + mutuama 'ogre'	noun + noun
ftérki tuáma	'female ogre'	fterki 'married woman' + mutuama 'ogre'	noun + noun
ftérki Leitót	'the old Leitot'	fterki 'married woman' + Leitot 'p.name'	noun + noun
tatáu tkálpa	'first born baby'	tatau 'baby' + thealpa 'first born'	noun + noun
tatáu tkárkei	'last born baby'	tatau 'baby' + tkearki 'last born'	noun + noun
nán-na nanoái	'his male child'	nan-na 'offspring-3SG.POSS + nanoai 'man'	noun + noun
nagí-go	'my Christian	nagi-go 'name-1SG.POSS' + te $=$ taare	noun + noun
te $=$ táare	name'	'SBST=be white' ${ }^{\text {a }}$ \% 'Tahition	
noána mãpe	chestnut'	noana 'fruit' + namape Tahitian chestnut tree	noun + noun
kál kás	'wooden digging stick'	kal 'digging stick' + nkeas 'tree'	noun + noun
nр̃óu fátu	'ridge top'	npou 'head' + nfatu 'ridge'	noun + noun
srágo ntás	'seafood'	srago 'things' + ntas 'sea'	noun + noun
srágo nafkál	'weapons'	srago 'things' + na-fleal 'NMLZ=fight'	noun + noun
nafsána matúa	'folktale'	nafsana 'language' + matua 'old'	noun + verb
nafsána táp	'gospel'	nafsana 'language' + tap 'be.taboo'	noun + verb
nasúma táp	'church'	nasuma 'house' + tap 'be.taboo'	noun + verb

Table 3.7. Phrasal compounds

It is necessary to distinguish phrasal compounds from certain constructions involving nominals, in particular possessive constructions which involve two juxtaposed nouns (see 6.4.1). The phrasal compounds in (23) are structurally similar to the possessive constructions in (24): they are made up of two juxtaposed nouns and each noun receives its own primary stress.

[^13]Note that there is no possessive relationship between the elements, as the starred translations show:

| márka
 old.man
 'the old Pakotau' | *Pakotau's old man |
| :--- | :--- | :--- | :--- |
| p.name | |$\quad>$ márka Pakotáu

In contrast, the referents of the nouns of each pair in (24) are in a possessive relationship. In these examples, the possessor noun follows the possessum noun:

Evidence for distinguishing phrasal compounds in (23) from possessive constructions in (24) is found in the morphological reduction of one of the nouns in the compound. When one of the nouns in the compound is a $n a$-initial noun (see 3.2 .2 and 4.2.1), the $n a$ is dropped and both elements remain phonological words. This is shown in (25):

(25) noána	+	nkásu tree 'fruit of tree'	$>$	noána kásu
fruit kál digging stick	+	nkásu tree	$>$	kál kásu 'wooden digging stick'
noána fruit [elicited]	+	namáápe tahitian.chestnut.tree	$>$	noána máp̃e 'tahitian chestnut'

Morphological reduction is also attested with some other nouns. In (26), mutuama 'ogre' is reduced to tuama. Similarly to the reduced nouns in (25), tuama is not attested to occur on its own:

(26)márka old.man	mutuama ogre	$>$	márka tuáma 'male ogre'
ftérki married.woman [elicited]	mutuama ogre 'female ogre'	$>$	ftérki tuáma

This illustrates Aikhenvald's (2007:26) criterion of morphological unity: compounds are morphological units with regular rules applying to it, such as the occurrence of linker morphemes between their elements, or conversely the absence of such markers. Lelepa compounds reflect the latter, as no linking morpheme is needed to form a compound. Another type of possessive construction involves two nouns with a possessive enclitic intervening between them (see 6.4.2 and 6.4.3). Phrasal compounds can be distinguished from such possessive constructions as they are simply juxtaposed. Thus the compound marka naota 'honourable chief' can be distinguished from the possessive construction marke $a=n$ slafea 'old men of before; ancestors'. While marka naota has no morpheme linking its elements, the possessive enclitic $=n$ 'POSS:NH' occurs between marka 'old man' and slafea 'before'. Table 3.8 distinguishes phrasal compounds from such possessive constructions:

Phrasal Compounds		Possessive constructions	
marka naota	'male ogre'	marka $=n$ slafea	'old men of before, ancestors'
fterki tuama	'female ogre'	fterki=n Fatuma	'the old woman from Fatuma'
nagi-go te $=$ taare	'my European	(Christian) name'	nagi $=n$ Presbyterian Jioj
'the name of the Presbyterian			
kanotaare	'white person'	Church'	
nafsana matua	'folktale'	kano $=n$ Aguna	'the man from Nguna'
nafsana tap	'gospel'	nafsana $=n$ Franis	'the language of France'
nasuma tap	'church'	nafsana $=g$ te $=$ taare	'the language of white people'

Table 3.8. Contrasting phrasal compounds and possessive constructions

3.2.3.3 Summary of properties of nominal compounds

Table 3.9 sums up the properties of Lelepa compounds, showing properties that are shared across both types of compounds, as well as those that are specific to each type. Although identity of word class is listed, recall that phrasal compounds tend to be formed by two nouns while compound words tend to be formed by a noun and a verb, and that there are examples in each type of compound not following these tendencies. Compound words get a 'sometimes' value for semantic compositionality, as this property is not reflected by all compound words (see fig. 3.1).

Properties	Compound words	Phrasal compounds
Phonological unity Compounds form a single phonological word.	yes	no
Semantic compositionality The meaning of compounds is predicted from the meaning of their elements.	sometimes	yes
Identity of word class The elements of compounds belong to the same word class.	sometimes	sometimes
Morphological unity The elements of compounds are juxtaposed without linking morpheme.	yes	yes
Fixed constituent order The order of the elements tends to be HEAD-MODIFIER.	yes	yes
Syntactic elaboration Compounds are heads of NPs	yes	yes

Table 3.9. Properties of Lelepa compounds

3.3 Verb morphology

3.3.1 Word boundaries in the verb complex

The verb complex is made up of multiple elements (chapter 9, fig. 9.1). It has two obligatory elements, a subject proclitic and a verb stem, which may combine with a number of optional elements such as mood, aspect and negation particles, auxiliaries, serial verbs, post-verbs and enclitics encoding objects and obliques. In addition, a benefactive phrase, which is a prepositional phrase introducing a beneficiary, can also occur between the subject proclitic and the main verb (see 7.5.3). The occurrence of these optional elements can greatly increase the morphological load of the verb complex. This presents a challenge for morphological analysis and particularly when determining word boundaries within this constituent. The question of word boundaries in itself is often challenging due to the lack of clarity conveyed by the notion of word (Dixon and Aikhenvald 2002:34-35). The purpose of this section is to determine word boundaries in the verb complex, by looking at how the phonological word interacts with the verb complex. Recall from 2.4.3.4 that the phonological word in Lelepa is determined by stress, and that primary stress falls on the penultimate mora of a word, while secondary stress is assigned to every second syllable to the left. This rule does not provide for a limit in the number of syllables a phonological word can have, and the verb complex, with its potential complexity, is an interesting domain in which to investigate the length of the phonological word. In (27) to (30), the verb complex only consists of the obligatory subject proclitic and verb root. These examples comprise two to six syllables, the first one associated with the subject proclitic, while the others are associated to the verb root. As they receive a single primary stress, these examples form a single phonological word:
(27) [e.'pan]

E=pan.
3sG.S=go
'(S)he went.'
[elicited]
(28) [.a.ma.'tu.rŭ]
$A=$ maturu.
1SG.S=sleep
'I slept.'
[elicited]
(29) [,e.ma.,ken.kə.'nis]
$\mathrm{E}=$ makenkini=s.
3SG.S=be.itchy=3OBL
'He was itchy because of it.'
[elicited]
(30) [.ku.ma.,ro.gə.'ni.je]

Ku=maroa-ki-nia.
2SG.S=think-TR-3SG.OBJ
'You think about it.'
[elicited]

In (31) to (33) the verb complex is more complex, with the addition of the particles $g a$ 'IRR' in (31), kat in (32) and plo 'STILL' in (33). In these examples the verb complex has three elements forming two phonological words. Note that the subject proclitic forms a phonological word with whatever particle follows, while the verb forms a phonological word on its own (phonological word boundaries are marked with '//'):
(31) ['e.pe// 'to]
$\mathrm{E}=\mathrm{ga} \quad$ to.
3SG.S=IRR stay
'It will stay.'
[elicited]
(32) [e.'kat// 'to]
$\mathrm{E}=\mathrm{kat}$ to.
3SG.S=CERT stay
'(S)he stayed (for sure).'
[elicited]
(33) ['e.plŏ// 'laŏ.tu]
$\mathrm{E}=$ plo laotu.
3SG.S=still stand
'It was still standing.'
[elicited]

In (34), the verb complex consists of three distinct morphemes, and differs from (31) to (33) in that it has no preverbal material apart from the subject proclitic. The subject proclitic attaches to whatever follows, here the verb root:

[kpe.'su//	pan.'me.ī]
$\tilde{\mathrm{P}} \mathrm{a}=$ sua	panmei.
2SG.S:IRR=go.down	COME
'Come down.' [elicited]	

Example (35) is still more complex and consists of the subject proclitic $e=$ ' 3 SG.s', the verb maturu 'sleep', the aspect particle plo 'STILL' and the auxiliary wane 'IPFV'. This example forms three phonological words: the subject proclitic forms a phonological word with the aspectual particle $p l o$, while the auxiliary and main verb each form a phonological word on their own:

['e.blŏ//	'wan//	ma.'tur]
E=plo	wane	maturu.
3sg.s=still	lie	sleep
(Sh)		
(Slice was still sleeping.'		
[elicted]		

In example (36) there are three preverbal elements, the subject proclitic $k u=$ ' $2 \mathrm{SG} . \mathrm{s}$ ', the auxiliary tae 'able' and the benefactive pronoun magnon '1sG.BEN'. This is followed by the complex verb patpunu 'kill' and an object NP. There are four phonological words in this example, and similarly the subject proclitic forms a phonological word with the next morpheme, while the following morphemes form phonological words on their own:

(36) | [ku.'taj// | men.'now// | pet.'pun// | 'o.ve] | |
| :--- | :--- | :--- | :--- | :--- |
| Ku=tae | magnou | pat punu | ofa? | |
| | 2sG.S=able | 1sG.BEN | make kill | heron |
| | 'Can you kill | Heron for me?’ | | |

The following observations can be made about the phonological shape of the verb complex. First, it typically forms more than one phonological word unless it is made up of just a subject proclitic and a verb root. Second, subject proclitics are phonologically bound to the left edge of the immediately preceding morpheme. Third, morphemes other than subject proclitics/object markers are phonologically independent, even if they are a single syllable in length. Finally, verbs form phonological words with their affixes and clitics (including subject proclitics and object markers) and can form compound words with serial verbs (see 10.4.1).

3.3.2 Object marking morphophonology

Objects can be realised by bound person markers on transitive verbs (see 9.4.3.1). Depending on the shape of the verb root and of the object pronominal, the following processes happen: final vowel deletion, pretonic vowel reduction and deletion, and [j] epenthesis. While similar processes occur at the phonological level on monomorphemic forms (see 2.5.1), the situation
with object marking is complex and requires describing these processes as part of the verbal morphology.

3.3.2.1 Object marking on ki-ending verbs

Object marking on these verbs is fairly straightforward as the shape of the root does not vary. Suffixes encoding second person singular (-go '2SG.OBJ') and third person singular and plural (nia '3sG.OBj' and -ra '3pl.OBJ') have a high frequency in the textual corpus. In contrast, all other suffixes (-ou '1SG.OBJ', -mu '2PL.OBJ', -wou '1SG.OBJ', -gam '1PL.EXCL.OBJ', -gta '1pl.INCL.obj') are much less common in texts. Thus elicited and textual data have been included in the dataset. Table 3.10 summarises the different processes. Object suffixes attaching to ki-ending roots can be of the following shapes: VV, CV, CVV, CVC and CCV. Cells marked with ' X ' mean that the suffix simply attaches to the root without any notable process happening. FVD stands for final vowel deletion, and PVD for pretonic vowel deletion. The pretonic vowel is always /i/, the final vowel of the verb root.

Shape of object suffix					
$\begin{gathered} \text { VV } \\ -o u \\ \text { '1sG.OBJ’ } \end{gathered}$	CV $-g o$ '1sG.OBJ' $-m u$ '1sG.OBJ' $-r a$ '1sG.OBJ' ' opion	$\underset{\text {-nia ‘3SG.OBJ’ }}{\text { CVV }}$	$\begin{aligned} & \text { CVV } \\ & \text { 'woou } \\ & \text { '1sG.OBJ' } \end{aligned}$	$\begin{gathered} \text { CVC } \\ \text {-gam } \\ \text { '1PL.EXCL.OBJ’ } \end{gathered}$	$\begin{gathered} \text { CCV } \\ \text {-gta } \\ \text { ‘1PL.INCL.OBJ’ } \end{gathered}$
$\begin{gathered} {[j]} \\ \text { insertion } \end{gathered}$	optional FVD	pretonic vowel reduced to [2$]$	PVD	PVD	X

Table 3.10. Morphophonological processes with ki-ending verbs

With VV suffixes, an epenthetic [j] is added at the morpheme boundary. Note that glide epenthesis also happens at the phonological level (see 2.5.2.2):
(37)

```
[e.pew.,se.ki.jows]
E=paoseki-ou=s
3SG.S=ask-1SG.OBJ=3SG.OBJ
'He asked me about it.'
[elicited]
```

With CV suffixes, the final vowel is optionally deleted. This is shown in (38) with the verb rmaki 'bark' hosting the suffix $-g_{0}$ '2sG.OBJ':


```
E=rm̃aki-go
3SG.S=bark-2SG.OBJ
'It barked at you.'
[elicited]
```

Although they have the same CVV shape, -nia '3sG.OBJ' and -wou '1SG.OBJ' behave differently. Before -wou the pretonic vowel is deleted while before -nia it is reduced to [ə]. This can be explained by the differences in sonority between $/ \mathrm{n} /$ and $/ \mathrm{w} /$. As a glide, $/ \mathrm{w} /$ has a higher sonority than the nasal $/ \mathrm{n} /{ }^{6}$ and can take the place of the deleted vowel as in (39), in which the verb $\tilde{p} o k i$ 'send' has has its final /i/ deleted:

[ur.l.l.kp	
w ok.'wo.ŭ	'na.u.re]
Ur=lp̃ok-wou	naure
3pL.S=send-1SG.OBJ	island
'They sent me to the island.'	
[elicited]	

```

In contrast, a full deletion of the vowel preceding -nia would create a heterosyllabic consonant sequence. Although heterosyllabic \(/ \mathrm{kn} /\) sequences are attested, they do not occur at morpheme boundaries as shown in (40) but can occur within roots as in (41):
```

[er.,\mm a.kə'ni.je] *[,er.ŋmm wak.'ni.je]
E=rm̃aki-nia
3SG.S=bark-3SG.OBJ
'It barked at me.'
[elicited]

```
```

['fak.ne]

```
Fakna.
p.name
'Fakna'

Pretonic vowel deletion also occurs when the CVC suffix -gam '1PL.EXCL.OBJ' attaches to kiending verbs such as rmaki 'bark': \({ }^{7}\)

\footnotetext{
\({ }^{6}\) See 2.5.2.1 for a discussion of the sonority hierarchy.
\({ }^{7}\) Note that in this example, the orthographic form chosen to represent this verb is \(r \tilde{m} a k\), not \(r \tilde{m} a k i\). While \(r \tilde{m} a k i\) is the underlying form, choosing it in this particular context would not reflect the vowel deletion process presently discussed.
}
(42) [er., \(\widehat{\eta m}^{\mathrm{W}}\) ak.'yam]
\(\mathrm{E}=\mathrm{rmak}\)-gam
3SG.S=bark-1PL.EXCL.OBJ
'It barked at us.'
[elicited]

Finally, with the CCV suffix -gta '1PL.INCL.OBJ', the final vowel of the root is regularly stressed and cannot be reduced or deleted. The final vowel of the inflected verb cannot be deleted either, as this would create a prohibited cluster in coda position:
[, \(\varepsilon\) r. \(\widehat{\mathrm{ym}}^{\mathrm{W}}\) e.'kiŋ.te \(] \quad *\left[, \varepsilon r . \widehat{\jmath m}^{\mathrm{W}}\right.\) e.'kiŋt \(]\)
\(\mathrm{E}=\mathrm{rm}\) aki-gta
3SG.S=bark-1PL.INCL.OBJ
'It barked at us.'
[elicited]

\subsection*{3.3.2.2 Object marking on non ki-ending verbs}

Non \(k i\)-ending verbs vary in the shape of their final syllable and can be V-final, VV-final or Cfinal. In addition, some object enclitics have a number of allomorphs (see 9.4.3.3). Table 3.11 summarises the different processes happening for each possible combination of root and enclitic. Cells are coded following the same notation as in table 3.10, with the addition of ' \(\mathrm{n} / \mathrm{a}\) ' (not applicable) meaning that the particular combination of root with enclitic does not occur. The two main processes are optional final vowel deletion and pretonic vowel deletion.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Shape of root} & \multicolumn{5}{|c|}{Shape of object enclitic} \\
\hline & \[
\begin{gathered}
\quad \mathbf{V} \\
=e^{\prime} 3 \mathrm{SG} . \mathrm{OBJ} \\
=a^{‘} 3 \mathrm{SG} . \mathrm{OBJ}
\end{gathered}
\] & \[
\begin{aligned}
& \mathbf{V V} \\
= & i a^{‘} 3 \mathrm{SG} . \mathrm{OBJ} \\
= & e a^{‘} 3 \mathrm{SG} . \mathrm{OBJ}
\end{aligned}
\] & \[
\begin{gathered}
\text { CV } \\
=k o \\
\text { '2SG.OBJ' } \\
-n a^{\prime} 3 \mathrm{SG} . \mathrm{OBJ} \text { ' } \\
=m u \\
\text { '2PL.OBJ' } \\
=r a^{\prime} 3 \mathrm{PL} . \mathrm{OBJ} \text { ' }
\end{gathered}
\] & \[
\begin{gathered}
\text { CVC } \\
=\text { gam } \\
\text { '1PL.EXCL.OBJ' }
\end{gathered}
\] & \[
\begin{gathered}
\text { CCV } \\
=\text { gta } \\
\text { '1PL.INCL.OBJ' }
\end{gathered}
\] \\
\hline V-final & X & \(\mathrm{n} / \mathrm{a}\) & optional FVD & PVD & X \\
\hline VV-final & optional FVD & \(\mathrm{n} / \mathrm{a}\) & X & X & [ə] epenthesis \\
\hline C-final & \(\mathrm{n} / \mathrm{a}\) & optional FVD & X & X & [ə] epenthesis \\
\hline
\end{tabular}

Table 3.11. Morphophonological processes with non ki-ending verbs

With V-final roots taking a V enclitic such as \(=e^{\text {' } 3 \text { SG. OBJ', no process occurs: }}\)
(44) [.e.lo.' \({ }^{2}{ }^{\mathrm{w}}{ }^{\mathrm{w}}\) a.e]
\(\mathrm{E}=\mathrm{lop̃} a=e\)
3SG.S \(=\) see \(=3\) SG.OBJ
'She saw it.'

In contrast, when V-final roots take a CV enclitic, optional final vowel deletion occurs, as seen in (45) and (46):
(45) [, e.lo. ' \(\left.\mathrm{kp}^{\mathrm{w}} \mathrm{ak}^{\top}\right] \sim\left[, \mathrm{e} . \mathrm{lo}\right.\). ' \(\mathrm{Kp}^{\mathrm{w}}\) a.ko]
\(\mathrm{E}=\mathrm{lo} \mathrm{p}^{2}=\mathrm{ko}\)
3 SG.S \(=\) see \(=2\) SG.OBJ
'He saw you.'
[elicited]
(46) [e.,pit.le.'kan]~ [e.,pit.le.'ka.ne]
\(\mathrm{E}=\) pitlaka-na
3SG.S=have-3sG.OBJ
'He has it.'

When V-final roots take the CVC enclitic =gam '1PL.EXCL.OBJ', pretonic vowel deletion occurs:
(47) [e.lokppw.'yam]
\(\mathrm{E}=\mathrm{lo} \tilde{\mathrm{p}}=\mathrm{gam}\)
\(3 \mathrm{sG} . \mathrm{S}=\) see \(=1 \mathrm{PL} . \mathrm{EXCL} . \mathrm{OBJ}\)
'He saw us.'
[elicited]

Finally, no process occurs when the V-final roots host the CCV enclitic =gta ' 1 PL.INCL.OBJ':
(48) [e.lo.' \({ }^{\text {kp }}{ }^{\mathrm{w}}\) aŋ.te]
\(\mathrm{E}=\mathrm{lo} \tilde{\mathrm{p}} \mathrm{a}=\mathrm{gta}\)
3SG.S \(=\) see \(=1\) PL.INCL.OBJ
'He saw us.'
[elicited]

With VV-final roots hosting V enclitics, optional final vowel deletion occurs. This is shown in (49) with the verb slae 'help' and the enclitic \(=a\) ' \(3 \mathrm{sG} . \mathrm{OBJ}\) ':
(49) [ (s.'laĕ.e]~[ [s.'laĕ]
\(\mathrm{E}=\) slae \(=\mathrm{a}\)
3SG.S=help=3SG.OBJ
'He helped him/her.'
[elicited]

When VV-final roots host the CCV enclitic \(=g t a\) ' 1 PL.INCL.OBJ', an epenthetic \([\boldsymbol{\partial}]\) is inserted between the consonants of the enclitic, as seen in (50):
(50) [es.laĕ.ŋə.ta]
\(\mathrm{E}=\) slae \(=\) ŋta
3sG.s=help=1PL.INCL.OBJ
'He helped us.'
[elicited]

In contrast, no process happens when these roots host other enclitics. This is shown in (51) with the CV-final \(=r a\) '3pL.OBJ' and in (52) with the CVC \(=\) gam '1PL.EXCL.OBJ':
(51) [es.'laĕ.re]
\(\mathrm{E}=\) slae \(=\mathrm{ra}\)
3SG.S=help=3PL.OBJ
'He helped them.'
[elicited]
(52) [.عs.laĕ.'nam]
\(\mathrm{E}=\) slae=yam
3SG.S=help=1 PL.EXCL.OBJ
'He helped us.'
[elicited]

With C-final roots, optional vowel deletion occurs when the verb hosts a VV-enclitic. This is shown in (53) with psake 'elevate' hosting =ea '3sG.OBJ':
(53) [,ep.se.'ke]~[.ep.se.'ke.e]
\(\mathrm{E}=\mathrm{psak}=\mathrm{ea}\)
3SG.S=elevate=3SG.OBJ
'He elevated him.'
[elicited]

With the CCV enclitic =gta, an epenthetic vowel is inserted between the consonants of the enclitic. This is to avoid the prohibited onset cluster */ \(\mathrm{gt} /\) which presents a sonority reversal (see 2.5.2.1):
(54) [.e.per.'kat.yəta]

E=parkat=yta
3SG.S=catch=1PL.INCL.OBJ
'He caught us.'
[elicited]

With other enclitics such as the \(\mathrm{CV}=r a\) and \(=k o\), the \(\mathrm{CVC}=g a m\) and the \(\mathrm{CCV}=g t a\), no process occurs. This is shown in (55) to (56) with the verbs psak' 'elevate' and parkat 'catch':
```

[ep.'sak.re]
E=psak=ra
3SG.S=elevate=3PL.OBJ
'He elevated them.'
[elicited]

```
(56) [e.,par.ket.'ŋam]
\(\mathrm{E}=\) parkat \(=\) nam
3SG.S=catch=1PL.EXCL.OBJ
'He caught us.'
[elicited]

Note that in the case of two same consonants occurring at morpheme boundaries, the final consonant of the root is unreleased if it is a stop (e.g. /k/), as in (57). Otherwise, the two same consonants are realised as a geminate, as in (58):
(57) [عp.'sak'.ko]
\(\mathrm{E}=\) psak=ko
3SG.S=elevate=2SG.OBJ
'He elevated you.'
[elicited]
(58) [.عl.kp \({ }^{\mathrm{w}}\) a.' ŋor:e]
\(\mathrm{E}=\) lpagor=ra
3SG.S=enclose=3PL.OBJ
'He enclosed them.'

\subsection*{3.3.3 Transitivisation with -ki'TR'}

Transitivisation is the main valency-changing process in the language, and consists of the suffixation of \(-k i\) 'TR' on intransitive verbs (see 8.7.1). Roots transitivised with \(-k i\) can be either vowel-final or consonant-final, as shown in table 3.12:
\begin{tabular}{|ll|ll|}
\hline \multicolumn{2}{|c|}{ Intransitive roots } & \multicolumn{2}{c|}{ Derived transitives } \\
\hline fa/pa & 'go:IRR/:R' & fa-ki/pa-ki & 'go to:IRR/:R' \\
lua & 'vomit' & lua-ki & 'vomit s.t' \\
pea & 'first' & pea-ki & 'precede s.o/s.t' \\
false/palse & 'paddle' & false-ki/palse-ki & 'paddle s.t' \\
pzil & 'blink' & pil-ki & 'close (eyes)' \\
regreg & 'hum' & regreg-ki & 'hum s.t (song, tune)' \\
\hline
\end{tabular}

Table 3.12. Transitivisation with \(-k i\)

There are a number of cases in which final /i/ of -ki is either reduced of deleted. The main criteria governing the realisation of this vowel are stress and whether the object is realised as a full NP or a pronominal suffix. \({ }^{8}\) Deletion does not occur when final /i/ is in stressed position or when the object is realised with a suffix. In (59), wia 'be good' is unsuffixed. In this situation, optional vowel deletion occurs:
\[
\begin{array}{ll}
\text { E=lag, } & \text { 'gaio, }  \tag{59}\\
\text { 3SG.S=say } & \text { fine }=\text { wia.' } \\
\text { 'He said, 'fine, that's good.' } & \text { 3SG.S=be.good }
\end{array}
\]

In contrast, when wia is transitivised with -ki and followed by an object NP, stress moves from \(/ \mathrm{i} /\) to \(/ \mathrm{a} /\). As the final \(/ \mathrm{i}\) / of the suffix is now in final position, it is often deleted (see 2.5.1):
(60) Ur=kut \(\begin{array}{lll}\text { taon }=\text { ia } & \text { to, }\end{array}\)

3PL.S=CERT bake=3sG.OBJ STAT
[,ur.kut.,taj.wi.'jak]
kan naara ur=kut tae wia-ki mala
but 3PL 3PL.S=CERT know be.good-TR time
ur=ga fkus \(=\mathrm{ia}=\mathrm{s}\) na to.
3PL.S=IRR unwrap=3SG.OBJ=3OBL DEM STAT
'They baked it, but they know well when to unwrap it.'

When the object is realised by an object suffix, it attaches to \(-k i\) and a longer phonological word is created. In this case, the transitivised verb is \(k_{i}\)-ending and there are several options for the realization of \(/ \mathrm{i} /\) of \(-k i\) (see 3.3.2.1).

\footnotetext{
\({ }^{8}\) Objects are either realised with an NP, or with a pronominal suffix or enclitic, but not by both (see 7.4.1.2).
}

\subsection*{3.3.4 Relic transitivisation with \(-e{ }^{\prime} \mathbf{T R}\) '}

This is a minor type of transitivisation applying to verbs denoting bodily excretions. Such verbs are intransitive and can be transitivised with \(-e\) in addition to the \(-k i\) transitivisation discussed in 3.3.3. Verbs of bodily excretion such as sura 'defecate' take an object denoting the product of the excretion when they are suffixed with \(-k i\), as in (61). In contrast, their object denotes the location of the excretion when they are suffixed with \(-\ell\), as in (62):
(61) A=sura-ki nra.

1sG.S=defecate-TR blood
'I shat blood.'
[elicited]
(62) Kusue e=sura-e nmat=n fonu.
rat 3sG.S=defecate-TR back=POSS:NH turtle
'The rat shat on the turtle's back.' [elicited]

Not all verbs of bodily excretion reflect this alternation in the same way. Similarly to sura, the intransitive mea 'urinate' needs to be derived with \(-k i\) when taking an object denoting the product of the urination:
\begin{tabular}{ll} 
A=mea-ki & nra. \\
1sG.S=-rinate-TR & blood \\
'I urinated blood.' & \\
[Elicited] &
\end{tabular}

However, to encode the location of the urination, mea is not transitivised but hosts the oblique enclitic, as seen in (64). In this case, it remains intransitive:

\section*{(64) Faatu na, \(a=m e a=s\).}
stone DEM 1SG.S=urinate=3OBL
'As for this stone, I urinated on it.'
[Elicited]

This alternation closely reflects the alternation between the Proto-Oceanic suffixes *-i and *akin \([i]\), which have been reconstructed as respectively marking a location and a product with verbs of bodily excretion (Evans B. 2003:235). Note that these two suffixes occurred on a larger number of POc verbs and marked a number of object roles according to the type of
verb they occurred with (motion verbs, verbs of speech and cognition, etc). Lelepa reflects this alternation with verbs of bodily excretion, but not with others.

\subsection*{3.3.5 Final consonant loss alternation}

This alternation is a legacy of final consonant loss on verbs. Some transitive and ambitransitive roots alternate between a full form (consonant-final) and a reduced form (vowel-final). Roots occur in their reduced form if their object is an NP, or if they occur in first position in serial verb constructions. In contrast, they occur in their full form when they host an object enclitic. Thus the final consonant of these verbs is preserved in word-internal position. Table 3.13 exemplifies verb roots undergoing this process, and shows that the final consonant of these roots varies in shape between \(/ \mathrm{s} /, / \mathrm{t} / \mathrm{s} / \mathrm{f} / \mathrm{h} / \mathrm{n} /\).
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Ambitransitives} & \multicolumn{2}{|r|}{Transitives} \\
\hline with object NP & with object enclitic & with object NP & with object enclitic \\
\hline pau namit 'weave a mat' & \[
\begin{array}{|l|}
\hline \text { paus }=i a \\
\text { 'weave=3sG.OBJ' }
\end{array}
\] & ptag 'ask' & ptagf=ia \({ }^{\text {'ask }=3 \mathrm{SG} . \mathrm{OBJ}}\) \\
\hline lega nalegana'sing a song' & \[
\begin{aligned}
& \hline \operatorname{leg} a \boldsymbol{t}=i a \\
& ‘ \text { sing }=3 \text { SG.OBJ" }
\end{aligned}
\] & sao nuwai 'spoon out water' & saof=ia 'spoon=3sG.OBJ' \\
\hline & & to rarua 'push a canoe' & tof=ia 'push=3sG.OBJ' \\
\hline & & fu rarua 'pull a canoe' & fut=ia 'pull=3sG.OBJ' \\
\hline & & kul 'cover' & kult=ia 'cover=3sG.OBJ' \\
\hline & & \(\tilde{p} a\) 'hit' & \(\underline{p} a t=i a ~ ' h i t=3 \mathrm{SG} . \mathrm{OBJ}\) ' \\
\hline & & ske faatu 'remove stones with tongs' & \[
\begin{aligned}
& \text { skeet }=\text { ia } \\
& \text { 'remove.w.tongs=3sG.OBJ' }
\end{aligned}
\] \\
\hline & & sla nkas 'carry a stick' & slat=ia 'carry=3SG.OBJ' \\
\hline & & ma kapua 'grate laplap' & man=ia 'grate=3sG.OBJ' \\
\hline & & su nasusuna 'wear clothes' & sun=ia 'wear=3sG.OBJ' \\
\hline
\end{tabular}

Table 3.13. Verbs alternating between a full and reduced form

Related and similar phenomena are well-known in Oceanic languages and have been referred to as the "thematic consonant" problem (See Hale 1973 for Maori, Lichtenberk 1983 for Manam, Lichtenberk 2001 for Manam and Toqabaqita, Pawley 2001 for an historical account and Blevins 2004 for a phonological problematisation). Pawley states that in Polynesian languages the final consonant of roots surfaced when suffixes occurred on these roots (Pawley 2001:196). Synchronically, Lichtenberk analyses these final consonants as "empty morphs" which are neither part of the root nor the suffix in Manam and Toqabaqita (Lichtenberk 1983:153; 2001:145).

Lelepa reflects the historical analysis advanced by Pawley, since the final consonant of these verbs is unpredictable and surfaces when it is not in word-final position (see also Lynch, Ross and Crowley 2002:44-45 for an explanation of the unpredictability of this consonant in Oceanic transitive alternations). However, in contrast to Manam and Toqabaqita, it is best to regard these consonants as part of the root in Lelepa, because there is no rule in the language preventing consonant-final roots.

In Lelepa, this alternation encodes no semantic distinction. Compare the ambitransitive legat functioning intransitively in (65) and transitively in (66) and (67). Final \(t\) only occurs when the verbs host an object enclitic, and does not occur elsewhere. This shows that the alternation does not mark transitivity, since the full form occurs in contexts with opposite transitivity values, such as in (65) and (66). The alternation is thus purely morphophonological:
E=to \(\quad\) se \(\quad\) e=to
3SG.S=stay while \(\quad\) 3SG.S=IPFV \(\quad\)\begin{tabular}{l} 
lega. \\
sing
\end{tabular}
(66) E=to lega naleganakiki sa nge pa-ki wita.
3SG.S=IPFV sing song small bad DEF go-TR octopus
'He was singing the very short song to the octopus.'
(67) Malange \(e=\) legat=ia pan pan \(\mathrm{e}=\mathrm{ga}\) nou, then 3 SG.S \(=\operatorname{sing}=3 \mathrm{SG} . \mathrm{OBJ}\) GO GO GO \(3 \mathrm{SG} . \mathrm{S}=\mathrm{IRR}\) be.finished 'Then he sang it on and on until done,'

\subsection*{3.4 Derivational morphology}

\subsection*{3.4.1 Nominalisation}

There are two nominalising processes in Lelepa. Nominalisation with \(n(a)-\ldots-n a\) is a very productive strategy (see 3.4.1.1). On the other hand, na-nominalisation is limited and vestigial (see 3.4.1.2).

\subsection*{3.4.1.1 Productive nominalisation: na-...-na}

This process derives nouns from verbs. Verb roots take the vestigial non-specific article \(n(a)\) 'N.SPEC' and the nominaliser -na 'NMLZ' to become derived nouns. This process is highly productive and applies to all classes of verbs, including the copula \(p i\) 'COP'. Deverbal nouns resulting from this process have a similar distribution to other nouns and are \(n(a)\)-initial. Table 3.13 below gives examples of verbs from the main subclasses with corresponding derived
nouns. It also shows that it is possible for verbs to be nominalised with their object NPs. For instance, a verb and object such as fa-ki maket 'go-TR market \(>\) go to the market' is nominalised as na-fake makett-na 'N.SPEC-go-TR market-NMLZ > going to the market'. The resulting nouns refer to activities in which the verb has a fairly limited semantic content, while the object specifies the activity. Given that this pattern is not attested with verbs other than fa-ki 'go-TR', this could suggest that it is some kind of object incorporation rather than a syntactic combination of \(\mathrm{V}+\mathrm{NP}\).

Since the nominaliser attaches to verbs as well as their object NPs, it could be regarded as an enclitic instead of a suffix. However, because these objects are simple NPs, -na is not attested to attach to other NP modifiers. Thus it is regarded as a suffix.

Finally, with verbs participating in stem-initial mutation (see 11.2.2), the \(f\)-initial forms are the base for nominalisation. This is shown with the verbs felea 'argue:IRR', folo 'lie:IRR', faami ‘eat:F', fa-ki 'go:IRR-TR'.
\begin{tabular}{|c|c|c|c|c|}
\hline & verb & gloss & derived noun & gloss \\
\hline intransitives & \begin{tabular}{l}
sa \\
felea \\
folo \\
fsa \\
kasua \\
lo (redup.) \\
maeto \\
maroa \\
moli \\
nou \\
sale \\
soki \\
sua \\
sura \\
tina \\
to \\
tumalua
\end{tabular} & \begin{tabular}{l}
'be bad' 'argue:IRR’ \\
'lie:IRR' \\
'speak' \\
'be strong' \\
'look' \\
'be angry' \\
'think' \\
'be alive' \\
'be finished' \\
'dance' \\
'smoke' \\
'face; experience' \\
'shit' \\
'be pregnant' \\
'stay' \\
'leave'
\end{tabular} & \begin{tabular}{l}
nsana \\
nafeleana \\
nafolona \\
nafsana \\
nakasuana \\
nalolona \\
namaetona \\
namaroana \\
nam̈oliena \\
nanouna \\
nsalena \\
nasokina \\
nasuana \\
nasurana \\
natinana \\
natona \\
natumaluana
\end{tabular} & \begin{tabular}{l}
'bad thing' 'argument' \\
'lie' \\
'language; talk; story’ \\
'strength' \\
'view; opinion' \\
'anger' \\
'thought' \\
'life' \\
'end' \\
'dance ceremony' \\
'smoke' \\
'situation' \\
'need for shitting' \\
'pregnancy' \\
'existence' \\
'departure'
\end{tabular} \\
\hline ambitransitives & \begin{tabular}{l}
faami \\
lega \\
типи \\
raika \\
fsa pseik. \\
tagi \\
trausi \\
weswesi \\
fiaso
\end{tabular} & \begin{tabular}{l}
'eat' \\
'sing' \\
'drink' \\
'spear fish' \\
'teach' \\
'weep' \\
'recount' \\
'work' \\
'to call'
\end{tabular} & \begin{tabular}{l}
nafaamina \\
nalegana \\
namununa \\
naraikana \\
nafsa pseikina \\
natagina \\
natrausina \\
nawesina \\
nafiasona
\end{tabular} & 'food supplies; feast'
'song'
'drinking'
'spear fishing'
'training'
'complaint'
'story'
'job'
'call' \\
\hline transitives & löpa tfagi mraki & \begin{tabular}{l}
'see' \\
'line up; build' \\
'lead; \\
accompany'
\end{tabular} & \begin{tabular}{l}
nalopana natfagina \\
namrakina
\end{tabular} & \begin{tabular}{l}
'view' \\
'building' \\
'party'
\end{tabular} \\
\hline verb + object & \begin{tabular}{l}
fak maket \\
fak namlas fak skul
\end{tabular} & \begin{tabular}{l}
'go to the market' \\
'go to the bush' \\
'go to school'
\end{tabular} & \begin{tabular}{l}
nafak maketina \\
nafak namlasina nafake skuluna
\end{tabular} & 'going to the market' 'going to the bush' 'education' \\
\hline copula & fi naota & 'be a chief & nafinaotana & 'chiefly council' \\
\hline
\end{tabular}

Table 3.14. na-...na nominalisation

Deverbal nouns resulting from this process have the same properties as any other noun. They head NPs functioning as arguments of verbs, and can be subjects as in (68) and (69), and objects as in (70) and (71):
\begin{tabular}{lll} 
Na-faami-na & \(\mathrm{e}=\) tika-ki-ra & nagsange. \\
N.SPEC-eat-NMLZ & 3SG.S=be.absent-TR-3PL.OBJ & then \\
'There was no food for them at the time.' &
\end{tabular}
(69) Na-lo~lo-na nge e=to panei
N.SPEC-look~look-NMLZ DEF 3SG.S=IPFV COME
kasem tag=n nagrun malmauna.
Until time=POSS:NH woman now
'The view has been going on until the time of the women of today.'
(70) Tu=pat na-ftauri-na, tu=pat na-faami-na.

1PL.INCL.S=make N.SPEC-marry-NMLZ 1PL.INCL.S=make N.SPEC-eat-NMLZ
'We organise a wedding, we make a feast.'
(71) Nkapu nge e=kat tapargor na-maeto-na nge.
wood DEF 3SG.S=CERT cover N.SPEC-angry-NMLZ DEF
'The wood covered the anger.'

Deverbal nouns can occur in equative clauses with the copula \(p i^{\text {'COP' }}\) as in (72) and (73):
\begin{tabular}{llll} 
E=mro & pi na-lop̃a-na & fau & skei. \\
3SG.S=AGAIN & COP N.SPEC-see-NMLZ & new & INDEF \\
'It is a new opinion.' & &
\end{tabular}
(73) Na-trausi-na na, e=pi na-trausi-na skei naloni
N.SPEC-talk-NMLZ DEM 3SG.S= COP N.SPEC-talk-NMLZ INDEF about
tama-ti-ra
skei.
DYAD- maternal.gdmother-3PL.POSS INDEF
'As for this story, it is a story about a grandmother and her granddaughter.

Deverbal nouns also head NPs introduced by prepositions. In (74), the head nafeleana 'dispute' is modified by the adjective kiki 'be small', and the possessive pronominal naara '3pl.POSs'. The whole NP is in a prepositional phrase headed by the preposition naloni 'about':
(74) Kan naloni na-felea-na kiki naara, ar=tum̃a-ra pa-ki-ra.
but about N.SPEC-argue-NMLZ be.small 3PL.POSS 3PL.S=RR-3SG.POSS go-TR-3PL.OBJ
'But regarding their little dispute, they had a go at each other.'

Similarly, in (75) the deverbal noun naftaurina 'wedding' functions as an NP within the PP headed by the preposition raki 'towards'.


Example (76) shows that deverbal nouns can be heads of possessive phrases: nafake maketina is head of the pharse nafak maketinag tematua agnem 'the going to the market of our elders':
\begin{tabular}{llllll} 
(76) & A=ga & traus & na-fa-k \(\quad\) maketi-na=g & te=matua & agnem. \\
1SG.S=IRR talk & N.SPEC-go-TR market-NMLZ=POSS:H & SBST=be.old & 1PL.INCL.POSS \\
'I will talk about the going to the market of our elders.' &
\end{tabular}

\subsection*{3.4.1.2 Vestigial nominalisation: \(\boldsymbol{n}(a)\) -}

The other nominalisation process involves the prefixation of the nominaliser na- 'NMLZ'. Table 3.14 gives most known instances of this process and shows that there is a tendency for these deverbal nouns to denote natural phenomena:
\begin{tabular}{|ll|ll|}
\hline \multicolumn{2}{|c|}{ Verb root } & \multicolumn{2}{c|}{ Deverbal noun } \\
\hline saru & 'sound' & na-saru & 'earthquake' \\
tafara & 'break (of waves) & n-tafara & 'wave' \\
aleati & 'be.day' & n-aleati & 'day' \\
malog & 'darken (of night)' & n-malogo & 'darkness' \\
parea & 'dream' & na-parea & 'dream' \\
mea & 'urinate' & na-mea & 'urine' \\
\hline
\end{tabular}

Table 3.15. \(n\) (a)- nominalisation

Earlier in this chapter some nouns were shown to take the homophonous article na- to mark the non-specificity of their referent. This begs the question of whether \(n(a)\) - as a noun prefix and \(n a\) - as a nominalising verb prefix are the same morpheme. In the nominalisation process, \(n a\) - is a derivational operator with empty semantics, in contrast to the article na- which is an inflectional operator marking non-specificity for a very limited subset of nouns (see 3.2.2). Both morphemes have a different distribution and a different function, thus two distinct processes involving two different morphemes are recognised:
- The article \(n(a)\) - marks nouns as non-specific, but the alternation is unpredictable and attested for a few nouns only;
- The nominaliser \(n(a)\) - occurs on verbs and is derivational in nature. It is also not predictable and only attested with a handful of verbs.

Some forms from table 3.14 are exemplified below. In (77), both the verb tafara 'break (of waves)' and its nominalised form \(n\)-tafara 'NMLZ-break > wave' occur:
(77) M̃aata e=lop̃a=e se n-tafara e=kat tafara pi pela,
snake 3sG.S=see=3sG.OBJ COMP NMLZ-break 3sG.s=CERT break COP big
\begin{tabular}{llll}
\(\mathrm{e}=\) to & se & \(\mathrm{e}=\) to & lega.
\end{tabular}

3SG.S=stay while 3 SG.S=IPFV sing
'The snake saw that the waves were breaking a lot, he stayed while he was singing.'

In (78), the nominalised form nä̈area 'dream' occurs:
(78) Ur=kut seisei tapla, ur=to psru~sruki, e=to rki-ra naa...

3PL.S=CERT meet like.this 3PL.S=IPFV speak~INT 3sG.S=IPFV tell-3PL.OBJ HESIT
na-p̃area nae.
N.SPEC-dream 3sG.POSS
'They had a meeting, they talked and talked, he was telling them about his dream.'

\subsection*{3.4.2 Substantivisation: te 'SBST'}

Substantivisation (Lemaréchal 1989) is a distinct process from nominalisation. It has a broader scope and its function is to create referential phrases, rather than strictly deriving nouns. In Lelepa, the substantiviser te attaches to lexemes belonging to the following word classes: verbs, adjectives, adverbs, possessives, numerals and determiners. This results in a large class of referential lexemes that I call substantives. Substantives are nominals with similar referential properties to that of nouns and pronouns, although not all substantives encode person and number as many pronouns and pronominals do. Substantives that are derived from verbs, adjectives, adverbs and numerals have the same syntactic distribution as nouns: they occur as heads of NPs and take the NP modifiers which may occur with nouns. Te behaves like a clitic with some hosts (verbs, numerals, adjectives) while it is fused to other morphemes (determiners, possessives, adverbs). Verbs, numerals and adjectives are lexical units. Te attaches to them and in the case of transitive verbs taking an object, \(t e=\) substantivises the whole verb and object phrase, so it is regarded as a clitic. However, with formatives such as determiners, possessives, and adverbs, te cannot be regarded as a proclitic because these morphemes do not
have lexical content. \({ }^{9}\) Two different representations are used to reflect this behaviour. With the verb kiki 'be small', te is represented as a proclitic, and with the demonstrastive na 'DEM' it is fused to it, with the gloss combining that of te 'SBST' and na 'DEM':
```

te with verbs, numerals, adjectives: te with determiners, possessives, adverbs:
te=kiki tena
SBST=be.small SBST.DEM
'the small one' 'this one'

```

An alternative analysis would be to regard te as a relativiser. However, the language has the relativiser na 'reL' (see 5.4.5, 12.6), and crucially, substantives can take relative clauses, as will be shown below. In (79), the numeral rua 'two' takes \(t e=\) to form the substantive terua, which can be translated as 'these two'. The substantive is then modified by the adjectival verb kiki 'be small' and the possessive pronominal agnou '1SG.POss', showing that it is able to take noun modifiers and head an NP:
(79) Te=rua kiki agnou naara ar=to raika pan pan pa, SBST=two be.small 1sG.POSS 3pL 3DU.S=IPFV spearfish GO GO GO 'My two little ones were spearfishing on and on,'

Substantives derived from pronominals and determiners have the same distribution as pronouns as they take the place of NPs. They are thus better regarded as pronouns than nouns. In (80), tena is formed with the demonstrative na 'DEM' and functions as a demonstrative pronoun:

\section*{(80) Tena \(e=\) pitlaka natp̃an na-e!}

SBST.DEM 3SG.S=have thorn DEM-ADD
'This one has got these thorns!'

Forms combining with te never encode a referent in their underived form. They include most word classes, but crucially, not nouns and pronouns. Nouns and pronouns are inherently referential as they can stand on their own to encode a referent, thus they are not expected to occur with \(t e .^{10}\) For a large part, substantives have animate referents, although this tendency is

\footnotetext{
\({ }^{9}\) Note that in some langauges such as Indonesian, determiners have lexical content.
\({ }^{10}\) Note that the closely related language South Efate has a nominalising determiner te- with similar functions. In this language te- can occur with a few nouns to form non-specific and indefinite nouns (Thieberger 2006:139). This is not attested in Lelepa.
}
not as prominent for \(t e+\) possessives and \(t e+\) determiners as it is for \(t e=+\) verbs. Note that some substantives have a lexicalised meaning and have been included as headwords in the dictionary. Some examples are given in table 3.16:
\begin{tabular}{|l|l|l|l|}
\hline Substantive & Formation & \multicolumn{1}{c|}{ Gloss } & \multicolumn{1}{c|}{ Definition } \\
\hline tematua & te =matua & 'SBST=be.old' & 'ancestors' \\
temraki & te \(=\) mraki \(i\) & 'SBST=lead' & 'members of the chiefly council, leaders' \\
tetaare & te \(=\) taare & 'SBST=be.white' & 'westerners, white people' \\
teloa & te \(=\) loa & 'SBST=be.black' & 'Ni-Vanuatu, black people' \\
\hline
\end{tabular}

Table 3.16. Lexicalised substantives

\subsection*{3.4.2.1 te=+ verbs}

Verbs can take the substantiver \(t e=\) to derive nouns encoding referents whose characteristics can be denoted by such verbs. Members of all verb classes can host \(t=\), except the copula. However, note that most collocations of te=+verb involve intransitive verbs, as seen in table 3.16. The table also shows that it is possible for a verb and its object to form a substantive, as seen with \(t e=r o g\) nalotuna 'Christian'. It is formed with the transitive verb rogo 'feel, hear' which is followed by the nominalised form na-lotu-na 'N.SPEC-pray-NMLZ \(>\) worship'. The substantiviser \(t e=\) is then hosted by the verb to form a compound noun.
\begin{tabular}{|c|c|c|c|c|}
\hline & Verb & Gloss & Derived noun & Gloss \\
\hline intransitives & \begin{tabular}{l}
loa \\
laapa \\
taare \\
matua \\
mramra \\
fea \\
lotu \\
fnau \\
mulmul \\
ftaur \\
mlap \\
kasua \\
frau
\end{tabular} & \begin{tabular}{l}
'be black' 'be many' \\
'be white' \\
'be old' 'lead, reign' 'be first:IRR' 'worship; pray' 'teach, preach' 'be round' 'marry' 'be last' 'be strong' 'be long'
\end{tabular} & \[
\begin{aligned}
& \hline t e=l o a \\
& t e=\text { laapa } \\
& t e=\text { taare } \\
& \text { te }=\text { matua } \\
& \text { te }=\text { mramra } \\
& t e=\text { fea } \\
& t e=l o t u \\
& t e=\text { fnau } \\
& \text { te }=\tilde{m u l m u l} \\
& \text { te }=\text { ftaur } \\
& \text { te }=\text { mlap } \\
& t e=k a s u a \\
& t e=\text { frau } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
'black one' 'many people' 'white one; white people’ \\
'elders' \\
'leader' \\
'first one' \\
'religious person' \\
'teacher, pastor' \\
'round one' \\
'married couple' \\
'last one' \\
'strong one' \\
'long one'
\end{tabular} \\
\hline ambitransitives & faam & 'eat' & te \(=\) faam & 'the one who eats' \\
\hline transitives & slae mrak rog nalotuna & \begin{tabular}{l}
'help' \\
'lead; accompany' 'experience Christianity'
\end{tabular} & \[
\begin{aligned}
& t e=\text { slae } \\
& t e=\text { mrak } \\
& \text { te }=\text { rog nalotuna }
\end{aligned}
\] & \begin{tabular}{l}
'helper' 'leader' \\
Christian
\end{tabular} \\
\hline
\end{tabular}

Table 3.17. Substantives

Substantives formed with intransitive verbs are exemplified in (81) and (85). In (81), pata 'be.different' is substantivised with te= to refer to different, other people outside of one's family:
(81) Mali tu=laka te=p̃ata tapla, tu=kat raus=ra pa.
when 1PL.INCL.S=see SBST=be.different like.this 1PL.INCL.S=CERT follow=3PL.OBJ GO 'When we see other people, we follow them (i.e. when we become adults and leave the family).'

In (82), mramra 'rule' yields the form temramra 'ruler':
\begin{tabular}{lllllll} 
E=lag & pi & natam̃ol & p̃el & skei & n-e=pi & te=mramra. \\
3SG.S=MAYBE & COP & person & big & INDEF & REL-3SG.S=COP & SBST=rule
\end{tabular}

In (83), laapa 'be.many' is substantivised to refer to a large group of people, while in (84) te= \(\tilde{p}\) arik. 'SBST=be.few' is formed with parike 'be few' and refers to a small number of people:
(83)
\begin{tabular}{llll} 
A=po & to & se & te=laapa, \\
1SG.S=SEQ & IPFV & call & SBST=be.many
\end{tabular}
\begin{tabular}{llllll} 
"kur=ga & fanmei, & tu=ga & fat \(\quad\) na-ftauri-na=g & Rachel." \\
2PL.S=IRR & come:IRR & 1PL.INCL.S=IRR & make N.SPEC-marry-NMLZ=POSS:H & p.name
\end{tabular}
'Then I called many people, "you guys come, we'll do Rachel's wedding."
(84) Sisen \({ }^{11} \mathrm{e}=\) panei lag \(\mathrm{e}=\mathrm{ga}\) til nmatuna skei \(\mathrm{e}=\mathrm{ga}\) fat=ia,

Session 3SG.S=come PURP 3SG.S=IRR tell thing INDEF 3SG.S=IRR make=3SG.OBJ

\section*{te=parikñol!}

SBST=be.few only
'The Session came to talk about something they would do, (but) only a few people (came)!'

Substantives and NP modifiers co-occur, which is further evidence of their noun status. In (85), the substantive tematua 'SBST=be old' occurs with the possessive determiner aginta ' 1 pl.incl.poss' to refer to the ancestors of the current community of Lelepa speakers:
\begin{tabular}{lllllll} 
So & \(\mathrm{e}=\mathrm{pa}\) & slae & te=matua & aginta & slafea & nge, \\
so & 3sG.S=go & help & SBST=be.old & 1PL.INCL.POSS & before & DEF
\end{tabular}
ur=pat nasum̃a tap ke-rua.
3PL.S=make house be.taboo ORD-two
'So he went and helped our elders at that time, they built the second church.'

Less commonly, substantives are formed with transitive and ambitransitive verbs. In (86) the ambitransitive verb faam 'eat' is derived as the noun tefaam 'feeder; eater'. In this example tefaam refers to fish which come close to the shore to feed at dawn and dusk, so that it is a good time to spear them:


Transitives can occur with their object to form a substantive. In (87), the substantive temrak nalotuna 'church leader' \({ }^{12}\) is derived from the transitive verb mrak 'lead, accompany' and its object nalotuna 'worship \({ }^{\text {'13 }}\) :

\footnotetext{
\({ }^{11}\) Sisen is a Bislama loan translated as Session. It refers to the elders of a Presbyterian Church congregation. In this sentence, it refers to a group of Presbyterian Church elders who conducted a general meeting that few people attended.
}

Te=mraki na-lotu-na, ur=ga fsa wia-ki-ra nasum̃a tap.
SBST=lead N.SPEC-pray-NMLZ 3PL.S=IRR speak be.good-TR-3PL.OBJ house be.taboo 'As for the church leaders, they will bless them in the church.'

\subsection*{3.4.2.2 te \(=+\) adjectives}

Adjectives form a distinct word class (see 4.5) and can derive substantives. In (88), the adjective mauna 'every, all' hosts \(t e=\) to derive the noun temauna 'everyone'. Note that mauna also occurs as an underived adjective modifying the noun Afate 'Efate':
(88) \(\mathrm{Te}=\) mauna, \(\mathrm{A}=\) fate \(\mathrm{A}=\) fate mauna, ur=kut pa-ki na-lotu-na.

SBST=all LOC=p.name LOC=p.name all 3PL.S=CERT go-TR N.SPEC-pray-NMLZ 'Everyone, the whole of Efate, they embraced Christianity.'

Adjectives can also be derived with the ordinal prefix kee- 'ORD' that attaches to numerals. The resulting forms are ordinal adjectives (see 3.4.4 and 4.5). Like underived adjectives, ordinal adjectives can be substantivised, as in (89). In this example, the numeral tolu 'three' is used as a base to derive the ordinal adjective ke-tolu 'third' and the substantive te=ke-tolu 'the third one':
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Kane \\
but
\end{tabular} & \begin{tabular}{l}
te=ke-tolu, stori \\
SBST=ORD-three
\end{tabular} & ke-tolu, story & \[
\begin{align*}
& \text { e=pi... }  \tag{89}\\
& \text { ORD-three }
\end{align*}
\] & \(3 \mathrm{SG} . \mathrm{S}=\mathrm{COP}\) \\
\hline natam̃ol & \(\mathrm{e}=\) mag naota & stat & na-wesi-na. & \\
\hline person & 3SG.S=BEN chief & start & N.SPEC-work- & NMLZ \\
\hline
\end{tabular}

\subsection*{3.4.2.3 te + possessives}

Substantivisation also applies to two distinct possessive paradigms: possessive pronominals and the possessive enclitics \(=n\) 'POSS:NH' and \(=g\) 'POSS:H'. The process is discussed for each paradigm in turn, starting with possessive pronominals. Possessive pronominals are a special class of pronouns. While they cannot stand by themselves and occur in all NP positions, they are in complementary distribution with NPs in the POSS slot (see 5.4.3). They also occur as NP modifiers and in such cases their behaviour is similar to that of determiners. They derive full possessive pronouns with te, as seen in table 3.17 which lists the possessive pronominals which serve as a base and the corresponding possessive pronouns derived with te. Note that

\footnotetext{
\({ }^{12}\) Note that temraki 'leader' occurring on its own is the appropriate form for Lelepa community members to address Lelepa chiefs sitting as part of the Lelepa Council of Chiefs during village meetings and village courts.
\({ }^{13}\) Note that temraki na-lotu-na cannot be analysed as a possessive construction meaning leaders of worship because the possessive enclitic \(=\mathrm{n}\) 'POSS.NH' does not occur as expected in a possessive construction (see 6.4.2). Instead, it is regarded as a substantivized compound.
}
the possessive pronouns are given a morpheme-by-morpheme gloss as well as an English translation to clarify their meaning. Note also that vowel-initial possessive pronominals lose their initial vowel in the cliticisation process, due to the phonological process of pretonic vowel deletion (see 2.5.1.2).
\begin{tabular}{|ll|ll|}
\hline \multicolumn{2}{|c|}{ Possessive pronominals } & \multicolumn{2}{c|}{ Possessive pronouns } \\
\hline agnou & '1SG.POSS' & tegnou & 'SBST.1SG.POSS' > 'mine' \\
nag & '2SG.POSS' & tenag & 'SBST.2SG.POSS' > 'yours (SG)' \\
nae & '3SG.POSS' & tenae & 'SBST.3SG.POSS' > 'his' \\
agnem & '1PL.EXCL.POSS' & tegnem & 'SBST.1PL.EXCL.POSS' > 'ours (EXCL)' \\
aginta & '1PL.INCL.POSS' & teginta & 'SBST.1PL.INCL.POSS' > 'ours (INCL)' \\
agmu & '2PL.POSS' & tegmu & 'SBST.2PL.POSS' > 'yours' (PL)' \\
naara & '3PL.POSS' & tenaara & 'SBST.2PL.POSS' > 'theirs' \\
\hline
\end{tabular}

Table 3.18. Possessive pronominals and possessive pronouns

Examples (90) to (92) show derived possessive pronouns functioning as complements of the copula \(p i\) 'COP':
(90) Tus na \(\mathrm{e}=\mathrm{ti}\) pi tenag mau.
book DEM 3SG.S=NEG COP SBST.2SG.POSS NEG2
'This book is not yours.'
[elicited]
(91) Nasum̃a kiki na, \(e=p i \quad\) tegnou,
house small DEM 3SG.S=COP SBST.1SG.POSS
nasum̃a p̃ela \(n=e=\) mato, \(\mathrm{e}=\mathrm{pi}\) teg Namuan.
house big REL=3SG.S=stay.long 3SG.S=COP SBST.POSS:H p.name
'This small house, it is mine, and that big house, it is Namuan's.'
[elicited]
\begin{tabular}{lllll} 
(92) \begin{tabular}{ll} 
Namuan & \(\mathrm{e}=\mathrm{ma}\) \\
p.name & 3sG.S=grate \\
tena, & SBST.DEM
\end{tabular} & \(\mathrm{e}=\mathrm{pi}\) & 3sG.S=COP & tenaara. \\
SBST.3PL.POSS
\end{tabular}

In addition to possessive pronominals, the language also has two possessive enclitics. These occur in possessive constructions in which both the possessor and the possessum are encoded by lexical NPs. The distribution of these enclitics is based roughly on a human/non human distinction: with a human possessor, \(=g\) ' \(\operatorname{POSS}: H\) ' occurs on the possessum, while the
possessum is marked with \(=n\) 'POSS:H' if the possessor is non-human (see 6.4.2, 6.4.3). In (93), the possessor Masogo has a human referent and the possessum is marked with \(=g\) :
(93) \begin{tabular}{l} 
Wara, \\
here
\end{tabular}\(\quad\) 3sG. \(\mathrm{p}=\mathrm{COP}\)\(\quad\)\begin{tabular}{l} 
eria=g \\
area=POSS:H
\end{tabular}\(\quad\)\begin{tabular}{l} 
Masogo, \\
p.name
\end{tabular}

In contrast, in (94) the possessor aleat 'middle.day' is non-human, and the possessum is marked with \(=n\) :
\begin{tabular}{llll} 
Ur=kut to \(\quad\) pat \(\quad\) nafnaga=n & aleati. \\
3PL.S=CERT & IPFV & make food=POSS:NH & middle.day \\
'They are preparing the food for lunch.'
\end{tabular}

These possessives combine with the substantiviser te to form the possessive pronouns ten 'SBST.POSS:NH' and teg 'SBST.POSS:NH', which takes the place of the possessed noun in examples such as (93) and (94). Table 3.18 presents both enclitics and their corresponding substantives. In the table, ' X ' corresponds to the possessor. Note that ten and teg cannot occur by themselves and are always followed by a possessor noun.
\begin{tabular}{|ll|ll|}
\hline \multicolumn{2}{|c|}{ Possessive enclitics } & \multicolumn{2}{c|}{ Substantives } \\
\hline\(=n\) & 'POSS: NH' & ten & 'SBST.POSS:NH' \(>\) 'the one of (X)' (X is a non-human possessor) \\
\(=g\) & 'POSS:H' & teg & 'SBST.POSS:H' \(>\) 'the one of (X)' (X is a human possessor) \\
\hline
\end{tabular}

Table 3.19. Possessive enclitics and their corresponding substantives

In (95) and (96), ten occurs as the possessor NPs have a non-human referent:
(95) Kane kinta tu=laapa, but 1PL.INCL 1PL.INCL.S=be.many kinta ten natkona tu=laapa. 1PL.INCL SBST.POSS:NH village 1PL.INCL.S=be.many 'But we are many, us from the village we are many.'
(96)
\begin{tabular}{lllll} 
Ur=to=pat suk \(\sim\) suk & nafnag & \(\mathrm{e}=\mathrm{pi}\) & ten & gotfan \\
3PL.S=IPFV=make & tight \(\sim\) INT & food & 3SG.S=COP & SBST.POSS:NH
\end{tabular} \begin{tabular}{l} 
afternoon
\end{tabular}
go \(\mathrm{e}=\mathrm{pi}\) ten matmai.
and 3 SG.S=COP SBST.POSS:NH tomorrow
'They are preparing food for tonight and tomorrow.'

In contrast, teg occurs in (97) as the possessor noun Rachel has a human referent:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline A=ga & maginta & til \(=1 a=s\), & taos & teg & & \multirow[t]{2}{*}{Rachel, p.name} \\
\hline 1SG.S=IRR & 1PL.INCL. BEN & tell=3sG.OBJ=30BL & like & SBST. & S:H & \\
\hline a=pitlaka & m̌latig... & e=ova wan & & & \multicolumn{2}{|l|}{taosen.} \\
\hline 1SG.S=have & close & 3sG.S=be.over on & & red & thou & \\
\hline
\end{tabular}

\subsection*{3.4.2.4 te + determiners}
\(T e\) combines also with the determiners nge 'DEF', na 'DEM', wa-s 'DEM-PROX' and wa-n 'DEMDIST \({ }^{14}\) to derive demonstrative pronouns which contrast in definiteness and spatial distance, as encoded in the base forms (see 4.6.2, 4.12). Demonstrative pronouns and their base are shown in table 3.19. Note that tewa is not attested:
\begin{tabular}{|ll|ll|}
\hline \multicolumn{3}{|c|}{ Determiners } & \multicolumn{2}{|c|}{ Demonstrative pronouns } \\
\hline\(n g e\) & 'DEF' & tenge & 'SBST.DEF' \\
\(n a\) & 'DEM' & tena & 'SBST.DEM' \\
wa & 'DEM' & - & - \\
wa-s & 'DEM-PROX' & tewa-s & 'SBST.DEM-PROX' \\
wa-n & 'DEM-DIST' & tewa-n & 'SBST.DEM-DIST' \\
\hline
\end{tabular}

Table 3.20. Determiners and demonstrative pronouns

Tena and tenge contrast in the type of referents they encode: tena refers to 'concrete' referents while tenge refers to 'abstract' ones. Concrete referents are part of the concrete world, and comprise humans, animals, objects, inanimate beings and natural phenomena. In contrast, abstract referents comprise situations, events, discussions, stories, thoughts, and so on. Note that the determiners na and nge denote all kinds of definite referents, whether they are concrete or abstract. Thus there is a certain amount of semantic divergence between the determiners and the derived pronouns. In (98) tenge 'SBST.DEF' refers to the story that was just told:

\footnotetext{
\({ }^{14} T e=\) is not attested to combine with the indefinite determiner skei 'INDEF'.
}

\section*{(98) Tenge, e=nou warange.}

SBST.DEF 3SG.S=be.finished there
'As for this one, it is finished there.'

In (99), tenge refers to a situation experienced by M. Murray, a missionary envoy sent to Vanuatu to look for eligible places to establish missions. Malaria caused a serious health problem for migrants and locals alike, and when the missionary found out that Lelepa had a low malaria risk, he realised that the island would be a good place to establish a mission:

\section*{(99) \\ \begin{tabular}{ll} 
Nlakan & tenge, \\
because & SBST.DEF
\end{tabular}}
M.Murray nge \(e=l o n ̃ a=e \quad\) lag, "oo, wari na \(e=p i \quad\) nali wia." p.name DEF 3SG.S=see=3SG.OBJ say oh place DEM 3SG.S=COP place be.good 'Because of this, M. Murray realised, "oh, this place is a good place."'

In (100), tenge refers to a matter which prompted a meeting:
\begin{tabular}{llllll} 
(100) & \begin{tabular}{l} 
Te=laapa \\
SBST=be.many
\end{tabular} & ur=mato & 3PL.S=stay.long & meet & gor \\
cover
\end{tabular}\(\quad\)\begin{tabular}{l} 
tenge \\
SBST.DEF
\end{tabular}\(\quad\)\begin{tabular}{l} 
STAT \\
'Many people were meeting about this.'
\end{tabular}

In contrast, tena encodes concrete referents. Note that it is the most common demonstrative pronoun in the corpus. In (101), it refers to a mat that was woven and decorated with chicken feathers:
(101) Tena, ur=pat nm̃au toa=s.

SBST.DEM 3SG.S=make feather chicken=3OBL
'As for this one, they attached chicken feathers to it.'

In (102), tena has a human referent. Note that tena does not mark number, as it can encode referents that are singular as in (101) and plural as in (102):
(102) Tena ur=panei malange, ur=panei palgat=ia. SBST.DEM 3PL.S=come then 3PL.S=come open=3sG.OBJ
'These people came at that time, they came to open it.'

Tena also has the ability of taking relative clauses (see 5.2.2), as in (103). This is evidence that te is not a relativiser, as seen by the fact that tena is followed by a relativiser introducing the relative clause, like any NP taking a relative clause: \({ }^{15}\)
\begin{tabular}{llll} 
E=pitlaka & tena & \(\mathrm{n}=\) ur=tumalua naara & Wako. \\
3SG.S=have & SBST.DEM & REL=3PL.S=leave & 3PL
\end{tabular} p.name

The demonstrative pronouns tewa-s 'SBST.DEM-PROX' and tewa-n 'SBST.DEM-DIST' are formed with the spatial demonstrative wa 'DEM' and the suffixes -s 'PROX' and -n 'DIST'. Wa-s 'DEM-PROX' modifies nouns whose referents are close to the speaker, while wa-n 'DEM=DIST' modifies nouns whose referents are distant from the speaker (see 4.12.2.2). Similarly to tena, tewas and tewan encode concrete referents rather than abstract ones:

P̃a=mun tewa-s!
2SG.S:IRR=drink SBST.DEM-PROX
'Drink this one (close to me)!'
[Elicited]
\(\begin{array}{lllllll}\text { (105) } & \text { E=lag } & \mathrm{e}=\mathrm{ga} & \text { fat } & \text { Kastom } & \text { pa-ki } & \text { misi } \\ \text { 3SG.S=say } & \text { 3SG.S=IRR } & \text { make:IRR } & \text { Kastom } & \text { go-TR } & \text { misionnary }\end{array}\)
nlakan \(\mathrm{e}=\tilde{\mathrm{p} a}\) punu tewa-n.
because 3sG.S=hit dead SBST.DEM-DIST
'He said that he would do a reconciliation ceremony with the missionary because he had killed that one.'

\subsection*{3.4.2.5 \(t e=+\) numerals}

Te also combines with numerals to form nouns encoding the number of their referent. These substantives are better analysed as nouns rather than pronouns as they regularly occur with noun modifiers such as adjectives and determiners. In (106), te=rua ' \(\mathrm{SBST}=\mathrm{two}\) ' is modified by the adjectival verb kiki 'be.small':
\begin{tabular}{lllll} 
(106) & \begin{tabular}{l} 
Te=rua \\
SBST=two
\end{tabular} & kiki & be.small & ar=mato \\
& 3DU.S=stay.long & taafa & inlandwards & to. \\
STAT \\
& 'The two little ones were inland.' & &
\end{tabular}

In (107), terua occurs with the demonstrative na 'DEM':

\footnotetext{
\({ }^{15}\) Note that relativisers cannot be stacked in Lelepa (see 12.6.1)
}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (107) & Te=rua & na, & ar \(=\) pi & kapenta & na & ar=atlake \(=\) s. \\
\hline & SBST=two & DEM & 3DU.S=COP & carpenter & REL & 3DU.S=start=3SG.OBJ \\
\hline
\end{tabular}

In (108), terua occurs with the definite nge 'DEF':
(108) \(\mathrm{Te}=\) rua nge, nagi-ra \(\mathrm{e}=\mathrm{pi}\) laua naaram ofa. SBST=two DEF name-3PL.POSS 3SG.S=COP cardinal.fish and heron 'As for these two, their names are Cardinal Fish and Heron.'

\subsection*{3.4.2.6 te + adverbs}

There are only a few examples of combinations of te with adverbs in the data (see 4.7). When te combines with adverbs, the substantives encode referents with the semantic characteristic denoted by the particular adverb it occurs with. In (109), the phrasal adverb mol 'just; only' (see 4.7.1.2) combines with te to form temol 'SBST.only'. This form is used frequently in the language to mean the equivalent of English 'that's enough' or 'fine'. In this example, the speaker comments on the difficulty of extracting a yam from the ground because the soil is very sticky, while recognising that this task went well:
```

(109) Ku=laka=e? Ntan e=pu suk=ia, kane e=pi tem̃ol.
2SG.S=see=3SG.OBJ soil 3SG.S=pull tight=3SG.OBJ but 3SG.S=COP SBST.just
'You see? The soil is holding it tightly, but it's fine.'

```

In (110), the speaker reports a heated conversation in which his father disagreed with his idea to travel abroad. He shows his father that he will not discuss the matter further by using temol:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathrm{E}=\) lag, & "Nag & \(\mathrm{ku}=\mathrm{ti}\) & tae & na-fsa-na & mau, \\
\hline 3sG.S=say & 2SG & 2SG.S=NEG & know & N.SPEC-speak-NMLZ & NEG2 \\
\hline se & ku=lag & \(\tilde{p} a=f a ? "\) & & & \\
\hline while & 2SG.S=say & 2SG.S:IRR= & & & \\
\hline A= lag, & "Tem̃ol, & \(\mathrm{a}=\mathrm{ga}\) & & fa." & \\
\hline 1SG.S=say & SBST.just & 1SG.S & & go:IRR & \\
\hline \begin{tabular}{l}
'He said, " \\
I said, "En
\end{tabular} & you don't know ough, I'll go.' & w the languag & and at & the same time you say you & will go? \\
\hline
\end{tabular}

In (111), the adverb mau 'all'combines with te to give temau 'SBST.all':
\begin{tabular}{llll} 
(111) & Tenge, & \(\mathrm{e}=\mathrm{pi}\) & na-maroa-na \\
SBST.DEF & 3SG.S=COP & N.SPEC-think-NMLZ & be.small
\end{tabular}
\begin{tabular}{llllll} 
a=msau-na & lag & a=mro & rki & kinta=s. & Temau. \\
1SG.S=want-3SG.OBJ & COMP & 1SG.S=AGAIN & tell & 1PL.INCL=3SG.OBJ & SBST.all
\end{tabular}
'This, this is the modest idea I wanted to share between us. That's all.'

\subsection*{3.4.2.7 te + topic particle}

The particle wei 'TOP’ marks contrastive topic. In (112), tewei 'SBST.TOP’ encodes its referent for contrastive topic. Note that it follows kinta '1pl.INCL' and has the same referent:
```

(112) Go a=rki kinta=s, kinta tewei laapa,
and 1SG.S=tell 1PL.INCL=3SG.OBJ 1PL.INCL SBST.TOP many
e=pi na-lop̃a-na agnou.
3SG.S=COP N.SPEC-see-NMLZ 1SG.POSS
'And I tell it to us, as for us lot, this is my view.'

```

In (113) tewei nge 'SBST-TOP DEF' refers to the story that was just told, marking it for contrastive topic as well:
\begin{tabular}{lll} 
So, e=pi & tewei & nge, \\
so & 3SG.S=COP & SBST.TOP
\end{tabular}
\(\mathrm{a}=\mathrm{msou}\)-na \(\quad \mathrm{a}=\) rkikumu=s nkarkiki.
1SG.S=want-3SG.OBJ 1SG.S=tell 2PL=3SG.OBJ children
'So this is it, which I wanted to tell you children.'

\subsection*{3.4.3 Locative \(a=\)}

The locative proclitic \(a=\) derives locational nouns. It combines with common nouns (see 4.2.2), place names (see 4.2.3) and directionals (see 4.9) when the referent of the derived locational noun is in the role of location. In (114) \(a=\) attaches to the place name Tuktuk:
(114) Marka nae, nae \(e=\) mato \(A=\) tuktuk to. old.man 3sG.POSS 3sG 3sG.S=stay.long LOC=p.name STAT 'As for her husband, he lived in Tuktuk.'

In contrast, in (115) Tuktuk is not in the role of location and occurs underived:
\(\begin{array}{lllllll}\text { (115) } & \text { Marka naota } & \text { ten } & \text { Tuktuk, } & \text { nagi-na } & \mathrm{e}=\mathrm{pi} & \text { Maseip̃og. } \\ \text { old.man chief } & \text { SBST.POSS:NH } & \text { p.name } & \text { name-3SG.POSS } & \text { 3sG.S=COP } & \text { p.name }\end{array}\) 'AS for the chief from Tuktuk, his name was Maseipog,' p.name 'AS for the chief from Tuktuk, his name was Maseipog.'

In (116), \(a=\) occurs on the directional uta 'landwards' and forms the locational noun \(a=u t a\) 'LOC=landwards' which refers to the shore:
\begin{tabular}{lllllll} 
E=wia, & a=kano to \(\quad\) a=uta & to, & a=ti & masko & mau. \\
3SG.S=be.good & 1SG.S=cannot stay & LOC=landwards & STAT & 1SG.S=NEG & be.clear & NEG2
\end{tabular} 'That's fine, I cannot stay on the shore, I am not clean.'

In (117), \(a=\) occurs on the directional lag 'upwards' to form the locational noun \(a=l a g\) 'LOC=upwards' which refers to the roof of a house:
\begin{tabular}{llllll} 
(117) Go & a=lag & nag-na, ur=pat=ia, \(e=p i\) & nasuma & nous. & \\
and & LOC=up & ASS-3SG.POSS & 3PL. \(S=\) make=3SG.OBJ & 3SG.S=COP & house
\end{tabular} wild.cane
'And as for its roof, they made it, it was a wild cane house.'

Some common nouns can take the locative proclitic when they are in the role of location. In (118) suma 'house' hosts \(a=\) as it has the role of location:
\begin{tabular}{lll} 
E=to & a=suma & to. \\
3SG.S=stay & LOC=house & STAT \\
'He is at the house.' & \\
[elicited] & &
\end{tabular}

It was shown that suma can also be prefixed with the residual article na- 'N.SPEC' to give the common noun na-sum̃a 'N.SPEC-house' (see 3.2.2). The distinction between na-sum̃a 'N.SPEChouse' and \(a=\) suma 'LOC-house' reflects the distinction between common and local nouns reconstructed for Proto Oceanic (Ross 2004b:184), \({ }^{16}\) and found in many modern Oceanic languages (Lynch, Ross and Crowley 2002:37). However, a subclass of local nouns is not established for Lelepa, since locational nouns are obtained after derivation with \(a=\) 'LOC'.

\footnotetext{
\({ }^{16}\) It is possible that Lelepa \(a=\) 'LOC' reflects the POc locative preposition *i (Ross 2004b). Although this is difficult to ascertain since the phonetic shape of \(a\) and \(i\) is rather different, consider the fact that in closely related languages, the cognates of Lelepa forms which occur with locative \(a=\) are \(e\) initial. Thus in South Efate one finds elau 'on the shore', esum 'at the house' and Efat 'Efate', which are clearly cognates with Lelepa alau 'on the shore', asuma 'at the house' and Afate 'Efate'. Since \(e\) is phonetically closer to \(i\), this makes this hypothesis slightly stronger, along with the fact that \(a=\) has a similar syntactic distribution to \(*\).
}

Locational nouns such as Atuktuk 'in Tuktuk', auta 'on the shore' and asuma 'at the house' form a class of derived nouns, but there are no underived local nouns in the language.

\subsection*{3.4.4 Ordinal ke-}

The ordinal prefix ke- occurs on numerals to derive ordinal adjectives (see 4.5). This is shown in examples (119) to (121), in which Kerua 'second', Ketolu 'third' and Kelima 'fifth' modify nouns:
(119) Ur=to pa naleati ke-rua e=kat pa. 3pl.S=stay GO day ORD-two 3sG.S=CERT go 'They stayed until after the second day.'
(120)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\mathrm{Tu}=\mathrm{mro}
\] & suara & sla & ke-tol ORD-three & pan & pa, \\
\hline tu=panei & pa-ki & liga & wara & & nge. \\
\hline 1PL.INCL.S=come & go-TR & out & here be & & DEF \\
\hline
\end{tabular}
(121) Ur=tfag nasum̃a tap ke-lima nge. 3PL.S=build house be.taboo ORD-five DEF 'They built the fifth church.'

Note that skei 'INDEF' cannot take the ordinal prefix to derive *ke-skei to express the meaning 'first'. Instead, the intransitive verb fea 'be.first' is used, as in (122) in which it modifies the noun rarua 'canoe':
\begin{tabular}{lllllll} 
(122) & \begin{tabular}{l} 
Namta \\
eye
\end{tabular}\(\quad\)\begin{tabular}{l} 
nag \\
2PL
\end{tabular} & \begin{tabular}{l} 
e=ga \\
3SG.S=IRR
\end{tabular} & \begin{tabular}{l} 
to \\
stay
\end{tabular} & \begin{tabular}{l} 
rarua \\
canoe
\end{tabular} & \begin{tabular}{l} 
fea \\
be.first
\end{tabular} & nge. \\
& 'Your eye should be on the first canoe.'
\end{tabular}

\subsection*{3.4.5 Reduplication}

In contrast to other Vanuatu languages, reduplication is a minor and non-productive process in Lelepa. Examples of languages in which reduplication is widespread are Lewo (Early 1994:136), Nahavaq (Dimock 2009:145), Naman (Crowley 2006:120), Mavea (Guérin 2008:128), Araki (François 2002:37), Tamambo (Jauncey 2011:132), Lolovoli (Hyslop 2001:341), and Mwotlap (François 2003:3), amongst others. As seen in table 3.20, reduplication has two main functions in Lelepa: it can be derivational or non-derivational. The main function
of non-derivational reduplication is intensification. Thus, mala 'be.clear' is reduplicated as \(\tilde{m a l m a l a}\) 'be very clear', and skei 'one; INDEF' as skeskei 'single'. In this type of reduplication the base and the reduplicant belong to the same word class. In contrast, the functions of derivational reduplication are diverse. However, two main patterns appear: nominalisation/verbalisation on the one hand, and valency change (including reflexivisation) on the other. Nominalisation derives nouns such as sisi 'rifle' from the transitive verb si 'shoot, blow'. Valency change can be an increase in the valency, such as with 10 'look' and lolo 'look for', or a decrease, with pairs such as sel 'sew' (transitive) and selsel 'sew' (intransitive):
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Non-derivational} & \multicolumn{3}{|c|}{Derivational} \\
\hline Base & Reduplicant & Function & Base & Reduplicant & Function \\
\hline \begin{tabular}{l}
mala \\
'be.clear' \\
suk. \\
'tighten' \\
skei 'one; \\
INDEF' \\
psruki \\
'talk' \\
naure \\
'island'
\end{tabular} & \begin{tabular}{l}
malmala 'be.very clear, be.naked’ suksuk' 'tighten a lot' \\
skeskei 'single’ \\
psrusruki ' talk a lot' \\
naureure 'each island’
\end{tabular} & Intensification & \begin{tabular}{l}
si 'shoot' \\
paro 'idiot' \\
taliop 'turn \\
around' \\
sel 'sew' \\
(transitive) \\
lo 'look'
\end{tabular} & \begin{tabular}{l}
sisi 'rifle’ \\
да~arparo \\
'be.careless’ \\
tataliop 'turn \\
on itself \\
selsel 'sew' \\
(intransitive) \\
Lolo 'look for'
\end{tabular} & \begin{tabular}{l}
Nominalisation \\
Verbalisation \\
Reflexivisation \\
De- \\
transitivisation \\
Transitivisation
\end{tabular} \\
\hline
\end{tabular}

Table 3.21. The functions of reduplication

In (127), the intransitive verb mala 'be.clear' occurs. In (123), the reduplicant malmala 'be.very clear; be naked' shows the intensification in meaning from 'be clear' to 'be very clear':
\begin{tabular}{llll} 
E=kat & mala & wara & skei. \\
\begin{tabular}{ll} 
3SG.S \(=\) CERT & be.clear
\end{tabular} & place & INDEF
\end{tabular}
\begin{tabular}{llllllllll} 
(123) & Nkas & kiki & sa & nge & se & \(e=\) to & wara & \(\tilde{m} a l \sim \tilde{m} a l a\) & nge \\
wood & be.small very & DEF & too & 3 SG.S \(=\) stay & place & RED be.clear & DEF & STAT
\end{tabular} \(\mathrm{e}=\) to \(\quad \mathrm{fe}=\mathrm{a}\).
3SG.S=IPFV count-3SG.OBJ
'As the little bits of wood are on a very clear place, he counts them.'

Examples (124) and (125) show the nominalisation function of reduplication. In (124), si 'shoot' functions as a transitive verb hosting the object enclitic \(=k\) oo '2SG.OBJ', while in (125) the reduplicant sisi 'rifle' is a derived noun:
(124) Konou, \(a=s i=k o\).

1sG 1SG.S=shoot=2SG.OBJ
'As for me, I shot you.'
[elicited]
\begin{tabular}{lllll} 
(125) \begin{tabular}{ll} 
Tu=sla & walaa \\
1PL.INCL.S=carry & kite \\
spear & or
\end{tabular} & tu=sla & 1PL.INCL.S=carry & sisi, \\
rifle
\end{tabular}
\(\begin{array}{llllll}\text { tu=paa } & \text { punu=ea } & \text { nmatuna } & \text { na } & \text { tu=slat=ia } & \text { pa. } \\ \text { 1PL.INCL.S=hit } & \text { dead=3SG.OBJ } & \text { thing } & \text { REL } & \text { 1PL.INCL.S=carry=3SG.OBJ } & \text { GO }\end{array}\)
'We bring a spear or we bring a rifle, we kill it with the thing we brought.'

Finally, note that there are a number of forms which appear to be reduplicated but are synchronically non-analysable. Examples are:
\begin{tabular}{|l|l|l|l|}
\hline Form & \multicolumn{1}{|c|}{ Gloss } & Form & \multicolumn{1}{c|}{ Gloss } \\
\hline fafatu & 'trust' & gugu & 'bad weather' \\
flafla & 'be.stuck' & krukru & 'pedal' \\
fugofugo & 'get up early' & laelae & 'happy' \\
gaegae & 'pant' & raerae & 'beautiful' \\
\hline
\end{tabular}

Table 3.22. Non-analysable reduplicated form

\section*{Chapter 4 - Word Classes}

\subsection*{4.1 Introduction}

This chapter presents the morphosyntactic classes of words in Lelepa. The classification is established by looking at the syntactic distribution of members of each class and the inflectional and derivational operations they partake in. Sixteen word classes are identified in the language, with major open classes such as nouns (4.2) and verbs (4.3), and minor closed classes such as pronouns (4.6), adverbs (4.7), numerals (4.10), and determiners (4.12), amongst others. Typologically notable classes include post-verbs (4.4), a small class of adjectives (4.5), and the class of directionals (4.9). A common phenomenon in the language is heterosemy (Persson 1988, Lichtenberk 1991, Enfield 2006). It is manifested by a number of formally identical and semantically closely related words which belong to several word classes. An example is the pair tuagoto/tuagoto: the former is an intransitive verb meaning 'to cross', and the latter a noun referring to the crossbeams of a roof. Since Lelepa has a word class system strongly based in syntactic distribution, such pairs do not mean that the classes of nouns and verbs are not well established, but that heterosemy is present in the language.

\subsection*{4.2 Nouns}

\subsection*{4.2.1 The class of nouns}

This section aims at delimiting the category of nouns. The main criterion for noun class membership is that nouns occur as heads of NPs. Nouns head NPs which function as core and oblique arguments of a predicate, as well as adjuncts which may or may not be introduced by a preposition. The major criterion distinguishing nouns from verbs in the language is that nouns do not function predicatively and thus do not occur with subject proclitics (see 4.3, 7.4.1.1). Criteria used in assigning lexemes to the class of nouns are summarised in Table 4.1 below:
\begin{tabular}{|c|c|}
\hline \multirow[b]{4}{*}{Nouns} & Nouns occur as heads of NPs functioning as: \\
\hline & \begin{tabular}{l}
- Direct core arguments of a predicate \\
- Oblique arguments of a predicate \\
- Adjuncts introduced or not by a preposition
\end{tabular} \\
\hline & Nouns may satisfy some or all of the following optional criteria: \\
\hline & \begin{tabular}{l}
- Be modified by the pre-head modifier sara 'each' \\
- Be determined with the determiners skei 'INDEF', nge 'DEF', na 'DEM' \\
- Be modified by adjectives and adjectival verbs \\
- Occur in a possessive construction \\
- Be quantified by numerals or other forms used in quantification in the \(\mathrm{NP}^{1}\) \\
- Be specified by a relative clause
\end{tabular} \\
\hline
\end{tabular}

Table 4.1. Criteria establishing the class of nouns

The different syntactic positions nouns occur in are exemplified in (1) to (5). In (1), the noun marka 'old man' is the only argument of the intransitive verb maturu 'sleep'. It heads an NP and occurs with the definite determiner nge ' DEF ':
(1) Marka nge e=wan maturu. old.man DEF 3SG.S=IPFV sleep
'The old man was sleeping.' [elicited]

In (2) the nouns natamiol 'person, people' and namul-la 'skin-3sG.poss' head two NPs functioning as core arguments of the complex predicate kano pa lysa 'cannot remove'. Natamol is the head of the subject NP. Namulla is inflected for possession \({ }^{2}\) and is the head of the object NP:
(2) Natam̃ol e=kano pa lwa namul-la.
people 3 SG. \(s=\) cannot go remove skin-3SG.Poss
People cannot remove their skin.'

Nouns also head NPs functioning as oblique arguments. In Lelepa oblique NPs are not formally marked, and follow the intransitive verb or the object. They generally encode locations, instruments and themes. In (3) the noun srosro 'round-bladed long adze' occurs as an

\footnotetext{
\({ }^{1}\) There is no class of quantifiers in Lelepa. Quantification is achieved by numerals, adjectives, verbs and adverbs. \({ }^{2}\) This inflection reflects a common feature of Oceanic languages which have a category of nouns inflecting for possession (see 3.2.1).
}
oblique NP with the role of instrument. It simply follows the object NP headed by naokon luk.u 'hull's interior':
\begin{tabular}{llllll} 
(3) \(\quad\) A pat & paksaki & naoko=n & luku & nag-na & srosro, \\
1SG.S=make clean & mouth=POSS:NH & hole & ASS-3SG.POSS & k.o.adze \\
'I cleaned the inside of the hull with the round-bladed long adze,' &
\end{tabular}

Finally, nouns also head NPs functioning as adjuncts. Adjuncts add peripheral information to the event expressed by the predicate, for instance by expressing the manner in which an action is performed or by locating an event in time or space. In contrast to obliques, they are not subcategorised for by the verb. In (4), the noun tuei 'long ago' functions as an adjunct locating in time the event expressed by the predicate to 'stay':
(4) Tuei, maata naaram wita ar=to,
long.ago snake and octopus 3DU.S=stay
'Long ago, the snake and the octopus stayed,'

Adjuncts also differ from obliques in that they can be introduced by a preposition. In (5) the noun nagi 'name' heads an NP introduced by the preposition pae 'SOURCE':
\[
\begin{align*}
& \begin{array}{lllllll}
\text { E=msau-na } & \text { lag } & \text { e=ga } & \text { fat } & \text { hae } & \text { skul } & \text { gaskei, } \\
\text { 3SG.S= want-3SG.OBJ } & \text { COMP } & \text { 3sG.S=IRR } & \text { make } & \text { high } & \text { school } & \text { IRR.INDEF }
\end{array}  \tag{5}\\
& \text { pae nagi=n Presbyterian Jioj. } \\
& \text { SOURCE name=POSS:NH Presbyterian Church } \\
& \text { 'He wanted to make a high school, in the name of the Presbyterian Church.' }
\end{align*}
\]

About half of the nouns ( \(43 \%\) in the current corpus) are \(n(a)\)-initial, not including deverbal nouns which all occur with the article \(n(a)\) - (see 3.2.2, 3.4.1). Rather, the fact that many underived nouns are \(n(a)\)-initial results from the fusion of the POc article *na as part of these nouns, a well established scenario for languages of the Southern Oceanic subgroup (Lynch 2001). In Lelepa, evidence that initial \(n(a)\) is a reflex from POC * \(n a\) is found in the fact that it behaves as an article for some nouns and in some contexts (see 3.2.2). Since over half of the nouns are not na-initial, this does not constitute a sufficient criterion to establish the class of nouns. Table 4.2 shows some \(n a\)-initial nouns. They do not share any exclusive morphosyntactic features and represent a diverse range of semantic domains, and so cannot be recognised as a grammatical subclass of nouns.
\begin{tabular}{|c|c|c|c|c|}
\hline Body parts \& products & Humans & Fish & Plants & Others \\
\hline \begin{tabular}{l}
праи 'head' \\
npat 'tooth' \\
ninat 'back' \\
ntae \\
'excrement' \\
narimta 'tears'
\end{tabular} & \begin{tabular}{l}
natamol 'person' \\
nagrun \\
'woman' \\
nkarkike 'child' \\
naota 'chief? \\
nerue 'twins'
\end{tabular} & \begin{tabular}{l}
neik. 'fish' \\
nagддa 'moray eel' nagul 'goatfish' napele 'sardine' nalgos 'leaf fish'
\end{tabular} & \begin{tabular}{l}
napaga 'banyan tree' \\
naptau 'breadfruit' \\
nawi 'yam' \\
noas 'island \\
cabbage’ \\
nati 'banana'
\end{tabular} & \begin{tabular}{l}
nasogo 'rubbish' \\
nasum̃a 'house' \\
naд̃a 'creek' \\
namos 'outside (of \\
sea)' \\
nafarkal 'bush spirit'
\end{tabular} \\
\hline
\end{tabular}

Table 4.2. Some \(n a\)-initial nouns classified by semantic domain

Being na-initial is not a sufficient criterion for establishing subclasses of common and proper nouns either. Most \(n(a)\)-initial nouns are not personal names and place names. This tendency is explained historically, since the POc article *na marked common non-human nouns, which excluded place names (Crowley 1985). However, there are still about \(3 \%\) of na-initial nouns which are indeed place and personal names (for instance the place name Naktaf and the personal names Nafet and Näpar). Recall also that productive instances of na-marking are observed in nominalisation (see 3.4.1) and the marking of genericity (see 3.2.2). Thus, while namarking is a feature of the nominal domain, it does not offer a morphosyntactic or semantic criteria establishing a class or subclass of nouns.

\subsection*{4.2.2 Common and proper nouns}

Proper nouns include personal and place names, while common nouns include all other nouns. Proper nouns cannot take possessive suffixes, but since this is also the case of many common nouns, it is not a distinctive criterion for establishing a proper noun subclass. More importantly however, proper nouns cannot occur with the indefinite determiner skei 'INDEF', which sets them apart from common nouns. In (6), skei occurs with the dyadic kin term tamatira 'DYAD.mat.gdmother-3sg.POSS' to mark the referent of the NP as indefinite. Note that tamatira is mentioned for the first time in the narrative and for this reason it needs to be marked as indefinite:
(6) Tama-ti-ra skei ar=to taafa np̃ou n-taafa.

DYAD.mat.gdmother-3sg.POSS INDEF 3DU.S=stay inlandwards head NMLZ-inlandwards 'A grandmother and her granddaughter lived inland, on top of the hill.'

In (7), the personal names Mantae and Matakutalo also occur as first mention in the text, however they occur with no determiner. Example (8) shows that it is ungrammatical for them to occur with \(s k e i\), which is expected as their referents are inherently definite:
\begin{tabular}{lllll}
\begin{tabular}{l} 
E=pitlak
\end{tabular} & Mantae, & Matakutalo, & \\
3SG.S=have & p.name & p.name & \\
naara & wei & na & ar=raus=ra & panmei. \\
3pL & TOP & DEM & 3DU.s=follow=3PL.OBJ & COME
\end{tabular}
'Here are Mantae, Matakutalo, they (two) are the ones following them.'


Note that proper nouns can co-occur with other determiners such as nge 'DEF' and na 'DEM', like all common nouns. Although this is not common in the corpus, it is not surprising as proper nouns are inherently definite, and compatible with the definite nge 'DEF' but not with the indefinite skei. In (9) the place name matnarfarfa occurs with nge:
(9) Matnarfarfa nge, nagi-na e=rua: Matnarau, Matnarfarfa. p.name DEF name-3sG.POSS 3sG.S=two p.name p.name As for Matnarfarfa, it has two names: Matnarau, Matnarfarfa.

In (10) the personal name Narop occurs with the demonstrative na 'DEM'. In this example, the speaker is commenting on several men working on a dugout canoe at the same time and performing the same task of shaping the stern and prow. As he needs to individuate the referent of Narop amongst the other men, he uses the demonstrative \(n a\) while pointing at him:
\begin{tabular}{|c|c|c|c|c|c|}
\hline (10) & Ur=to & up̃anakono=s, & Narop & na & \(\mathrm{e}=\mathrm{upanakono=s}\). \\
\hline & 3pl.s=IPFV & shape=3sG.OBJ & p.name & DEM & \(3 \mathrm{GG} . \mathrm{s}=\) shape \(=3\) SG.OBJ \\
\hline & 'The & Narop & hap & & \\
\hline
\end{tabular}

\subsection*{4.2.3 Place names}

Place names can be marked with the locative proclitic \(a=\) 'LOC' when in the role of location (see 3.4.3). In (11), the place name Moso 'p.name' occurs unmarked as it is not in the role of location but in that of possessor. In contrast, (12) it has the role of location and occurs with the locative \(a=\) :
\(\begin{array}{lll}\text { (11) } & \text { Ten } & \text { Moso }\end{array} \quad\) ur=panei.
'Those from Moso came.'
(12)
\begin{tabular}{llll} 
E=pat & na-wesina & taos=ia & A=moso. \\
3sG.S=make & ART-work-NMLZ & like=3SG.OBJ & LOC=p.name \\
'He did work like this in Moso.' & &
\end{tabular}

Since \(a=\) can occur with place names, directionals and other nouns (see 3.4.3), it is not a reliable criterion to establish a subclass of place names. In addition, some place names are \(a\) initial, as shown in table 4.3. These nouns are not attested to occur without initial /a/, thus it is likely that initial /a/ reflects the locative proclitic which has been fused to the roots at an earlier stage of the language. Synchronically, these nouns are considered as \(a\)-initial:
\begin{tabular}{|ll|ll|}
\hline \multicolumn{4}{|c|}{ a-initial place names } \\
\hline \begin{tabular}{ll} 
Artoka & 'Artoka, Hat Island' \\
Akoto & Alpat
\end{tabular} & 'Alpat' \\
'Akoto' & Allaapa & 'Lelepa' \\
\hline
\end{tabular}

Table 4.3. Place names with fused location prefix

One example of \(a\)-initial place name is Artoka 'p.name'. It functions as an object in (13), as an oblique in (14) and occurs in a prepositional phrase in (15). Note that Artok never occurs as *rtok:
(13) Malmauna ku=pa-ki Artoka pan, ku=laka maata laapa.
now 2SG.S=go-TR p.name go 2SG.S=see snake be.many
'Nowadays you go to Artoka, you see lots of snakes.'
(14) Nae, mutuama nge, e=to Artoka to. 3SG ogre DEF 3SG.S=stay p.name STAT
'As for him, the ogre, he lived in Artoka.'
(15) Narua nmat e=put=ia pa raki Artoka pa. current low.tide 3sG.S=pull=3SG.OBJ GO towards p.name GO 'The low tide's current pulled him away towards Artoka.'

\subsection*{4.2.4 Obligatorily possessed kin terms}

\subsection*{4.2.4.1 Basic kin terms}

Kin terms (see table 4.4) form a separate subclass of bound nouns on the basis that they are obligatorily possessed, in contrast with other bound nouns which can function bare (see 3.2.1). A number of unusual features are found with kin terms. First, some of them take the prefix \(a\) 'KIN' whose functions are currently not well known (see ' \(a\)-prefixing' column in table 4.4). This prefix does not encode possessors, since kin terms obligatorily take possessor-indexing suffixes, as in a-ti-na 'KIN-maternal.gdmother-3SG.POSS'. Second, some kin terms such as a-na-fa 'KIN-3SG.POSS-father' index their possessor with a prefix of the same form as the possessorindexing suffixes. Finally, some kin terms such as a-na-smam-na 'KIN-3SG.POSS-paternal.aunt3sG.POSS' mark the possessor twice, with the same possessor-indexing forms occuring as prefix and suffix.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{a-prefixing} & \multicolumn{2}{|r|}{non a-prefixing} \\
\hline \(a-t i-n a\) & 'KIN-maternal.gdmother-3sG.POSS' & sul-la & 'grandchild-3sG.POSS' \\
\hline a-pu-na & 'KIN-maternal.gdfather-3SG.POSS' & gore-na & 'sister-3SG.POSS' \\
\hline a-lo-na & 'KIN-maternal.uncle-3sG.POSS' & pal-la & 'brother-3sG.POSS' \\
\hline a-tu-na & 'KIN-paternal.gdmother-3SG.POSS' & pel-la & 'mother-3sG.POSs' \\
\hline \(a-t a-n a\) & 'KIN-great.uncle-3SG.POSS' & top-na & 'paternal.gdfather-3SG.POSS' \\
\hline \(a-k e-n a\) & 'KIN-great.great.uncle-3SG.POSS' & tu-na & 'sister.in.law-3sG.POSS' \\
\hline a-na-ota & 'KIN-husband-3sG.POss' & \[
\begin{aligned}
& \text { tawi- } \\
& \text { na }
\end{aligned}
\] & 'same.generation.in.law3sG.POSS' \\
\hline a-na-grun & 'KIN-woman-3sG.POSS' & nan-na & 'child' \\
\hline \(a-n a-f a\) & 'KIN-3SG.POSS-father' & mo-na & 'taboo.in.law-3sG.POSS' \\
\hline \begin{tabular}{l}
a-na-smam- \\
na
\end{tabular} & 'KIN-3sG.POSS-paternal.aunt3sG.poss’ & & \\
\hline a-na-mam-na & 'KIN-3SG.POSS-paternal.uncle3sG.Poss' & & \\
\hline
\end{tabular}

Table 4.4. Obligatorily possessed kin terms

This shows that Lelepa kin terms present some typological interest within Oceanic languages: while most of them index their possessor with a suffix, a few are only prefixing, while another few take redundant possessor marking with both a prefix and a suffix. Suffixing-only kin terms (see 'non \(a\)-prefixing' column in table 4.4) do not take the \(a\) - prefix and index their possessor with suffixes, following the usual pattern. On the other hand, prefixing-only kin terms take the
kin prefix followed by a possessor-indexing prefix. Finally, two known kin terms, a-na-smam-na ‘KIN-3SG.POSS-paternal.aunt-3SG.POSS' and a-na-mam-na 'KIN-3SG.POSS-paternal.uncle3SG.POSS', show redundant marking of the possessor. Possessor-indexing prefixes are not common in Oceanic languages, in which the expected pattern for nouns inflecting for possession is to take suffixes. However, in addition to Lelepa, exceptions to this are West Fijian (Lynch, Ross and Crowley 2002:42), and the closely related Nguna, which has \(a\) prefixing kin terms taking possessor-indexing prefixes (Schütz 1969:45). Textual examples of prefixing and suffixing kin terms are given in (16) and (17):

\begin{tabular}{llll} 
Tama-ti-ra & nge & ar=mato=s & to, \\
DYAD-mat.gdmother-3PL.POSS & DEF & 3DU.S=stay.long=3OBL & STAT
\end{tabular}
\begin{tabular}{llllll} 
ar=pi & fterki & naaram & sul-la, & kanokiki & skei, \\
3DU.S=COP & woman & and & grandchild-3SG.POSS & boy & INDEF
\end{tabular}
ar=mato pan pa,

3DU.S=stay.long GO GO
'The grandmother and her grandchildren lived there, they were a woman with her grandchild, a boy, they lived there on and on,'

Obligatorily possessed kin terms are disappearing from the language, as they are particularly rare in the textual corpus and many of those presented in table 4.4 were obtained through elicitation with older speakers. Kin terms are being replaced by vocatives (see table 4.5) such as mamei 'dad; father', tetei 'mum; mother' or taatua 'grandma; paternal grandmother'. Such vocatives function like free common nouns as they do not take possessor-indexing suffixes. It is apparent that they are etymologically related to kin terms, as they often consist in the partial or total reduplication of the kin term root, with the addition of a final \(a\) and a vowel change in
the first syllable in some cases. Note that mamei and tetei are not derived through this reduplication process. \({ }^{3}\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Vocatives} & \multicolumn{2}{|r|}{Corresponding kin terms} \\
\hline taatia & 'maternal.gdmother' & \(a-t i-n a\) & 'KIN-maternal.gdmother-3sG.POSs' \\
\hline раариа & 'maternal.gdfather' & a-pu-na & 'KIN-maternal.gdfather-3sG.POSS' \\
\hline lolo & 'maternal.uncle' & \(a-l o n a\) & 'KIN-maternal.uncle-3SG.POSS' \\
\hline taatua & 'paternal.gdmother' & tu-na & 'KIN-paternal.gdmother-3sG.POSs' \\
\hline namei & 'father' & a-na-fa & 'KIN-3SG.POSS-father' \\
\hline tetei & 'mother' & pel-la & 'mother-3sG.poss' \\
\hline mimia & 'paternal aunt' & a-na-smam-na & 'KIN-3sG.POSS -paternal.aunt-3sG.POSs' \\
\hline tata & 'great uncle' & \(a-t a-n a\) & 'KIN-great.uncle-3sG.POSS' \\
\hline keekea & 'great.gdfather' & a-ke-na & 'KIN-great.gdfather-3sG.POSS' \\
\hline & & a-na-mam-na & 'KIN-3sG.POSS -paternal.uncle-3sG.POSs' \\
\hline
\end{tabular}

Table 4.5. Vocatives replacing kin terms

\subsection*{4.2.4.2 Dyadic kin terms}

Dyadic kin terms function like any other noun in the NP: they head NPs and can take the modifiers occurring in the NP. They represent a typologically interesting feature of the language but are also falling out of use, like the kin terms discussed above. Dyadic kin terms refer to a group of individuals in a kin relationship which can be symmetrical or asymmetrical. In a symmetrical relationship, all members are in an identical relationship with each other and call each other by the same term (eg. brothers). In contrast, in an asymetrical relationship, members cannot call each other with the same term (eg. father-son, uncle-nephew). Dyadic kin terms are seldom described in the Oceanic literature, although they have been recorded in langages such as South Efate (Thieberger 2006), Nêlêmwa (Bril 2002), Mwotlap (François 2001), Nggela (Fox 1955), Drehu (Tryon 1967), and Roviana (Waterhouse 1928). In contrast, they are well known in the literature on Australian languages (Merlan and Heath 1982, Evans N. 2003). Lelepa dyadic kin terms are shown in table 4.6. They are formed with an obligatorily possesssed kin term as the root taking the dyadic prefix tama- 'DYAD' and a possessor-indexing affix. If the root takes a possessor-indexing suffix, tama is directly prefixed to the root, while it attaches to the possessor-indexing prefix if the root is prefixing.

\footnotetext{
\({ }^{3}\) It is possible that mamei is derived from mam- 'paternal uncle'.
}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Suffixing kin terms} & \multicolumn{2}{|r|}{Prefixing kin terms} \\
\hline tama-ti-ra & 'DYAD-maternal.gdmother-3PL.POSS' \(>\) 'maternal gdmother and grandkids' & tama-ra-ota & 'DYAD-3PL.POSS-husband' > 'married couple' \\
\hline tama-tu-ra & 'DYAD-paternal.gdmother-3PL.POSS' > 'paternal gdmother and grandkids' & tama-na-fa & 'DYAD-3SG.POSS-father' \(>\) 'father/parents and children' \\
\hline tama-top-ra & 'DYAD-paternal.gdfather-3PL.POSS' \(>\) 'paternal gdfather and grandkids' & tama-ra-smam-ra & \[
\begin{array}{|l|}
\hline \text { 'DYAD-3PL.POSS- } \\
\text { paternal.aunt' } \\
>\text { 'paternal aunts' } \\
\hline
\end{array}
\] \\
\hline tama-pu-ra & 'DYAD-maternal.gdfather-3PL.POSS' > 'maternal gdfather and grandkids' & & \\
\hline tama-pel-ra & \begin{tabular}{l}
'DYAD-mother-3PL.POSS' \\
> 'mother and children'
\end{tabular} & & \\
\hline tama-pal-ra & 'DYAD-brother-3sG.POSs' > 'brothers' & & \\
\hline tama-gor-ra & \[
\begin{aligned}
& \text { 'DYAD-sister-3PL.POSS' } \\
& >\text { 'sisters' }
\end{aligned}
\] & & \\
\hline tama-lo-na & 'DYAD-maternal.uncle-3sG.POSS' & & \\
\hline \begin{tabular}{l}
tama-tawi- \\
na
\end{tabular} & 'DYAD-same.generation.in.law3SG.POSS' & & \\
\hline tama-mo-ra & 'DYAD-taboo.in.law-3sG.POSS' & & \\
\hline
\end{tabular}

Table 4.6. Dyadic kin terms

Textual examples of dyadic kin terms are give below:
(18) Tama-p̃al-ra
skei ar=mato A=siwo
LOC=p.name
INDEF 3DU.S=stay.long
warampa.
there.forward

DYAD-brother-3PL.POSS -
'Two brothers lived in Siwo there.'
(19) \(\mathrm{E}=\) pitlak natkon nge \(\mathrm{e}=\) mato,

3sG.S=have village DEF 3SG.S=stay
\begin{tabular}{lllll} 
se & \(\mathrm{e}=\) pitlaka & tama-ra-ota & skei & \(\mathrm{ur}=\) mato=s \\
while & 3SG.S=have & DYAD-3PL.POSS-husband & INDEF & 3PL.S=stay.long=3OBL STAT \\
'There was the village, and there was a couple living in it.'
\end{tabular}
(20) Na-trausi-na na, e=pi na-trausi-na skei naloni ART-talk-NMLZ DEM 3sG.S = COP ART-talk-NMLZ INDEF about
tama-ti-ra
DYAD- maternal.gdmother -3pl.POSS INDEF
'As for this story, it is a story about a grandmother and her granddaughter.

\subsection*{4.3 Verbs}

Alongside nouns, verbs form the other major open word class, and can be defined by their obligatory occurence with subject proclitics. This is a feature shared by all subclasses of verbs, while other morphosyntactic characteristics such as occurence with object pronominals, TAM markers, post-verbs and auxiliaries are more restricted. As seen in table 4.6, there are four main subclasses of verbs: intransitive, ambitransitive, transitive and ditransitive. In addition, the copula pair \(f i / p i\) 'be:IRR/R' is in a class of its own. Its main function is to convert a nonpredicative item such as a noun into a predicate. Since the copula has other verb-like properties, it is analysed as a verb (see 7.3.1). Auxiliary verbs (see 9.3.6, 10.3.2) do not represent a separate morphosyntactic subclass but do differ from other verbs in terms of valency and transitivity status. They have no valency per se but inherit the valency of the main verb. Note that some verbs in the table have \(f\)-initial and \(p\)-initial forms which are distributed according to the mood and transitivity of the clause (see 11.2.2).
\begin{tabular}{|c|c|c|}
\hline Verb subclasses & Examples & Morphosyntactic tests \\
\hline Intransitives & fanei/panei 'come:IRR/:R' false/palse 'paddle:IRR/:R' len 'be straight' & \begin{tabular}{l}
- Obligatorily occur with a subject proclitic \\
- Class 1 can be transitivised with \(-k i\) ' 'R' \\
- Underived, cannot take an object \\
- Underived, can take an oblique
\end{tabular} \\
\hline Ambitransitives & faam/paam 'eat:F/:P’ rmaki 'bark' & \begin{tabular}{l}
- Obligatorily occur with a subject proclitic \\
- Function underived with or without an object \\
- Function underived with or without an oblique
\end{tabular} \\
\hline Transitives & fat/pat 'make:IRR/:R' farus/parus ‘drill:IRR/:R’ polki ‘fold' & \begin{tabular}{l}
- Obligatorily occur with a subject proclitic \\
- Require an object argument \\
- The pronominal object is encoded with a personal pronoun or object enclitics from the paradigm given in 8.4.3.1
\end{tabular} \\
\hline Ditransitives & tua 'give' rki 'tell' paoseki 'ask' & \begin{tabular}{l}
- Obligatorily occur with a subject proclitic \\
- Require two object arguments
\end{tabular} \\
\hline Copula & \(f i / p i\) 'be:IRR/R’ & \begin{tabular}{l}
- Obligatorily occur with a subject proclitic \\
- Cannot take object enclitics \\
- Used to form equative clauses
\end{tabular} \\
\hline Auxiliaries & \begin{tabular}{l}
fa/pa 'go:IRR/:R’ \\
fanei/panei \\
'come:IRR/:R' \\
to 'IPFV' \\
fea/pea \\
‘be.first:IRR/:R’
\end{tabular} & \begin{tabular}{l}
- Obligatorily occur with a main verb \\
- Benefactive phrase separates main verb and auxiliary in the verb complex (see 7.5.3, 9.3.6) \\
- In auxiliary position, cannot take object or oblique enclitics \\
- Able to function as a main verb when not in auxiliary position
\end{tabular} \\
\hline
\end{tabular}

Table 4.7. Criteria establishing subclasses of verbs

In the examples below, verbs from each subclass are exemplified, and all occur with a subject proclitic. See Chapter 7 for a detailed discussion of verb classes, 6.3 on the copula and 8.3.6 and 9.3.1 on auxiliaries. In (21), the intransitive panei 'come' occurs twice, first with the subject proclitic \(e=\) '2SG.S' and the sequential particle \(p o\) 'SEQ', then followed by the temporal adjunct 1937:
\begin{tabular}{lllllllll} 
(21) & Kenneth & Crumb & e=po & panei. & Kenneth & Crumb & e=panei & 1937. \\
p.name & p.name & 3SG.S=SEQ & come & p.name & p.name & 3sG.S=come & 1937 \\
& 'Then Kenneth Crumb came. Kenneth Crumb came in 1937.'
\end{tabular}

In (22), the ambitransitive rẽaki 'bark' functions intransitively, and in (23), it takes an object enclitic without transitive derivation:


In (24), three transitive verbs occur: plaga 'look.for', wuru 'pass' and raus 'follow'. Plaga takes the object NP warei 'place' while wuru and raus respectively host the object enclitic \(=s\) ' \(3 \mathrm{SG} . \mathrm{OBJ}\) ' and \(=i a\) '3SG.OBJ'. These enclitics encode the same values but are formally different because wuru and raus belong to different subclasses of transitive verbs (Class 2 and Class 1, respectively). These subclasses are distinguished according to the object enclitics they require (see 8.5):
```

Tu=kut plaga warei na e=wuru=s,
1PL.INCL.S=CERT look.for place REL 3SG.S=pass=3SG.OBJ
tu=raus=ia.
1PL.INCL.S=follow=3sG.OBJ
'We look for the place it passed by, we follow it.'

```

In (25) the ditransitive tua 'give' takes three required arguments (underlined): a subject encoded with the proclitic kur= '2PL.S', a primary object encoded with the enclitic =gam '1PL.EXCL.OBJ', and a secondary object encoded with the NP nasum̃a gaskei 'house IRR.INDEF' (see 7.4.1.3, 7.4.2.3 and 8.6):
(25) Kur=pitlaka na-tfagi-na wia laapa e=to Samoa to, 2PL.S=have ART-build-NMLZ be.good be.many 3sG.S=stay p.name STAT
\begin{tabular}{lll} 
kenem & ur=msau=na & lag \\
1PL.EXCL & 1PL.EXCL. \(s=\) want \(=3\) SG.OBJ & COMP
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \(\underline{\text { kur }}=\mathrm{ga}\) & tua=gam & nasum̃a & gaskei. \\
\hline 2PL.S=IRR & give=1PL.EXCL.OBJ & house & IRR.INDEF \\
\hline You have & good buildings & Samoa, w & t you to giv \\
\hline
\end{tabular}

In (21), panei occured as a main verb, while in (26), it is an auxiliary to the main verb to 'stay'. It contributes directional meaning:
\begin{tabular}{llllll} 
Kenem & Tarei, & ar=kat & panei & to tera & to. \\
1PL.EXCL & p.name & 1DU.EXCL.S=CERT & come & stay garden & STAT \\
'Us including & Tarei, we came to stay in the garden.' & & &
\end{tabular}

The copula is exemplified in (27):
(27) Go nasum̃a tap nge, \(\mathrm{e}=\mathrm{pi}\) nasum̃a tap ke-rua. and house be.taboo DEF 3SG.S=COP house be.taboo ORD-two 'And as for this church, it was the second church.'

\subsection*{4.4 Post-verbs}

Post-verbs form a small, closed class and at first sight appear to be verbs. However, they cannot take a subject proclitic or function as main verbs. They are optional and occur immediately after the main verb and before objects. All known post-verbs are given in table 4.8. Their semantics are discussed in 11
\begin{tabular}{|ll|ll|ll|}
\hline \multicolumn{6}{|c|}{ Post-verbs } \\
\hline \begin{tabular}{l} 
gor \\
pkout
\end{tabular} & 'block' & 'completely' & punu & suk & 'dead' \\
'tight' & lwa & paksaki & 'removed' & 'clean' \\
\hline
\end{tabular}

Table 4.8. Post-verbs

In (28), the post-verb pkout 'completely' occurs after the verb net 'plane' and hosts an object enclitic. In the first clause, net is followed by the clause-final particle pa marking the event as durative; while in the second clause it is followed by the post-verb pkout marking the event as completive:
(28)
\begin{tabular}{lllll} 
E=ga & net=ia & pa, \(\quad\) e=ga & net & pkout=ia. \\
3SG.S=IRR & plane=3SG.OBJ & GO & 3SG.S=IRR & plane \\
completely=3SG.OBJ
\end{tabular}

Example (29) shows that pkout is ungrammatical in main verb position:
```

*E=ga pkout=ia.
3SG.S=IRR completely=3SG.OBJ
'He will complete/finish it.'
[elicited]

```

While post-verbs cannot function without a main verb, they retain a certain independence from verbs in that they select their own allomorph of the third person singular object enclitic.

The distribution of object enclitic allomorphs is a complex issue (see 9.4.3). Table 4.9 shows that post-verbs, rather than verbs, condition the distribution of object enclitic allomorphs: for instance, the transitive verbs paam 'eat', pnak 'steal' and malki 'not want' take different allomorphs of the third person singular object enclitic. However, when they occur with the post-verb pkout, the only third person allomorph that can be selected is \(=i a\), which shows that the post-verbs, rather than the verbs, determine the form of the object enclitic.
\begin{tabular}{|c|c|c|c|c|}
\hline Verb class & verb +3 SG.OBJ & gloss & \[
\begin{gathered}
\text { verb+post- } \\
\text { verb+3sG.OBJ }
\end{gathered}
\] & gloss \\
\hline Intransitive & \begin{tabular}{l}
10 \\
fsa
\end{tabular} & 'look' 'speak' & \[
\begin{aligned}
& \text { lo suk=ia } \\
& \text { fs suk=ia }
\end{aligned}
\] & 'examine it carefuly’ 'discuss it' \\
\hline Ambitransitive & \begin{tabular}{l}
paam=ia \\
pnak=ea
\end{tabular} & \[
\begin{aligned}
& \text { 'eat:P=3sG.OBJ' } \\
& \text { 'steal=3sG.OBJ' }
\end{aligned}
\] & \begin{tabular}{l}
paam pkout=ia \\
pnak pkout=ia
\end{tabular} & 'eat it completely' 'steal them all' \\
\hline Transitive & \begin{tabular}{l}
\[
\text { k.ult }=i a
\] \\
mal-ki-nia
\end{tabular} & 'cover it' ' not want it' & \begin{tabular}{l}
kult gor=ea \\
mal pkout=ia
\end{tabular} & 'cover it all' 'not want it at all' \\
\hline
\end{tabular}

Table 4.9. Allomorphs of 3 sG.OBJ on verbs and post-verbs

Post-verbs combine with intransitives to form a transitive predicate: in this situation they serve as a valency-increasing device. In (30), lo 'look' functions intransitively. In contrast, in (31) it is followed by the post-verb suke in a transitive predicate:
\begin{tabular}{lll} 
A=msau-na lag \(\quad\) lan & a=ga & lo. \\
1SG.S=want=3SG.OBJ COMP \\
'I want to do some sightseeing.'
\end{tabular}
\[
\begin{array}{lllll}
\text { Ur=lo } & \text { suk=ia } & \text { takanei } & \text { e=to } & \text { pat=ia. }  \tag{31}\\
\text { 3PL.S=see } & \text { tight=3SG.OBJ } & \text { how } & \text { 3sG.S=IPFV } & \text { make=3SG.OBJ } \\
\text { 'They carefully looked how he was making it.' } &
\end{array}
\]

They also occur with ambitransitives such as paam 'eat:P'. The object enclitic allomorph remains the same whether it is hosted by the verb as in (32) or the post-verb pkout as in (33), because both paam and \(p k o u t\) 'completely' select the same allomorph of this enclitic:
\begin{tabular}{ll}
\(\mathrm{E}=\) to & paam=ia, \\
3SG.S=IPFV & eat=3sG.OBJ
\end{tabular}
fonu \(\mathrm{e}=\) to \(\quad\) raki=nianlaka \(=\mathrm{n}\) nrau pa.
turtle 3sG.s=stay precede=3sG.OBJ trunk=POSS:NH tree.sp GO
'He was eating it, and the turtle was waiting for him by the dragon plum tree.'
(33) A=paam pkout kapu na ur=kot=ia to tebol to, 1SG.S=eat completely laplap REL 3PL.S=serve=3SG.OBJ stay table STAT
a=paam pkout=ia.
1SG.S=eat completely=3SG.OBJ
'I completely ate the laplap they served on the table, I completely ate it.' [elicited]

In contrast, the ambitransitive pnak takes the allomorph \(=e a\) ' 3 SG.OBJ' as seen in (34), but when it combines with pkout as in (35), the allomorph hosted by the post-verb is =ia, giving pnak pkout=ia 'spread over it' and not *pnak pkout=ea:
(34) \(\mathrm{A}=\mathrm{pnak}=\mathrm{ea}\)

1sG.S=steal=3SG.OBJ
'I stole it.'
[elicited]
(35) A=pnak pkout=ia

1SG.S=steal completely=3SG.OBJ
'I stole the whole of it.'
[elicited]

Similarly, while kult 'spread' hosts \(=i a\) ' \(3 \mathrm{SG} . \mathrm{OBj}\) ' in (36), when it combines with the post-verb gor 'block' the output is kult gor=ea 'cover it all' as in (37) and not *kult gor=ia:
(36) \(\tilde{\text { Pa }}=\) kult \(=\mathrm{ia}\)

2SG.S:IRR=spread=3sG.OBJ
'Spread it.'
[elicited]
(37) \(\tilde{\mathrm{P}} \mathrm{a}=\mathrm{kul} \quad\) gor=ea

2sG.S=spread cover=3sG.OBJ
'Cover it.'
[elicited]

Since post-verbs are not verbs, a sequence comprised of a verb and a post-verb is not analysed as a serial verb construction (SVC). Serial verb constructions are a sequence of verbs, and each verb making up a serial verb construction is able to function separately as a main verb.

However, post-verbs constructions are grouped together with SVCs under the term complex predicates (see chapter 10).

\subsection*{4.5 Adjectives}

Many semantic concepts such as size, colour, value and age are expressed in Lelepa by stative intransitive verbs, which I call adjectival verbs following Ross 1998a (see 8.3.3). In addition, Lelepa has a class of 'true' adjectives which can only function as noun modifiers. In contrast, adjectival verbs can head intransitive predicates and also have the ability to modify nouns. This is shown in (38) and (39) with the intransitive verb kasua 'be.strong; be.hard'. In (38), kasua is the main verb. It occurs with the subject proclitic \(e=\) ' \(3 \mathrm{SG} . \mathrm{S}\) ', the modality particle kat 'CERT' and the negator \(t i{ }^{\text {' }} \mathrm{NEG}\) ':
\begin{tabular}{lccc} 
E=kat & ti & kasua & mau. \\
3sG.S=CERT NEG & be.strong & NEG2 \\
'She wasn't strong anymore.'
\end{tabular}

In contrast, in (39) it occurs within a NP, modifying the head noun mala 'time':
\begin{tabular}{llll} 
(39) & Malange, \(\quad \mathrm{e}=\mathrm{pi}\) & mala & \begin{tabular}{l} 
kasua. \\
then \\
3sG.S=COP
\end{tabular} \\
time & be.strong
\end{tabular}

Like adjectival verbs, Lelepa adjectives express semantic concepts typically expressed by adjectives in languages such as English. Their morphosyntactic properties are summarised in table 4.9, with the most distinctive criteria being that they neither occur as heads of NPs (contrarily to nouns) nor as heads of predicates (contrarily to verbs). Lelepa adjectives only function to modify nouns:
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Adjectives} & Distinction from nouns & \begin{tabular}{l}
- Modify nouns attributively \\
- Can be modified by other adjectives/intransitive verbs in an adjective phrase \\
- Need to be derived with \(t e=\) ' SBST ' to function as nouns \\
- Cannot function as heads of NPs \\
- Cannot take possessive suffixes \\
- Cannot take modifiers occurring in the NP
\end{tabular} \\
\hline & Distinction from verbs & \begin{tabular}{l}
- Cannot function as head of a predicate \\
- Cannot take subject proclitics
\end{tabular} \\
\hline
\end{tabular}

Table 4.10. Criteria establishing the class of adjectives

The distribution of adjectives is shown in (40)-(43) with rgona 'huge'. In (40) rgona occurs in adjective position, modifying the head noun, while (41) and (42) show that it cannot occur in predicate and NP positions:
\begin{tabular}{llll} 
(40) & \begin{tabular}{l}
\(\mathrm{E}=\mathrm{pi}\) \\
3SG.S=COP
\end{tabular}\(\quad\) snaake & rgona. \\
'It was a huge snake.'
\end{tabular}
(41) *M̃aata \(\quad\) e=rgona.
snake 3sG.S=huge
'The snake was huge.'
[elicited]
(42) *M̃aata \(\quad \mathrm{e}=\mathrm{pi} \quad\) rgona.
snake 3sG.s=COP huge
'The snake was huge.'
[elicited]

However, when adjectives take the substantiviser \(t e=\) ' \(\mathrm{SBST}^{\prime}\) ' (see 3.4.2.2), they become derived nouns and head NPs as in (43):
(43) \(\quad \mathrm{E}=\mathrm{pi}\)
te=rgona.
3SG.S=COP SBST=huge
'It was a huge one.'
[elicited]

Similarly, in (44), the adjective \(\tilde{p a t a}\) 'different' hosts \(t e=\) and becomes the derived noun tepata 'other'. It heads an NP and is marked for indefiniteness by skei 'INDEF', showing that deadjectival nouns behave like other nouns:
\begin{tabular}{lllll} 
Tu=lopa & te=pata & skei, & tu=kat raus=ra & pa. \\
1PL.INC. \(=\) see & SBST=different & INDEF & 1PL.INCL.S=CERT & follow=3PL.OBJ
\end{tabular} GO

Underived adjectives form a small closed class with thirteen known members. They are presented in table 4.10, according to Dixon's (1977b) semantic types. Based on data from eighteen languages (including English), Dixon found that in languages with an open class of adjectives such as English, seven semantic types were reflected in their adjective class: dimension, physical property, colour, human propensity, age, value and speed (Dixon 1977b:31). However, he also found that languages with a small closed class of adjectives, like Lelepa, tend to distribute the semantic types across the range of word classes present in such languages. Thus in Lelepa, only three of Dixon's semantic types are reflected in the adjective class (dimension, physical property, age) while the others (colour, human propensity, value and speed) are reflected by the classes of verbs and adverbs, respectively: taare 'be white', laelae 'be happy' and wia 'be good' are intransitive verbs while \(\tilde{m r a f r a f e}\) 'quickly; fast' is an adverb. Note that mauna 'all; every' does not reflect any the seven semantic types, and could possibly belong to another type labelled 'quantity'.
\begin{tabular}{|l|ll|ll|l|l|}
\hline \multicolumn{2}{|c|}{ Dimension } & \multicolumn{2}{c|}{ Physical property } & \multicolumn{2}{c|}{ Age } & Other \\
\hline rgona 'huge' & memi & 'ripe' & fao & 'new' & mauna & 'all; every' \\
& ftes & 'different' & troi & 'young (male)' & \\
& \(\tilde{\text { pata }}\) & 'different' & \(\tilde{\text { maskosko }}\) & 'mature' & \\
& naruru & 'cold' & & & \\
& fenu & 'roasting' & & & \\
\hline
\end{tabular}

Table 4.11. Underived adjectives

However, the adjective class is in reality much larger when derived adjectives are taken into account. They are derived from numerals with the suffix ke- 'ORD' and are used to express the ordinal position of the noun they modify. These ordinal adjectives have the same distribution as underived adjectives, while numerals have their own (see 4.10). Derived adjectives are examplified in table 4.12. They form a large subset of the adjective class and include all kederived ordinals: \({ }^{4}\)

\footnotetext{
\({ }^{4}\) There is no \(k e\)-derived ordinal expressing the meaning 'first'. Instead, this is done with the adjectival verb fea/pea 'be.first:IRR/R'.
}
\begin{tabular}{|ll|ll|}
\hline \multicolumn{4}{|c|}{ Derived adjectives } \\
\hline Kerua & 'second; other' & Relatsa & 'sixth' \\
Ketolu & 'third' & Relarua & 'seventh' \\
Kefati & 'fourth' & Relatoly & 'eigth' \\
kelima & 'fifth' & Relfot & 'ninth' \\
\hline
\end{tabular}

Table 4.12. Derived adjectives

Derived adjectives can only function as noun modifiers and are unable to function predicatively or as NPs. In (45), kerua 'second' and ketoll 'third' occur in two distinct NPs to modify the heads faatu 'stone':
(45) Faatu ke-rua se e=plo to, faatu ke-tolu se
stone ORD-two too 3SG.S=still stay stone ORD-three too
\(\mathrm{e}=\) plo to, \(\mathrm{e}=\mathrm{mro}\) ske lwa faatu pan pan pa...
3SG.S=still stay 3SG.S=AGAIN pick removed stone GO GO GO
'At the second stone he was still there, at the third stone he was still there, she kept on removing the stones on and on...?

In contrast, kerua cannot occur as a verb in (46) nor as a noun in (47), but can be derived into a noun with \(t e=\) 'SBST' as in (48). This test is the same as the one given above with the underived adjective rgona 'huge' in (40) to (42). It shows that derived adjectives have the same distribution as underived ones, and thus are regarded as members of the adjective class:
(46) *Faatu e=ke-rua.
stone 3sG.S=ORD-two
'The stone is second.'
[elicited]
(47)
\begin{tabular}{lll} 
*Faatu \(\quad \mathrm{e}=\mathrm{pi}\) & ke-rua. \\
stone & 3sG.S=COP & ORD-two \\
'The stone is second.' & \\
[elicited] &
\end{tabular}
(48) Faatu \(\mathrm{e}=\mathrm{pi}\) te=ke-rua.
stone 3sG.S=COP SBST=ORD-two
'The stone is the second one.'
[elicited]

Like in (48), in (49) the derived adjective kelatsa 'sixth' is further derived with the clitic te= 'SBST'. The derived noun tekelatsa 'the sixth one' heads a subject NP and is modified by the possession pronominal nag-na 'ASS-3SG':
```

(49) Nkas kiksa nge, $\mathrm{e}=\mathrm{ga}$ latsa, kane nkas kiksa nge;
wood very.small DEF 3SG.S=IRR six but wood very.small DEF
$\begin{array}{ll}\text { te }=\text { ke-latsa } & \text { nag-na } \\ \text { SBST=ORD-six } & \text { ASS-3SG }\end{array} \quad$ e=pueli.
'As for the very small pieces of wood, they should be six, but the very small pieces of wood;
the sixth one of them is gone.'
[elicited]

```

\subsection*{4.6 Pronouns}

Pronouns are often defined as taking the place of NPs (Dryer 2007c:151, Schachter and Shopen 2007:24). However, Lelepa pronouns are also able to take certain NP modifiers, and head a particular NP subtype that I refer to as \(\mathrm{NP}_{\text {Pro }}\) (see 5.2.2). Pronouns are more restricted than nouns in the array of NP modifiers they can take, as they can only occur with determiners and relative clauses. It could be argued that Lelepa pronouns are nouns, but of a more restricted type. However, they are analysed as a separate word class because they call for their own particular NP structure \(\left(\mathrm{NP}_{\text {PRO }}\right)\), and mark their referent for person and number, a property that is not observed with nouns. There are three subclasses of pronouns in the language: personal pronouns (see 4.6.1), demonstrative pronouns (see 4.6.2), and benefactive pronouns (see 4.6.3). In addition, there are several pronominal paradigms which do not have the syntactic properties of these pronouns: they do not replace NPs and cannot be heads of \(\mathrm{NP}_{\text {Pros. }}\). These include subject proclitics (see 6.4.1.1), object enclitics and suffixes (see 6.4.1.2) and possessor-indexing suffixes (see 6.3.1).

\subsection*{4.6.1 Personal pronouns}

Personal pronouns (table 4.13) encode their typically human referent for person and number. It is possible for non-human referents to be expressed by personal pronouns when such referents are treated like humans, for instance in traditional narratives in which animals or natural features are anthropomorphised characters. First person distinguishes between inclusive and exclusive referents, as is extremely common in Oceanic languages (Lynch, Ross and Crowley 2002:35). Number distinguishes between singular and plural: \({ }^{5}\)

\footnotetext{
\({ }^{5}\) Subject proclitics additionally encode dual (see 5.4.1.1).
}
\begin{tabular}{|l|c|c|}
\hline & SG & PL \\
\hline 1INCL & - & kinta \\
1EXCL & konou & kenem \\
\(\mathbf{2}\) & nag & kumu \\
\(\mathbf{3}\) & nae & naara \\
\hline
\end{tabular}

Table 4.13. Personal pronouns

Personal pronouns replace NPs or head NP \(\mathrm{Nros}^{\text {. They function as subjects, objects and }}\) oblique arguments, and can also be left-dislocated to mark contrastive topic (see 7.6.2). Additionally, a possibly recent use of personal pronouns is to encode possessors (see 6.3.2). In subject and left dislocated positions, pronouns co-occur with obligatory subject proclitics (see 5.5.2.1, 5.5.2.2), so the referent of the subject is encoded twice in these utterances. \({ }^{6}\) In these situations the referent of both pronominals is emphasised, thus these pronouns also have pragmatic functions (Lynch, Ross and Crowley 2002:35). In (50), konou '1sG' is in subject NP position (see 7.6.1). Note that it is co-referential with the subject proclitic \(a=\) ' \(1 \mathrm{SG} . \mathrm{S}^{\prime}\) :
(50) Ae, konou a=msau-na lag a=ga fa
hey 1SG 1SG.S=want-3SG.OBJ COMP 1SG.S=IRR go:IRR
'Hey, I want to go.'

In (51), konou functions as an object:
\(\begin{array}{ll}\text { (51) Malmauna, } & \text { paa=liko } \\ \text { now } & \text { 2SG.S:IRR=hold }\end{array} \quad \begin{gathered}\text { suk } \sim \text { suk } \\ \text { tighten } \sim \text { RED } 1 \text { 1SG }\end{gathered}\)
nlakan natañol ur=laapa.
because people 3pl.S=be.plenty
'Now, hold on to me tight, because there are lots of people.'

In (52), konou occurs in a left-dislocated position and marks its referent for contrastive topic:
\begin{tabular}{llllll} 
(52) & \begin{tabular}{llll} 
Pa \(=\) to. & Konou, & a=ga & kat \\
& 2SG.S=stay & 1SG & 1SG.S=IRR
\end{tabular} & CERT & go.up & gan. & GO \\
& You will stay. As for me, I will go up.' & & &
\end{tabular}

In (53), konou occurs as the head of an NP PRO . It is modified by the demonstrative na 'DEM' and the whole NP occurs in left-dislocated position:

\footnotetext{
\({ }^{6}\) This is only true of left-dislocated personal pronouns which share their referent with the subject of the clause.
}
(53) Konou na, Munalpa, a=ga mro til na-trausi-na ke-rua skei. 1SG DEM p.name 1SG.S=IRR AGAIN tell ART-tell-NMLZ ORD-two INDEF 'As for me here, Munalpa, I will tell a second story.'

In (54) konou' '1SG' encodes the possessor of ñpou 'head':
\begin{tabular}{llllll} 
E=lag & "ee, & a=rog=ea & a=msak. & Np̃ou & konou \\
3sG. \(S=\) say & no & 1SG.S=feel=3SG.OBJ & 1SG.S=sick & head & 1SG \\
'She said, "well, I feel sick. My head is sore." & & & &
\end{tabular}

\subsection*{4.6.2 Demonstrative pronouns}

There are four demonstrative pronouns (see table 4.14). They are formed with the substantiviser te 'SBST' (see 3.4.2) and the determiners na 'DEM', nge 'DEF' and wa 'DEM'. Tena 'SBST.DEM' and tenge 'SBST.DEF' encode concrete and abstract referents respectively (see 3.4.2.4). Concrete referents are humans, animals, objects, natural features and all other referents in the concrete world. As for abstract referents, they comprise feelings, ideas, thought, discussions, etc. As for tewa-s 'SBST.DEM-PROX' and tewa-n 'SBST.DEM-DIST', they are used in spatial reference contexts, and contrast with each other as they combine with the proximal and distal suffixes \(-s\) 'PROX' and \(-n\) 'DIST' to mark proximity of their referent relative to the speaker.
\begin{tabular}{|ll|ll|}
\hline \multicolumn{2}{|c|}{ Anaphoric demonstrative pronouns } & \multicolumn{2}{|c|}{ Spatial demonstrative pronouns } \\
\hline tena & 'SBST.DEM' & tewa-s & 'SBST.DEM-PROX' \\
tenge & 'SBST.DEF' & tewa-n & 'SBST.DEM-DIST' \\
\hline
\end{tabular}

Table 4.14. Demonstrative pronouns

\subsection*{4.6.2.1 tena SBST.DEM'}

The demonstrative pronoun tena 'SBST.DEM' is equivalent to English 'this/these one(s)'. It has the same deictic function as the demonstrative na 'DEM', which is to designate items, but differs in that it has an anaphoric function. Similarly to personal pronouns, tena can take the place of an NP or head an \(\mathrm{NP}_{\text {Pro. }}\). Note that it only refers to third person referents, which can be either singular or plural. In (55), tena encodes a third person singular subject and in (56) a third person plural subject:
\begin{tabular}{llllll} 
Tena & e \(=\) mro & magnem & pi & pasta & to. \\
SBST.DEM & 3sG.S=again & 1PL.EXCL.BEN & COP & pastor & STAT \\
'This one remained pastor for us.'
\end{tabular}
(56) Tena ur=pa mnaara lao, ur=pi nalaklak.
SBST.DEM 3pL.S=go 3pL.BEN plant 3pl.S=COP white-eye
'As for those who went to plant (garden produce) for them, they are the white-eyes.'

\subsection*{4.6.2.2 tenge SBST.DEF'}

Tenge is formed with the substantiviser te and the definite determiner nge 'DEF'. Like tena, it encodes third person referents but differs in that its referent tends to be singular. As expected from the combination with nge, the referent of tenge is definite. However, it has the additional property of encoding abstract referents. In (57), tenge is in subject position. It refers to the end of the narrative told by the speaker:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Okay, okay} & tenge & \(\mathrm{e}=\operatorname{lag} \mathrm{pi}\) & nam & & paga \(=\mathrm{n}\) & \multirow[t]{2}{*}{\begin{tabular}{l}
stori \\
story
\end{tabular}} & \multirow[t]{2}{*}{agnou 1sG.POSS} \\
\hline & SBST.DEF & 3SG.S=maybe & COP & eye & inside=POSS:NH & & \\
\hline mala & \(\mathrm{a}=\mathrm{ma}\) & \(0 \quad \mathrm{nfa}\) & & naara & to. & & \\
\hline when & 1SG.S= & stay.long coun & try & 3PL.POSS & STAT & & \\
\hline \multicolumn{8}{|l|}{'Okay, this may be the end of my story, when I lived in their country.'} \\
\hline
\end{tabular}

In (58), tenge is in left dislocated position. It encodes a third person referent that is also the subject of the equative clause:
(58) Tenge, e=pi na-wesi-na agnou.

SBST.DEF 3sG.S=COP ART-work-NMLZ 1SG.POSS
'This, it was my job.'

In (59), tenge is in object position. Its encodes an event, namely a murder:
\(\begin{array}{lll}\text { (59) } & \text { Na-fsa-na } & \text { e=pa-ki-ra }\end{array} \quad\) pa,
ur=sfa pan lag ur=lop̃a tenge, \(e=\tilde{p} a-p u n u=e a \quad\) to.
3PL.S=run GO PURP 3PL.S=see SBST.DEF 3SG.S=hit-kill=3SG.OBJ STAT
'The news got to them, they went quickly to see this, he had killed him.'

\subsection*{4.6.2.3 Spatial demonstratives tewas and tewan}

The demonstrative pronouns tewa-s 'SBST.DEM-PROX' and tewa-n 'SBST.DEM-DIST' are used as spatial demonstratives. They encode a particular referent in the world as well as the spatial
proximity between this referent and the speaker. \(W a\) is a demonstrative determiner which occurs either bare or takes \(-s\) and \(-n\), but note that * tewa is not attested. In (60), tewas occurs in object position and refers to a yam. Note also that -s occurs on the NP narpan wara-s side herePROX' which refers to the place the referent of tewas is located, that is, on the side close to the speaker:


\subsection*{4.6.3 Benefactive pronouns}

These pronouns (see table 4.15) occur in benefactive phrase position within the verb complex. The benefactive phrase is dedicated to encoding participants with the role of beneficiary (see 7.5.3), which can be encoded either by a prepositional phrase introduced by the benefactive preposition mag 'BEN’ (see 4.8.1.3), or by benefactive pronouns. Table 4.14 shows that benefactive pronouns are etymologically related to the benefactive preposition. So much so that a morphological analysis is possible for some forms, such as the first person singular magnou '1SG.BEN' and all plural forms except for third person. For these forms, the preposition mag can be segmented from a bound suffix encoding the beneficiary in person and number. However, since this is not possible for every form in the table, it is best to analyze them as invariable forms that are part of a pronominal paradigm.
\begin{tabular}{|c|c|c|}
\hline & SG & PL \\
\hline 1INCL & - & maginta \\
1EXCL & magnou & magnem \\
\(\mathbf{2}\) & mnag & magmu \\
\(\mathbf{3}\) & mnae & mnaara \\
\hline
\end{tabular}

Table 4.15. Benefactive pronouns

Examples (61) and (62) exemplify some benefactive pronouns:
\begin{tabular}{llllll} 
E=pai=a & & paki & kotor & nae, & \\
3SG.S=pack=3SG.OBJ & to & k.o.basket & 3SG.POSS
\end{tabular} 'She packed it in her gardening basket, and she packed the smaller half in the bag for me.'
\begin{tabular}{llll} 
Ur=mnaara & nmaoleki & namit & nge. \\
3pL.S=3PL.BEN & spread & mat & DEF \\
'They spread the mat for them.' & &
\end{tabular}

\subsection*{4.7 Adverbs}

Traditionally, adverbs are defined as modifiers of verbs. However, it is common for linguistic descriptions to show that adverbs also modify other word classes, except nouns. In such descriptions, adverbs are often organised in several subclasses according to scope, which can be phrasal or sentential. Schachter and Shopen (2007:20) define adverbs as follows:

Adverbs function as modifiers of constituents other than nouns. The notional range of adverbs varies with the type of constituent modified. Sentence modifiers, for example, commonly express the speaker's attitude towards the event being spoken of; modifiers of verbs or verb phrases commonly express time, place, direction, manner, etc.; and modifiers of adjectives and adverbs commonly express degree.

This definition recognises that adverbs have diverse characteristics. It also states the possibility for adverbs to be organised in several classes in a given language. Table 4.16 lists criteria defining Lelepa adverbs against other major syntactic classes of the language:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Distinction from nouns & Distinction from verbs & Distinction from postverbs & Distinction from adjectives & Distinction from directionals \\
\hline Adverbs & \begin{tabular}{l}
- Cannot head NPs \\
- Cannot take NP modifiers
\end{tabular} & - Cannot take subject proclitics & \begin{tabular}{l}
- Adverbs \\
cannot \\
host \\
object \\
enclitics \\
- Some adverbs occur preand postverbally
\end{tabular} & - Cannot modify nouns & - Cannot take the locative enclitic \(a=\) 'LOC' which derives locational nouns \\
\hline
\end{tabular}

Table 4.16. Criteria defining the class of adverbs

There are two main subclasses of adverbs, phrasal and sentential: phrasal adverbs occur in the verb complex and have scope over the verb, and sentential adverbs occur outside of the verb complex and have scope over whole sentences. Phrasal adverbs are divided in four subclasses: pre-verbal, post-verbal, pre- and post-verbal, and spatial. Sentential adverbs are organised in the subclasses of temporal and manner adverbs. Lelepa adverbs cover an expected semantic
 value such as pkate 'too much' and sarik 'slightly'; and temporal adverbs such as sral 'often', and malmauna 'now'. There are also spatial adverbs belonging to the phrasal adverb subclass, such as wara 'here', wara-s 'here-PROX', warampa 'there.forward', and warampa-n 'there.forward-DIST'.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Phrasal adverbs} & \multicolumn{2}{|l|}{Sentential adverbs} \\
\hline \[
\begin{gathered}
\text { Pre- } \\
\text { verbal }
\end{gathered}
\] & Postverbal & Pre- \& postverbal & Spatial & Temporal adverbs & Manner adverbs \\
\hline plate 'too much' & \begin{tabular}{l}
kasu 'too much' \\
sarik \\
'a.little' \\
mrafrafe \\
'quickly; \\
fast' \\
mlatig \\
'close' \\
moli 'just; \\
only' \\
taplange \\
like.this’
\end{tabular} & \begin{tabular}{l}
malua \\
'later; \\
slowly' \\
lasla \\
'directly; \\
over' \\
mau 'all; \\
LIM'
\end{tabular} & ```
wara 'here'
wara \(=s\) 'here \(=\) PROX'
wara \(=e\) 'here \(=\) ADD'
ware 'there.sideways-
MED'
ware \(=n\)
'there.sideways = DIST'
warampa
'there.forward'
warampa=n
'there.forward-DIST'
warange 'there'
``` & \begin{tabular}{l}
sral 'always' \\
malmauna \\
'now' \\
malange 'at that time; then' \\
nagsange 'at that time; then' \\
mesa 'today' \\
matmai \\
'tomorrow' \\
nanou \\
'yesterday' \\
nanos 'before \\
yesterday'
\end{tabular} & tapla 'thus; like this' \\
\hline
\end{tabular}

Table 4.17. Adverbs

\subsection*{4.7.1 Phrasal adverbs}

Phrasal adverbs occur in the verb complex, before clause-final particles encoding aspect and direction. These particles mark the end of the basic clause while adjuncts follow and form part of the extended clause (see 7.1.2, 10.6). Fig. 4.1 shows the position of each subclass of phrasal adverbs. Pkate 'too much' is the only adverb restricted to a pre-verbal position, while several adverbs (eg. kasu 'too much', sarik, ‘a little') only occur post-verbally. In addition, some adverbs are able to occur in both positions (eg. malua later; slowly). Finally, spatial adverbs occur postverbally, but follow object and obliques.

Fig. 4.1 Position of phrasal adverbs in the verb complex
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
SUBJECT \\
PROCLITIC
\end{tabular} & \begin{tabular}{c}
Pre- \\
verbal \\
adverb
\end{tabular} & VERB & \begin{tabular}{c}
Post- \\
verbal \\
adverb
\end{tabular} & \begin{tabular}{c}
OBJECT/OBLIQUE \\
NP
\end{tabular} & \begin{tabular}{c}
Spatial \\
adverb
\end{tabular} & \begin{tabular}{c}
CLAUSE- \\
FINAL \\
PARTICLE
\end{tabular} \\
\hline
\end{tabular}

Adverbs have fluid properties: some phrasal adverbs can occur in the noun phrase provided that they modify an adjective or adjectival verb, and a few others have verb-like properties,
such as the ability to take the transitiviser -ki 'TR’ (see 4.7.1.2). Due to heterosemy, some forms occur both as spatial adverbs and arguments of verbs (see 4.7.1.4).

\subsection*{4.7.1.1 Pre-verbal phrasal adverbs}

The adverb pkate 'too much' occurs immediately before the verb to encode degree. There are few restrictions as to which verb it can modify, as it occurs with intransitive and transitive verbs, and verbs denoting activities and states. It is not attested, however, with non-durative verbs (i.e telic and punctual verbs). In (63) it occurs with the stative intransitive pka 'be.swollen':
\begin{tabular}{|c|c|c|c|c|c|}
\hline (63) & Nmarta-na & \(\mathrm{e}=\) pkate & pka, & nmarta-na & \(\mathrm{e}=\) ptunu. \\
\hline & belly-3SG.POSs & 3SG.S=too.much & be.swollen & belly-3sG.POSS & 3SG.S=sore \\
\hline & & swollen, his belly & s sore.' & & \\
\hline
\end{tabular}

In (64) it occurs twice, first with the active intransitive palse 'paddle', and then with the ambitransitive paaam. Note that in both clauses it follows the modal marker lag, showing that the adverb occurs immediately before the verb:
\begin{tabular}{lll}
E=lag & pkate & palse, \\
3SG.S=MAYBE & too.much & paddle
\end{tabular}
\(\mathrm{e}=\) lag \(\quad\) pkate paam kapua nge.

3SG.S=MAYBE too.much eat:P laplap DEF
'Maybe he paddled too much, maybe he ate too much of the laplap.'

In (65) it occurs with the transitive msau 'want':
(65) \(A=\) pkate msau-na.

1SG.S=too.much want-3SG.OBJ
'I want him/her/it so bad.'
[elicited]

So far, examples have shown pkate modifying verbs. However pkate can also have scope over material following the verb. In (66), it modifies the adverb \(\tilde{m} r a f r a f e ~ ' q u i c k l y ', ~ w h i c h ~ i s ~ e x p e c t e d ~\) for a value adverb:
\begin{tabular}{lll}
A=pkate & faam & m̃rafrafe. \\
\begin{tabular}{l}
1SG.S= too.much \\
'I ate too quickly.' \\
[elicited]
\end{tabular} & & \\
quickly
\end{tabular}

In addition, it can also modify other post-verbal material such as objects, as in (67):
(67) Ur=pkate psruki na-fsa-na laapa.

3PL.S=too.much speak ART-speak-NMLZ be.many
'They spoke too many languages.'

\subsection*{4.7.1.2 Post-verbal phrasal adverbs}

Post-verbal adverbs express manner and degree. With intransitive verbs, they occur after the verb, as in (68) to (70):
(68) E=prau kasu

3SG.S=be.long too.much
'It is too long.'
[elicited]
(69) \(\mathrm{Ta}=\mathrm{ga}\) to sarik.

1DU.INCL.S=IRR stay a.little
'Let's stay a little.'
(70) Artoka se e=to m̃latig.
p.name too 3SG.S=stay close
'Artoka too was close.'

In (71), the phrasal adverb \(\tilde{m o l}\) 'only' occurs after the verb, and is followed by tapla 'like.this', a sentential adverb which can also function as a phrasal adverb, as seen in this example:
\begin{tabular}{lllll}
(71) \begin{tabular}{l}
Ur=kut
\end{tabular} to \begin{tabular}{l}
mol \\
3pl.S=CERT stay only
\end{tabular} & tapla thus & to. \\
& STAT \\
& 'They just stayed like that.' & &
\end{tabular}

If an intransitive verb takes an oblique argument, the adverb occurs immediately after the verb and before the oblique. This is shown in (72), in which kasu hosts the enclitic \(=s\) ' 3 OBL' which encodes an oblique argument:
```

(72) Ur=munu
3PL.S=drink too.much=3OBL
GO
'They drank too much of it,'

```

Similarly, when the verb is transitive and takes an object, these adverbs occur immediately after the verb and before the object, as seen in (73) to (75):
\begin{tabular}{lllll}
E=to & ma & m̃rafraf & kapua & nge. \\
3sG.S=IPFV & grate & \begin{tabular}{l}
quickly
\end{tabular} & \begin{tabular}{l}
laplap
\end{tabular} & DEF \\
'She was quickly grating the laplap.' & & &
\end{tabular}

In (74) and (75), the adverbs \(\tilde{m}\) latig 'close' and \(\tilde{m o l}\) 'only' occur after the verb, and take the suffix -ki 'TR' which derives transitive verbs. This shows that post-verbal phrasal adverbs can be incorporated into a transitive predicate and still precede the object: \({ }^{7}\)
(74) \(\mathrm{A}=\mathrm{ti}\) tae palse pa \(\tilde{m}\) latig-ki-nia pan mau.

1SG.S=NEG can paddle go close-TR-3SG.OBJ GO NEG2
'I cannot paddle close to it.'
(75) \(\tilde{\mathrm{P}} \mathrm{a}=\mathrm{rog}\) mol-ki-nia, taos Tuaraka ma ati-na.

2PL.S:IRR=feel only-TR-3SG.OBJ like p.name and mat.grandmother-3SG.POSS 'You will just hear about it, like Tuaraka and her maternal grandmother.'

Schachter \& Shopen (2007:20) claim that modifiers of both adjectives and adverbs express degree. This can be seen in (76) and (77) in which the adverbs kasu 'too.much', sarik 'slightly' and \(\tilde{m o l i}\) 'only' combine with other adverbs and adjectives. Example (76) shows that the adverbs of value can combine, with sarik modifying kasu. In this example, kasu has scope over laapa, while sarik has scope over kasu. They both function as degree adverbs:
\begin{tabular}{llllll}
(76) & E=to & ntau & laapa & kasu & sarik. \\
& 3sG.S=stay & year & be.many & too.much & \begin{tabular}{l}
a.little
\end{tabular} \\
& 'It stayed for a little too many years.' & &
\end{tabular}

In (77), \(\tilde{m o l i}\) 'only' occurs in an NP and has scope over the preceding noun and adjectives. Note that sa functions as an intensifier of the meaning of the adjective kike 'small'. In this

\footnotetext{
\({ }^{7}\) Note that both \(\tilde{m o l}\) and \(\tilde{m} l a t i g\) cannot function as verbs, but in these examples they show some verbal behaviour as they take the transitiviser \(-k i\). This suggests a verbal origin for these two adverbs.
}
position, it is glossed 'very'. However, it also functions as an intransitive verb meaning 'to be bad', and as an adjectival verb modifying nouns:
\begin{tabular}{llllll}
(77) & \begin{tabular}{l}
A=paam \\
1SG.S=eat:P
\end{tabular}\(\quad\) kapua & laplap
\end{tabular}\(\quad\)\begin{tabular}{l}
kik \\
small
\end{tabular}\(\quad\)\begin{tabular}{l}
sa \\
very
\end{tabular}\(\quad\)\begin{tabular}{c}
moli. \\
only
\end{tabular}

Similarly, the adverb kasu 'too much' can function as a phrasal adverb and as an adjective modifier. In (78) it has scope over the verb to 'stay', while in (79) it has scope over the adjectival verb laapa 'many'. In this latter case it is part of the adjunct NP, and does not have scope over the verb but over the adjectival:
\begin{tabular}{lllll}
(78) & E=to & kasu & ntau & laapa. \\
& 3sG.S=stay & too.much & year & be.many
\end{tabular}
'It remained too long, for many years.'
[elicited]
(79)
\begin{tabular}{lcll}
E=to \(\quad\) ntau & laapa & kasu. \\
3sG.S=stay year & be.many & too.much
\end{tabular}

Note that adverbs can only occur in the NP if there is an adjectival that they can modify. This is seen in (80), in which kasu cannot be a noun modifier:
\begin{tabular}{lll}
\(*\) e=to & ntau & kasu. \\
3SG.S=stay & year & too.much
\end{tabular}
'It remained for too many years.' [elicited]

The adverb taplange 'like this, thus' is a combination of the adverb tapla and the determiner nge 'DEF'. Note that nge functions as a noun modifier, but it is also fused to other forms such as the nouns mala 'time' and nagsa 'time' to form adverbs. Semantically, taplange is very similar to the sentential adverb tapla 'like.this' (see 4.7.2.2), and for this reason it could be viewed as a variant of this adverb. However it has a different position: as a post-verbal adverb it precedes the clause-final particles. In (81) it occurs clause-finally but note that no clause-final particle occurs. In contrast, in (82) it occurs clause-internally before the particles pan 'GO' and \(p a\) ' GO ', as well as in (83) before the particle panei 'COME':
\begin{tabular}{lllllll}
A=to \(=\mathrm{s}\) & taplange & a=lag, & 'gaio, & wan & a=ga & llu,' \\
1SG.S=STAY=3OBL & like.this & 1SG.S=say & fine, & if & 1SG.S=IRR & return \\
'I stayed there like this and I said, 'Fine, if I come back,' & & &
\end{tabular}
\begin{tabular}{llllll}
Malange & e=legat=ia & taplange & pan & pa & e=ga nou, \\
then & 3SG.S=sing=3sG.OBJ & like.this & GO & GO & 3SG.S=IRR be.finished \\
'Then he sang it like this until it would be finished,'
\end{tabular}
(83) \(\mathrm{E}=\) to sal taplange panei,
3SG.S=IPFV drift like.this COME
'It was drifting, coming,'

\subsection*{4.7.1.3 Pre- and post-verbal phrasal adverbs}

Members of this subclass can occur pre- and post-verbally. It is a small subclass, with only three known members: malua 'later; slowly'; lasla 'directly; over' and mau 'all; LIM'. Interestingly, these adverbs switch meaning according to the position they occur in. Recall that table 4.17 gives two glosses for these adverbs, the first corresponding to the pre-verbal position and the other corresponding to the post-verbal position. In (84) to (87) malua occurs pre-verbally and is glossed 'later'. It has a temporal value, denoting that the event expressed by the clause happened or will happen after a certain point in time:
\begin{tabular}{lllllll}
Pra=fea & pa & loso, & konou & a=ga & malua & loso. \\
2SG.S:IRR=first:IRR go & wash & 1SG & 1SG.S=IRR & later & wash
\end{tabular}
'Go wash first, I will wash later.'
(85) Konou a=kat malua mtarog to.
1SG 1SG.S=CERT later quiet STAT
'Later on, I kept quiet.'
\begin{tabular}{lll}
A=ga & malua & tua \(=\) ko \(=s\). \\
1SG. \(S=I R R\) & later \\
'I will give it to you later.'
\end{tabular},

In contrast, in post-verbal position malua 'slowly' has scope over the verb complex and functions as a manner adverb, denoting that the event encoded in the predicate happened slowly:
\begin{tabular}{llllll}
(87) & ur=ti & faam & mrafraf & mau, & ur=faam
\end{tabular} malua. 'They didn't eat quickly, they ate slowly.'

As shown in (88), malua cannot function directly as a verb. However, it can be derived as a transitive verb with \(-k i i^{\text {'TR', as }}\) in (89). In this case it takes the meaning 'do something slowly, with precautions':
(88) \(\quad * \tilde{\mathrm{P}} \mathrm{a}=\) malua
[elicited]
(89) \(\tilde{\text { Pa }}=\) malua-ki-nia

2SG.S:IRR=slowly-TR-3SG.OBJ
'Go slowly with it' (i.e. take precautions with it) [elicited]

Another adverb able to occur pre- and post-verbally is lasla 'directly; over'. As with malua, these positions correspond to a distinction between aspect and manner. The pre-verbal position affects the internal temporal structure of the event with the meaning 'directly', giving an immediate reading. In (90) and (91) lasla occurs pre-verbally, expressing the fact that the event denoted by the predicate happened directly and without delay:
\begin{tabular}{lllllll}
(90) & E=lasla & sruf & kapua & nge & pan & pan \\
3sG.S=directly & puck.up & laplap & DEF & GO & GO & GO \\
& 'He sucked up the laplap directly,' & & & &
\end{tabular}
\begin{tabular}{lll}
(91) & \(\mathrm{E}=\mathrm{pa}\) & lasla \\
& 3sG.S=go & directly
\end{tabular}\(\quad\)\begin{tabular}{l}
lo \(\tilde{p}=\) gam. \\
see=1PL.EXCL.OBJ
\end{tabular}
'He went to see us directly.' [elicited]

In contrast, when occurring post-verbally, lasla denotes the manner in which the event takes place, with the meaning 'over'. In this position it occurs with predicates denoting motion, and expresses the fact that the event went over a point in time as in (92), or in space as in (93):
\begin{tabular}{lllll}
Ar \(=\) pat \(=\) ia & pan & pan & pan & pa, \\
3DU.S \(=\) make \(=3\) SG.OBJ & GO & GO & GO & GO
\end{tabular}
\(\mathrm{e}=\mathrm{ti}\) pa nou lasla mau, \(\mathrm{e}=\) stop mato.

3SG.S=NEG go be.finished over NEG2 3SG.S=stop STAT
'They built it on and on, it wasn't over, it stalled.'
(93)
\begin{tabular}{lll}
E=rsug & lasla=s & pa. \\
3sG.S=shift & over=3sG.OBJ & GO
\end{tabular}

3SG.S=shift over=3SG.OBJ
GO
'He shifted it over.'
[elicited]

The final adverb able to occur pre- and post-verbally is mau 'all; LIM'. In (94) it occurs preverbally with the gloss 'all', and quantifies the participant in the event:
\begin{tabular}{llllll}
Go & ur=po & mau & sak & pa-ki & namlas
\end{tabular} pa.

On the other hand when it occurs post-verbally, it has no effect on the participants, but has a limiting effect on the activity denoted by the predicate. In this position it is glossed 'LIM':
\begin{tabular}{llll}
E=to & ta & mau & \begin{tabular}{l}
laua, \\
cardinal.fish
\end{tabular}
\end{tabular}
laua \(e=\) maeto-ki-nia se \(e=\) lag,
cardinal.fish 3SG.S=angry-TR-3SG.OBJ while 3SG.S=say
'He was just pecking the cardinal fish, the cardinal fish was angry at him then he said,'
\(\begin{array}{llllll}\text { E=ga } & \text { fa } & \text { mau } & \text { wara, } & \text { e=kat } & \text { nou. } \\ \text { 3SG.S=IRR } & \text { go:IRR } & \text { LIM } & \text { here } & \text { 3SG.S=CERT } & \text { be.finished }\end{array}\)
'It will just go up to here, it is finished.'
(97) Ar=to lo~lo mau natul toa

3DU.S=IPFV look~look LIM egg chicken
'They were just looking for chicken eggs.'

\subsection*{4.7.1.4 Spatial adverbs}

Spatial adverbs are all related to the form wara, which functions as a noun meaning 'place' and an adverb meaning 'here'. The adverb wara 'here' is the base from which other spatial adverbs are created, by adding the suffixes \(-s\) 'PROX', \(-n\) 'DIST' and \(-e\) 'ADD', or with the compound warampa, a fused form of the full clause wara \(e=\) mro \(p a\) 'place 3SG.s=AGAIN go', literally 'the place that goes again'. Fig. 4.1 shows that spatial adverbs denote locations relative to the speaker or deictic centre, according to a forward/sideways directional contrast and a proximal/medial/distal distance contrast. The arrows in 4.1 show forward and sideways directions, and the deictic centre is denoted by wara 'here' and wara-s 'here-PROX'. The sideways contrasts are neutralised in a forward direction, as warampa and warampan encode both forward and diagonal directions. The proximal/medial/distal contrast is represented through the whole paradigm. Note that \(-s\) and \(-e\) add a finer distance contrast with wara 'here': wara encodes the location in which the deictic centre is located, wara-s a location closer to the speaker than to the addressee, and wara-e a location closer to the addressee.

Fig. 4.2. Spatial adverbs

In (98), wara functions as an oblique argument of the intransitive verb to 'stay', while in (99) it also occurs as part of the oblique NP narpan waras 'this side here' (close to me). In both examples, evidence for its position as a post-verbal phrasal adverb is given by the following particle to 'STAT':
(98) Nag \(\tilde{p} a=f a\) konou \(a=g a \quad\) to wara to.

2SG 2SG.S:IRR=go:IRR 1SG 1SG=IRR stay here STAT
'You go, I will stay here.'
(99) P̃a=mro kil tewa-s narp̃an wara-s to. 2SG.S=again dig SBST.DEM-PROX side here-PROX STAT 'Dig this one (close to me) on this side here (close to me).'

In (100), wara-e 'here-ADD' occurs to denote a place closer to the addressee than to the speaker:
(100)

'You will cut wild cane there (close to you), be careful of a snake that lives there, it is a taboo snake.'

In (101), ware 'there.sideways' occurs as an oblique argument after the object NP namos 'outside.seas':
```

(101) E=pitlaka lans skei na e=to gad namos ware.
3SG.S=have speedboat INDEF REL 3SG.S=IPFV guard ouside.sea there.sideways
'There was a boat which was patrolling the outside seas (in a sideways direction).'

```

Examples (102) to (104) show the position of ware-n 'there.sideways-DIST'. In (102) it occurs as an oblique of the verb to 'stay':
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (102) & A=pam̃osko & nmatuna & skei & e=to & ware-n & to. \\
\hline & 1SG.S=find & something & INDEF & \(3 \mathrm{SG} . \mathrm{S}=\mathrm{IPFV}\) & there.sideways-DIST & STAT \\
\hline & 'I found some & ng which sta & there.' & & & \\
\hline
\end{tabular}

In (103) it also occurs as an oblique following the directional taafa 'inlandwards' which also functions as an oblique of the intransitive verb to 'stay':
\begin{tabular}{lllll}
Fterki & \(\mathrm{e}=\) to \(=\mathrm{s}\) & tapla, & \(\mathrm{e}=\) to & taafa \\
married.woman & 3SG.S=stay=3OBLlike.this & 3SG.S=stay & inlandwards & ware-n, \\
there.sideways-DIST
\end{tabular}
e=sok.
3SG.S=jump
'The woman stayed there like this, she stayed inland there (in a sideways direction, in a distal location), she jumped.'

In (102) and (104) waren precedes the particles to 'STAT' and pan 'GO', which is evidence for its position inside the basic clause:
\begin{tabular}{llllll}
(104) Wan & \(\tilde{p} a=\) wan & palse & wuru & a=lau & ware-n \\
if & 2SG.S=IPFV paddle & pass & LOC=seawards & there.sideways-DIST & GO \\
& 'If you paddle following the coast there (in a sideways direction, away from the deictic centre),
\end{tabular}

Examples (105) and (106) show warampa 'there.forward and warampa-n 'there.forward-DIST'. In (105) warampa is an oblique following the object NP nawi 'yam':
\begin{tabular}{llllll}
(105) & \begin{tabular}{l}
Tu=ga \\
1PL.INCL.S=IRR
\end{tabular} & mro AGAIN & pa & go & dig
\end{tabular}
'Let's go dig yam there (in a forward direction, in a medial location).'

In (106), it functions as the object of the transitive verb \(p a-k i\) 'go-TR', and occurs before the particle \(p a\) 'GO':
\begin{tabular}{lllll}
(106) & Tena & e=pi & naati, & e=pa-ki
\end{tabular} warampa-n \(\quad\) pa.

\subsection*{4.7.2 Sentential adverbs}

Sentential adverbs are distinguished from phrasal adverbs since they occur in different positions. Phrasal adverbs are part of the basic clause and occurring before the clause-final particles (see fig. 4.1). In contrast, sentential adverbs occur outside the basic clause, at clausal margins. They are part of the extended clause (see 7.1.2) and follow the aspectual and directional particles when they occur to the right of the verb complex. In addition, they modify the whole clause or sentence. As seen in table 4.18, sentential adverbs can be classified along two broad semantic categories: temporal adverbs, such as sral and malmauna, and a single manner adverb, tapla 'like this'.
\begin{tabular}{|ll|ll|}
\hline \multicolumn{2}{|c|}{ Temporal adverbs } & \multicolumn{2}{c|}{ Manner adverbs } \\
\hline sral & 'often' & tapla & 'thus, like this' \\
malmauna & 'now' & & \\
malange & 'at that time, then' & & \\
nagsange & 'at that time, then' & & \\
mesa & 'today' & \\
matmai & 'tomorrow' & \\
nanou & 'yesterday' & & \\
nanos & 'before yesterday' & & \\
\hline
\end{tabular}

Table 4.18. Sentential adverbs

\subsection*{4.7.2.1 Temporal adverbs}

Temporal adverbs are generally able to occur both in initial and final positions, however a few are restricted to one of these positions. In (107), malmauna occurs in a clause-initial position while it occurs in a final position in (108), following the clause-final aspectual particle to 'STAT':
(107) Malmauna, ur=to taki-nia,
now 3PL.S=IPFV lay.on.side-3SG.OBJ
'Now, they are making it lay on the side,'
(108) Go a=wus nae foto nagna to malmauna, and 1SG.S=get 3SG photo ASS-3SG.POSS STAT now
'And I got its photo now,'

Similarly to malmauna, malange 'then, at that time' can occur both initially as in (109) and finally as in (110) and (111). In (111), note that malange occurs after the particle to 'STAT':
(109) Malange \(e=r k i \quad\) konou=s lag \(a=g a \quad\) wus fok, then 3SG.S=tell 1SG=3OBL COMP 1SG.S=IRR get fork 'Then he told me to get a fork,'
(110) TTI \(e=\) to malange, misi \(e=\) panei 1946 nge. TTI 3SG.S=stay then missionary 3 SG.S=come 1946 DEF 'The TTI existed then, and the missionary came in 1946.'
\(\mathrm{E}=\) to Rom to malange.

3SG.s=stay p.name STAT then
'It was in Rome at that time.'

The temporal adverb mesa 'today' occurs initially in (112) and finally in (113). In (113), mesa follows the particle to 'STAT':
(112) Mesa, ur=to lao~laotu nasum̃a tap, ur=to raki-ra today 3 PL. \(. S=\) IPFV stand.up \(\sim\) int house be.taboo 3 PL. \(s=\) IPFV precede=3PL.OBJ 'Today, they are standing in the church, they are waiting for them.'
(113) Nag ku=to pnak nanu agnou nuk to mesa?

2SG 2SG.S=IPFV steal coconut 1SG.POSS as.is STAT today
'Are you stealing my coconuts today?'

In contrast, some adverbs are restricted to a particular position, and occur either initially or finally. For instance, sral only occurs finally as in (114):
(114) \(\mathrm{E}=\mathrm{pi}\) naure kiki nae, \(\mathrm{e}=\mathrm{to}=\mathrm{s}\) to sral.

3sG.s=COP island small 3sG.Poss 3sG.s=stay=obl STAT often
'It was his small island, he stayed there often.'

Nagsange 'then, at that time' is a temporal adverb which is only able to occur initially. Its meaning is very close to malange 'then, at that time':
(115) Nagsange, naara se ur=lag to munu nmaluku.
then 3pl too 3PL.S=mAYBE IPFV drink kava
'At that time, they too may have been drinking kava.'

Note that temporal adverbs share some properties with nouns (as listed in table 4.1). For instance, they can be modified by certain determiners and possessives. In (116), mesa 'today' is modified by the demonstrative determiner na 'DEM':
(116) Situesen \(n-e=\) to mesa na, \(a=t o \quad\) rog=ea \(e=s a=s\).
situation REL-3sG.S=stay today DEM 1SG.S=IPFV feel=3sG.OBJ 3sG.s=be.bad=3OBL
'As for the current situation, I feel that it's bad.'

In (117), matmai is modified by the possessive nag-na 'ASS-3sG':
\(\begin{array}{llll}\text { (117) } \begin{array}{l}\text { Matmai } \\ \text { tomorrow }\end{array} \text { nag-na, } & \text { urs }=\text { mro } & \text { panmei. } \\ \text { come }\end{array}\) 'The following day, we come back.'

However, since they do not have access to most other noun properties (e.g. they cannot be modified by the pre-head modifier, nor adjectives and relative clauses, and do not have access to the whole paradigm of determiners and possessives), it is inappropriate to analyse them as nouns. They are adverbs which share some properties with nouns.

\subsection*{4.7.2.2 Manner adverb tapla 'like this; thus'}

The manner adverb tapla 'like this; thus' is a versatile form able to occur both clause or sentence finally, as well as closer to the verb, preceding basic clause-final particles encoding aspect and direction (see 10.6). Note that it is not found preceding object and oblique arguments, so for this reason it is not analysed as a post-verbal phrasal adverb. In addition, tapla can also function as a verb. In (118) and (119), tapla occurs finally, following clause-final particles:
\[
\begin{array}{lllll}
\mathrm{E}=\mathrm{mro} & \text { sfa } & \text { pan } & \text { tapla, } & \text { ur=sfa. } \tag{118}\\
\text { 3sG.S=AGAIN } & \text { run } & \text { GO } & \text { like.this } & \text { 3PL.S=run } \\
\text { 'He ran away again like this, they ran.' }
\end{array}
\]
(119) \(\mathrm{E}=\) to se, \(\mathrm{e}=\) pa-ki farea nae pan tapla, 3SG.S=stay while 3SG.S=go-TR trad.house 3SG.POSS GO like.this
'Then, he went to his traditional house like this,'

In (120) an (121), tapla occurs in a clause-internal position, after objects and obliques but before clause-final particles such as to 'STAT', pa and pan 'GO'. In (120), it follows the object NP plen 'plane' and occurs before the stative particle to 'STAT':
\begin{tabular}{llll}
Mala & \(a=\) laotu & plen & tapla \\
when & 1SG.S=stand.up & plane & like.this \\
STAT
\end{tabular}

Similarly, in (121) tapla follows the object NP ntas 'the sea' and precedes the clause-final particle pan:
\begin{tabular}{llll}
E=sok \(\quad\) pa-ki & ntas & tapla & pan, \\
3sG.s=jump go-TR & sea & like.this & GO \\
'He jumped in the sea like this,'
\end{tabular}

In addition, tapla is also able to function as an intransitive verb, as in (122). However, it does not share many verbal properties, such as the ability to occur with auxiliaries, benefactive phrases, and other elements of the verb complex (see chapter 9):
Nakai nge \(e=\) tapla.
story DEF 3sg.s=like.this
'The story is like this.'
```


### 4.8 Prepositions

Two types of prepositions are distinguished in the language, true prepositions and prepositional verbs. Both types function as heads of prepositional phrases and take an NP as complement. Prepositional phrases are adjuncts occurring at clause margins, as part of the extended clause (see 7.1.2), with the exception of the benefactive phrase which occurs preverbally. True prepositions are invariable and not multifunctional. In contrast, prepositional verbs also function as verbs which have grammaticalised to a certain degree to function like prepositions (see Enfield 2007 for a similar situation in Lao, and Lichtenberk 1983 for Manam). Prepositional verbs are able to have their object encoded by an NP or an object enclitic, which is in contrast with true prepositions. Table 4.19 shows both types of prepositions. Interestingly, there are twice as many prepositional verbs than true prepositions:

True prepositions		Prepositional verbs			
pae 'SOURCE'	taos	'like'	raki	'towards'	
naloni	'about, regarding'	paki	'to'	plake	'with'
mag	'BEN'	ne	'COM'	wur	'in, on, at'
		wus	'following'	mur	'at'

Table 4.19. Prepositions

It has been shown for a number of languages such as Chinese (Li and Thompson 1974, Zhiqun Xing 2013), Lao (Enfield 2007) and West African languages (Lord 1973, Lord 1993) that certain types of verbs tend to grammaticalise into prepositions. This is also the case in Oceanic languages (Codrington 1885, Pawley 1973:142). Durie (1988:20) proposed that serial verb constructions have resulted in prepositional phrases following a diachronic drift. In Lelepa, certain verbs such as those in table 4.19 have taken on functions and grammatical characteristics typical of prepositions and are called prepositional verbs, following common usage in the Oceanic litterature. Such functions include the marking of direction (allative, ablative), position and location (in, on, at), commitative, comparison (like), amongst others, and grammatical characteristics include taking an NP as complement and occurring in peripheral positions in the sentence. Note that in some cases it is difficult to determine whether a particular construction involving these verbs is an instance of a prepositional phrase or of clause-chaining. Section 4.8.2 exemplifies cases of prepositional verbs in which their prepositional status is beyond doubt.

### 4.8.1 True prepositions

### 4.8.1.1 pae 'sOURCE'

This preposition marks its object NP as a source, as in (123), in which the source of the story (nafsana 'talk, language') is the elders (tematua):
(123) A=rogo na-fsa-na nagna pae te=matua. 1SG.s=feel ART-speak-NMLZ ASS-3SG.POSS SOURCE SBST=be.old 'I heard its story of it from the elders'.

The source can also be a source in time, as in (124):
(124) Go pae mala=n fea panmei, mala mis $\mathrm{e}=$ panmei, and SOURCE time=POSS:NH first COME when missionary 3SG.S=come
'And since the olden times to now, when the missionary came,'

### 4.8.1.2 naloni 'about, regarding'

This preposition introduces an NP which gives content information about the event denoted by the predicates, or about its arguments. In (125), the NP introduced by naloni gives content information on the object natrausina 'story':

A=ga	fat	na-trausi-na	skei	naloni	nafarkal	skei,
1SG.S=IRR	make:IRR	ART-tell-NMLZ	INDEF	about	bush.spirit	INDEF


ur=to	A=fatenleg.
3pL.s=stay	LOC=p.name

'I will tell a story about a group of bush spirits, they were in Fatenleg.'

In (126), naloni introduces an NP giving content information on the object muf kike skei 'a move':
(126) naara ur=pat muf kiki skei naloni faatu naara.
3pL 3pL.S=make move small INDEF about
'They made a move regarding their salaries.'

### 4.8.1.3 mag 'BEN'

The prepositional phrase signalled by mag refers to a participant with the role of beneficiary. It is called the benefactive phrase and has dedicated marking and a dedicated pre-verbal position (see 7.5.3). This position is unusual since adjuncts tend to occur at sentence margins. In (127), the preposition mag followed by the NP fterki nge 'the wife' forms a benefactive phrase and occurs in pre-verbal position, before the verb slat 'carry':

(127)	E=po$\quad$ mag	fterki	nge	slat=ia	pa.
3SG.S=SEQ BEN wife	DEF	carry=3SG.OBJ	GO		
	'He then carried it for the wife.'				

Note that benefactive pronouns discussed earlier (4.6.3) take the place of benefactive phrases. They refer to a beneficiary participant and encode its person and number.

### 4.8.2 Prepositional verbs

Prepositional verbs occur in similar environments to true prepositions, at the margins of clauses and sentences. In this position, they are stripped of most of their verb properties, and do not occur with subject proclitics, TAM particles, auxiliaries, negation markers, etc. However, they keep some verbal traits in the way they realise their complement, and in their ability, for some of them like $p a k i$ 'to', to take the transitiviser - $k i$ 'TR'. Like transitive verbs, the object of prepositional verbs can be realised with an NP or a bound pronominal, a property that is not available to true prepositions. The initial position is the best diagnostic to
determine that a constituent is a prepositional phrase, as this avoids confusions with clause chains. This is shown in (128) and (129):

(128)	Taos   like	nam̃it   mat	nge DEF	$\begin{aligned} & \mathrm{a}=\text { to } \\ & \text { 1SG.S=IPFV } \end{aligned}$	$\begin{aligned} & \text { til=ia, } \\ & \text { tell=3SG.OBJ } \end{aligned}$
	na-we	i-na		g-na	$\mathrm{e}=$ taplinge.
	ART-w	rk-NMLZ		S-3sG.POSS	3SG.S=like.this

(129) Paki malange, konou a=po
to mro then $\quad$ 1SG
to 1SG.S=SEQ
'Until that time, and then I bring it for you.'

When a prepositional verb follows an intransitive verb or a verb and its object, it is not straightforward to determine whether it introduces a prepositional phrase or if it functions as a verb within a serial verb or a clause chain construction. This can be tested by looking at the elements preceding that verb or prepositional verb form. If an aspectual or directional particle (see 10.6) such as to 'STAT', $p a$ ' GO ', pan 'GO', panei 'COME' or another adjunct occur before, this is evidence that the verb functions as a preposition. In (130), the directional particle pa 'GO' encodes motion away from the speaker/deictic centre and follows the object. It marks the end of the basic clause and is followed by the prepositional verbs raki 'towards':


In (131) raki functions as a verb, as it occurs with a subject proclitic and the sequential particle po 'SEQ'. Note that it is glossed 'follow':

(131)	$\begin{aligned} & \mathrm{Te}=\text { laapa } \\ & \text { SBST=be.many } \end{aligned}$	$\begin{aligned} & \mathrm{ur}=\mathrm{po} \\ & \text { 3pL.S=SEQ } \end{aligned}$	sua, go.down	ur=tumazau 3PL.S=leave	pkout, completely
	konou a=	= o	raki	mau.	
	1SG 1S	SG.S=SEQ	follow	LIM	
	${ }^{\text {'Then many peop }}$	eople went down	n , they all left	t, and then I jus	lowed.'

Another way of recognising a prepositional phrase is when it follows another adjunct. In (132), paki introduces a prepositional phrase as it follows the sentential adverb malmauna:


### 4.9 Directionals

Directionals form a small closed class. They are distinguished from nouns by their inability to head NPs when occurring underived, and from verbs by their inability to function predicatively. They also differ from adjectives by their inability to take te 'SBST' which derives substantives, and from adverbs as they host the locative proclitic $a=$ 'LOC' to derive locational nouns. These criteria are summarised in table 4.20 below:

	Distinction from nouns	Distinction from verbs	Distinction from adjectives	Distinction from adverbs
Directionals	- Cannot head NPs   - Cannot take NP modifiers	- Cannot take subject proclitics	- Cannot take te 'SBST' to derive substantives	- Take the locative enclitic $a=$ 'LOC'   to derives   locational nouns

Table 4.20. Criteria establishing the class of directionals

All known members of this class are shown in table 4.21. Directionals are used in spatial reference and encode three distinct axes:

- The land-sea axis is encoded with uta 'landwards', lau 'seawards' and taafa 'inlandwards'.
- The northwest-southeast axis is encoded with waranleg 'northwest' and warantan 'southeast'. The particular orientation of this axis may be explained by natural features: the archipelago of Vanuatu is oriented along a northwest-southeast axis, and the dominant winds come from the southeast.
- The up-down axis is encoded with lag 'up’ and tan 'down’ to encode directions running along, which can be vertical or follow the ground.

There are three forms encoding the land-sea axis, and only two encoding the two other axes. The distinction between uta and taafa is done according to whether the deictic centre is located on land or at sea. Both uta and taafa encode the same direction, towards land. However, uta is
used when the deictic centre is at sea to encode a landwards direction, while taafa is used when the deictic centre is on land, to express a direction towards the bush and the mountains.

Land-sea axis		Northwest-Southeast axis		Up-down axis	
uta	'landwards'	waranleg	'northwest'	lag	'up'
lau	'seawards'	warantan	'southeast'	tan	'down'
taafa	'inlandwards'				

Table 4.21. Directionals

In (133) to (135) directionals occur underived to encode a particular direction. In (133) lau encodes a seawards direction:
(133) Tuaraka, $\tilde{\text { pa }}=$ liko kasua, se ta=ga su pa-ki lau. p.name 2SG.S:IRR=hang strong while 1PL.INCL.S=IRR go.down go-TR seawards 'Tuaraka, hold on tight as we will go down to the sea.'

In (134) $\operatorname{lag}$ encodes an upwards direction:

(134)	Ku=kano$\quad$ mus	sak	panei	marmar	lag.
2sG.S=cannot	dive	go.up			
'You can't dive back up to breathe on top.'					

In (135), the directionals taafa 'inlandwards' and warantan 'southeast' occur in two separate clauses, modifying the noun narpan 'side':
(135)

Malmauna,	$\tilde{p} a=m r o$	ri	narp̃an	taafa	warei	na,
now	2SG.S:IRR=AGAIN	dig	side	inlandwards	there	DEM

ita, $\quad$ pa=mro ri narp̃an $\quad$ warantan $\quad$ warampa.

Directionals can take the locative proclitic $a=$ 'LOC' to derive locational nouns, which distinguishes them from adverbs. This occurs when a directional is needed to encode a location, as in (136) to (141):
(136) E=ti $\quad$ matietie wia mau, nlakan nasogo $e=p i \quad$ pel a=uta. 3sG.S=NEG smooth good NEG2 because rubbish 3sG.S=COP big LOC=landwards 'He wasn't nice and smooth, because there was a lot of rubbish on the beach.'
(137) $\mathrm{E}=$ mato los $\mathrm{a}=\mathrm{uta}$.

3SG.S=IPFV bathe LOC=landwards
'He was bathing on the shore.'
(138) Ur=ga kat put=ia paki a=laupa.
3PL.S=IRR CERT pull=3SG.OBJ to LOC=seawards GO
'They will pull it to the shore.'
(139)

E=panei	rwae	a=uta	e=mro	pa-ki
3SG.S=come	turn	LOC=lau,		
LOndwards	3sG.S=again	go-TR	LOC=seawards	

pa=ti lao=ea mau.
2SG.S:IRR=NEG1 spear=3SG.OBJ NEG2
'It comes to turn by the shore and goes back offshore, do not spear it.'
(140) Nlag $e=$ to si $a=l a u$ nge.
wind 3SG.S=IPFV blow LOC=seawards DEF
'The wind was blowing by the shore.'
(141)
$\mathrm{E}=$ pag-ki=nia paki $\quad \mathrm{a}=$ lag.
3SG.S=climb-TR-3SG.OBJ to LOC=up
'He climbed it to the top.'

### 4.10 Numerals

### 4.10.1 The class of numerals

Numerals are able to function predicatively like verbs, and modify nouns within the NP like adjectives and adjectival verbs. However, they form a distinct class on the basis that they take the prefix $k e$ - 'ORD', which derives ordinal adjectives (see 3.4.4). Since two out of three criteria overlap with other established word classes, and only one is exclusive to numerals, a form is analysed as a numeral only when it satisfies all of these three criteria, as summarised in table 4.22 below:

Numerals	$\bullet$	take the prefix $k e-$ 'ORD' to derive adjectives
	• function as heads of predicates like verbs	

Table 4.22. Criteria establishing the class of numerals

Numerals behave like verbs and thus can host subject proclitics and be predicative. This is shown in the first occurrence of pati 'four' in (142). Numerals can also modify nouns, marking
the number of the referent of a head noun. This is shown with the second occurrence of pati 'four' in (142) which modifies the head noun namusak 'driftwood':

| (142) | Naara | ur=pati, | ur=sla | namusak |
| :--- | :--- | :--- | :--- | :--- |$\quad$ pati. 'They were four, they carried four pieces of driftwood.'

Examples (143) and (144) below show numerals behaving like verbs. In (143) rua 'two' takes the subject proclitic $e=$ '3sG.S' and the oblique enclitic $=s$ '3OBL', both referring to naki martou 'dry pandanus':
$\begin{array}{llllllll}\text { (143) } & \text { Tu=ga } & \text { fa } & \text { pu } & \text { naki } & \text { na } & \mathrm{e}=\mathrm{pi} & \text { naki } \\ \text { 1PL.INCL.S=IRR } & \text { go:IRR } & \text { pull } & \text { pandanus } & \text { REL } & \text { 3sG.S=COP } & \text { pandanus } & \text { dry }\end{array}$

$$
\text { tu=ga } \quad \tilde{p} r a=e \quad e=g a \quad \text { rua }=s .
$$

$$
\text { 1PL.INCL.S }=\mathrm{IRR} \quad \text { split }=3 \mathrm{SG} . \mathrm{OBJ} \quad 3 \mathrm{SG} . \mathrm{S}=\mathrm{IRR} \quad \text { two }=3 \mathrm{OBL}
$$

'We go and pull pandanus that is dry pandanus, we split it in two.' (lit. we split it, it will be two of it)

In (144) the numerals fati 'four:IRR', rua 'two' and tolu 'three' are also seen behaving like verbs as they take the subject proclitic $e=$ ' 3 SG.S' and irrealis particle $g a$ 'IRR':

$\begin{array}{ll} \text { Wan } & \text { lag } \\ \text { if } & \text { MAYBE } \end{array}$	$\begin{aligned} & \mathrm{tu}=\mathrm{ga} \\ & \text { 1PL.INCL.S=IRR } \end{aligned}$	fat namake:IRR AR'	ri-na, rry-NMLZ	
tu $=\mathrm{ga}$	lag pat=ia	$\mathrm{e}=\mathrm{ga}$	fi	na-ftauri-na
1PL.INCL.S=IRR	MAYBE make=3s	G.OBJ 3SG.S=IRR	COP:IRR	ART-marry-NMLZ

$e=g a \quad$ fati, $e=g a \quad$ rua, kite $e=g a \quad$ tolu, $e=$ wia. 3 SG.S=IRR four:IRR 3SG.S=IRR two or 3 SG.S=IRR three 3SG.S=good 'If we organise a wedding, maybe we may make it as four weddings, or two, or three, it's good.'

In (145) and (146) below, numerals modify nouns. Example (145) shows an object NP in which the numeral lima 'five' modifies the head laasa 'container':
(145) Aliati ku=kuk lasa lima.
middle.day $2 \mathrm{SG} . \mathrm{S}=$ cook container five
'At lunch you cooked (the contents of five saucepans.'

Similarly in (146), the numeral rua 'two' modifies the head noun kafman 'government': 8

[^14]```
(146) 1980, au=panei pitlak indipendens,
    1980 1PL.EXCL.S=come have independence
\begin{tabular}{lllll} 
au=mro & panmei & pi & kafman & rua, \\
1PL.EXCL. \(S=\) again & come & COP & government & two
\end{tabular}
aaa... kafman Vanuatu.
HESIT government p.name
'In 1980, we became independent; we became a joint government again, hum... the Vanuatu government.'
```


4.10.2 Counting system

Table 4.23 distinguishes counting/cardinal numbers and ordinal numbers. Counting numbers are used in counting, cardinal numbers express quantities while ordinal numbers express orderings. All counting numbers are numerals, with the exception of the determiner skei 'one; INDEF', which cannot take the prefix kee- 'ORD' to form an ordinal number. As seen in 4.5, ordinal numbers are derived adjectives formed with the prefix ke- 'ORD'. This is not the case of fea 'first:IRR' which is not regularly derived from neither skei nor skimau but is an intransitive verb. In addition, skei cannot express the quantity 'one' but is used in counting and as an indefinite determiner (see 4.12.1.1). Skei has grammaticalised and taken other functions, while retaining some functions typical of numerals, such as counting. Most cardinal numbers are numerals as well, with the exception of the intransitive verb skimau 'one; same', used to express the quantity one. Note that the conjunction atmat 'CONJ.NUM' is used in the formation of numbers above ten. The operators used in number formation are multiplication and addition: mu;tiplication is used between tens and hundreds, hundreds and thousands and up, whiel addition is used between units and higher levels.

| Counting/cardinal numbers | | Ordinal numbers | |
| :---: | :---: | :---: | :---: |
| skei / skimau | 'one' | fea | 'first:IRR' |
| rua | 'two' | ke-rua | 'second; other' |
| tolu | 'three' | ke-tolu | 'third' |
| pati/fati | 'four' | ke-fati | 'fourth' |
| lima | 'five' | ke-lima | 'fifth' |
| latsa | 'six' | kee-latsa | 'sixth' |
| larua | 'seven' | ke-larua | 'seventh' |
| latolu | 'eight' | kee-latolu | 'eighth' |
| lfot | 'nine' | ke-lfot | 'ninth' |
| ralma skei | 'ten' | ke-ralma skei | 'tenth' |
| ralma skei atmat skei | 'eleven' | | |
| ralma skei atmat lima | 'fifteen' | | |
| ralma tolu | 'thirty' | | |
| ralma larua | 'seventy' | | |
| ralma larua atmat | 'seventy- | | |
| lfot | nine' | | |
| pwontia skei | 'one | | |
| | hundred’ | | |
| maanu skei | 'one thousand' | | |
| tefelia skei | 'one million' | | |

Table 4.23. Numbers

Numerals above ten are formed regularly with higher components (such as tens, hundreds and thousands) preceding lower components such as units. Each numerical component forms a numeral phrase, with the head being a numeral optionally modified by another numeral which expresses the number of the head, i.e. ralma tolu 'ten three $>$ thirty'. These phrases are then either linked to each other with the conjunction atmat or simply juxtaposed.

| A=ga | fitlaka ntau | ralma | | |
|---|---|---|---|---|
| 1SG.S=IRR | have:IRR year | |
| ten | | | larua | atmat |
| :--- |
| seven |\quad| CONJ:NUM |
| :--- |
| 'I will be seventy-five years old.' |

(148) $\begin{aligned} & \text { Mesa, } \quad \text { e=pi nalati } \\ & \text { today } 3 \text { gG.S=COP day }\end{aligned}$ ralma $\begin{aligned} & \text { rua } \\ & \text { ten } \\ & \text { 'Today, it is the twenty-fifth, }\end{aligned}$

While the counting system can express high numbers, speakers tend to use Bislama numbers when expressing quantities or orderings over ten. Lelepa people are schooled in either English or French and are not formally taught the Lelepa counting system. In addition, when engaging
in economic activities outside of their langauge community they use Bislama, the vehicular language of the country. Complex number formation and higher numbers are generally known by older speakers, while younger speakers tend to be unfamiliar with high numbers such as pwontia 'hundred', maanu 'thousand' or tefelia and with large number formation. Some aspects of the system remain unclear, such as the use of the conjunction atmat, which according to some speakers is only to occur between a constituent and units, as in (149); while other speakers consider it should occur between each numeral phrase, as in (150):
(149) pwontia skei ralma lima atmat lima hundred one ten five CONJ:NUM five 'One hundred and fifty-five.' [elicited]
(150) pwontia skei atmat ralma lima atmat lima hundred one CONJ:NUM ten five CONJ:NUM five 'One hundred and fifty-five.' [elicited]

4.11 The pre-head modifier sara 'each, every'

This lexeme is in a class of its own, as it is the only form occurring before the head noun in an NP. Semantically, it is a distributive quantifier, either singling out items as in (151), or grouping items together in as in (152):
(151) Taos=ia ur=tau sara naure~ure, Togoa
like=3SG.OBJ 3PL.S=stay each island~RED p.nam
wus raki pa-ki Santo pan, paki Saot pan.
follow precede go-TR p.name GO to south GO
Thus they were in each island, Tongoa, Epi, Paama, going to Santo, and going to the South.'
$E=$ to panei sara Sapat, $e=$ to panei.

3SG.S=IPFV come each Sabbath 3SG.S=IPFV come
'He used to come every Saturday, he used to come.'

4.12 Determiners

Lelepa has seven determiners (see table 4.24). ${ }^{9}$ Two of these mark distinctions in definiteness and specificity of the referent, and the remaining five are demonstratives. Skei 'INDEF' marks a referent as indefinite and specific and contrasts with nge 'DEF' which marks a referent as definite and specific. The demonstratives na 'DEM' and na-e 'DEM-ADD' contrast according to person: na encodes a referent close to both speaker and addressee, while nae encodes a referent closer to the addressee. I refer to the other demonstratives as spatial demonstratives since they encode relative distance: wa encodes a referent located neither close nor far from the deictic centre, so it is termed 'medial', wa-s 'DEM-PROX' encodes a referent located close to the deictic centre and wa-n 'DEM-DIST' encodes a referent that is far from the deictic centre.

| Indefinite/definite determiners | | Demonstrative determiners | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| skeei | 'INDEF' | $n a$ | 'DEM' | wa | 'DEM:MED' |
| nge | 'DEF' | $n a-e$ | 'DEM=ADD' | wa-s | 'DEM=PROX' |
| | | | | wa-n | 'DEM=DIST' |

Table 4.24. Determiners

4.12.1 Definite and indefinite determiners

A referent is definite when the speaker presupposes that it is accessible to the hearer, either because it has been previously introduced in discourse, or because it is part of the interlocutors' shared knowledge, or because the referent becomes accessible to the speaker as the sentence is processed, due its descriptive content. In contrast, an indefinite referent is not accessible to the hearer, because it is introduced for the first time in discourse (Payne 1997:263; Givón 2001:450; Guérin 2007:539). Thus when I say 'a man knocked on my door this morning', the referent of 'a man' is accessible to the speaker but not to the hearer: it is indefinite and the indefinite article a occurs with man. On the other hand, a specific referent is regarded as an existing entity in the universe of discourse. A non-specific or generic referent denotes the type or genus of an entity, that is, it represents a class of entities (Givón 1978:294; Guérin 2007:540).

The distribution of skei 'INDEF' and nge 'DEF' in the NP is conditioned by pragmatic factors. A noun modified with skei has an indefinite referent that is introduced for the first

[^15]time in discourse, whereas if it is modified with nge the referent is definite. Nge is used when a previously indefinite referent needs to be marked as definite, or when a referent that was previously definite becomes the new topic. In this instance nge has a switch-topic marking function. NPs can lack determiners: a noun with no determiner has a definite and specific referent if it is a continuing topic, or if it is part of the speakers' common ground or world knowledge (i.e. place names, personal names, natural entities, etc). Otherwise, a noun without determiner that has not been previously introduced has a generic (or non-specific) referent. Recall also that with a few nouns, the article $n a$ - marks referents as generic (see 3.2.2).

4.12.1.1 Indefinite specific determiner $s k e i^{\text {' }}$ ' ${ }^{\prime}$ INEF'

Skei marks its referent as indefinite and specific. It is also used in counting, but not to express the quantity 'one' (skimau 'one' is used instead). Numerals meaning 'one' are a common source for indefinite articles: in WALS, 112 out of 214 languages with an indefinite article have an indefinite article derived from the numeral 'one' (Dryer 2013). This suggests that skei may have functioned as a numeral at some stage and has grammaticalised into a marker of indefiniteness. Example (153) is the opening utterance of a traditional story which takes place in a village located at the place called Maua. The speaker marks the NP head natkon 'village' with skei because it is the first time it is mentioned in the story:
$\begin{array}{llllll}\text { (153) } & \begin{array}{l}\text { Slafea, } \\ \text { before }\end{array} & \begin{array}{l}\mathrm{e}=\mathrm{pitlak} \\ \text { 3sG.S=have }\end{array} & \begin{array}{l}\text { natkon } \\ \text { village }\end{array} & \begin{array}{l}\text { skei } \\ \text { INDEF }\end{array} & \begin{array}{l}\mathrm{a}=\text { maua } \\ \text { LOC=p.name }\end{array} \\ \text { 'Before, there was a village in Maua inland there.' }\end{array}$

The referent of natkon in (153) and (154) corresponds to the same entity in the world. However, in (153) it is introduced for the first time in discourse and is not previously accessible or known to the hearer. Compare this with (154) which is the following sentence in the same story: natkon is marked as definite with nge, as its referent is now accessible to both the speaker and the hearer. Note that the speaker also introduces a new referential entity with the noun tamaraota 'couple'. It is a first mention in the narrative and is marked as indefinite with skei:
(154)

| E=pitlak | natkon | nge | $e=$ mato, |
| :--- | :--- | :--- | :--- |
| 3SG.S=have | village | DEF | 3SG.S=stay |

| se | e=pitlaka | tama-ra-ota | skei | ur=mato=s |
| :--- | :--- | :--- | :--- | :--- |
| while | 3sG.S=have | DYAD-3PL.POSS-husband | INDEF | 3PL.S=stay.long=3OBL STAT |
| 'There was the village, and there was a couple living in it.' | | | | |

'There was the village, and there was a couple living in it.'

As seen in (153) and (154), skei can mark both animates and humans such as tamaraota and inanimates such as natkona. More examples of human and non-human animates marked with skei are given in (155) to (157):
(155) Kanokiki skei $\mathrm{e}=\mathrm{pan}$ lag $\mathrm{e}=\mathrm{ga}$ tpa ura.
boy INDEF 3SG.S=go COMP 3SG.S=IRR shoot prawns
'A boy went to shoot prawns.'
(156) Slafea, $a=p i$ natam̃ol skei naa... $a=$ to pa-ki namlas. before 1SG.S=COP person INDEF HESIT 1SG.S=IPFV go-TR bush
'Before, I was a person hmm... I used to go hunting.' (lit. I used to go to the bush)
(157) Parkat maata skei $\mathrm{e}=\mathrm{to}=\mathrm{s}$ p to, 2SG.S:IRR=look catch snake INDEF 3SG.S=stay=3OBL STAT
$\mathrm{e}=\mathrm{pi} \quad$ maata tap.

3SG.S=COP snake be.taboo
'Beware of a snake that stays there, it is a taboo snake.'

Examples of inanimates marked with skei are given in (158) to (160) below:
(158) Taxi skei $e=p a n e i ~ e=m s u g ~ k e n e m . ~$
taxi INDEF 3SG.S=come 3SG.S=carry 1PL.EXCL
'A taxi came and took us.'
$\begin{array}{llllll}\text { (159) } & \begin{array}{l}\text { Ar=pañosko=s } \\ \text { 1DU.EXCL. } s=\text { find=3OBL }\end{array} & \text { noana } & \text { nkas } & \text { skei } & \text { e=sal }\end{array} \quad$ panmei.
'We found that a fruit drifted (towards us).'
(160) $A=$ ga til nafsana matua skei.

1SG.S=IRR tell talk be.old INDEF
'I will tell a folktale.'

4.12.1.2 Definite specific determiner nge 'DEF'

When the referent of a noun is identifiable and accessible by both the speaker and the hearer as a unique entity in the world, it is definite and specific and marked with nge. In contrast with
skei, nge is not used to mark a noun whose referent is introduced for the first time in discourse. But in (161), nakai 'traditional story' is marked with nge, although it occurs for the first time in the story the speaker is just starting to tell. The reason for this is that the referent of nakai is accessible to both the speaker and the hearer, as it was previously discussed between them. The speaker then presupposes that the referent of nakai is accessible to the hearer and marks it as definite with nge. In addition, the occurrence of the possessive agnou ' $1 \mathrm{SG} . \mathrm{POSS}$ ' also plays a role in marking the definiteness status of nakai:

| (161) | Gaio, \quad a=ga
 okay\quad 1SG.S=IRR | til | nakai | agnou | nge. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | story | 1SG.POSS | DEF | | |

Nge combines with the substantiviser te 'SBST' to derive referential NPs (see 3.4.2.4). In such cases the resulting form tenge is a pronoun referring to an abstract referent (see 4.6.2.2). In (58), tenge refers to an earlier description of what the speaker's job was about:

| (162) | Tenge, | e $=$ pi | nawesina=n | sara | matmai |
| :--- | :--- | :--- | :--- | :--- | :--- |
| SBST.DEF | 3SG.S=COP | agnou. | | | |
| 'This, it was my everyday work.' | | | | | |

There are a few examples in the corpus in which nge stands alone as a pronoun, similarly to tenge (see 5.3.3). In (163), nge occurs twice. In the first occurrence it functions as a left dislocated pronoun co-referential with the subject of the clause. In the second occurrence, it functions as a determiner marking the head noun marka naota 'chief' as definite:

```
(163) Nge, marka naota nge, e=po msau=na,
    DEF old.man chief DEF 3SG.S=SEQ want-3SG.OBJ
    e=po plak lwa=e se e=pa-ki Tuktuk pa.
    3SG.S=SEQ accompany removed=3SG.OBJ while 3SG.S=go-TR p.name GO
    'Him, the chief, he wanted her and then took her out to Tuktuk.'
```


4.12.2 Demonstrative determiners

Lelepa demonstratives are either determiners occurring in the NP or pronouns formed with the substantiviser te 'SBST' (see 3.4.2.4). Five demonstrative determiners are formed with the bases na 'DEM' and wa 'DEM:MED' which host the suffixes -e 'ADD', $-s$ 'PROX' and $-n$ 'DIST'. Not all suffixes combine with both bases, which form two separate paradigms, as shown in table 4.24. $N a$ 'DEM' and na-e 'DEM-DIST' contrast according to person: na marks a referent closer to
the speaker, nae a referent closer to the addressee. The other set of demonstratives comprises wa 'DEM:MED', wa-s 'DEM-PROX' and wa-n 'DEM-DIST' which encode relative distance to the deictic centre, respectively medial, proximal and distal. According to Lynch, Ross and Crowley (2002:38), a three-way contrast encoded in demonstratives is typical of Oceanic languages, which contrast either person (near speaker, near addressee, or near neither) or relative distance (close, medial and distal). This contrast is also found more broadly in Austronesian languages (Blust 2009:295). It is interesting to note that Lelepa encodes both types of contrast with the na and wa series.

4.12.2.1 The demonstratives na and nae

The prototypical use of demonstratives is to put an immediately accessible referent in the forefront. The use of demonstratives in such situations is often accompanied by some kind of physical gesture such as pointing (Dryer 2007c:162). This is shown in (164) to (166) with na 'DEM':
(164) Nawi na $\mathrm{e}=\mathrm{pi}$ nawi taplasei, $\mathrm{e}=\mathrm{pi}$ martinik?
yam DEM 3SG.S=COP yam like.what? 3SG.S=COP p.name
'What kind of yam is this yam, is it a martinik (pointing at the yam)?'
(165) $\mathrm{Ku}=$ lom̃asko tera na nag!

2sG.S=look.after.well garden DEM 2SG.POSS
'You take good care of this garden of yours! (pointing around the garden)'
(166) Bruce, Okis, te=rua kiki na ar=pi sulsul nae. p.name p.name SBST=two small DEM 3DU.S=COP grandchildren 3SG.POSS
'As for Bruce and Okis, these two little ones are her grandchildren (pointing at the grandchildren).'

Dryer (2007c:162-163) points out that in most languages, demonstratives encode at least a 2 way proximal/distal contrast relative to the speaker. $N a$ 'DEM' and na-e 'DEM-ADD' encode a different type of distance contrast: na denotes that the referent of the noun it modifies is relatively close to the speaker, while nae marks a referent as closer to the addressee than to the speaker. In (167) to (170), the enclitic -e 'ADD' marks the referent of the NP as closer to the addressee:

```
(167) \(\tilde{\mathrm{P}} \mathrm{a}=\) to wara na-e.
2SG.S:IRR=stay place DEM-ADD
    'Stay where you are.' (lit. stay in this place close to you.)
    [elicited]
(168) Tarei, ña=kil niao na-e.
p.name 2SG.S:IRR=dig yam.sp. DEM-ADD
    'Tarei, dig that yam (close to you).'
```

(169) P̃a=kil narp̃an na-e,
2SG.S:IRR=dig side \quad DEM-ADD
p̃a=mro kil narp̃an na-epaki narp̃an lau mato.
2SG.S:IRR=AGAIN dig side DEM-ADD to side seawards STAT
'Dig that side close to you, you'll dig that side close to you up to the seawards side.'
(170) Pa=wus lwa faatu lop na-e nag gaskimau, 2SG.S:IRR=get remove stone baking DEM-ADD 2SG.POSS IRR.one a=ga laka=e se a=ga kat pa. 1SG.S $=$ IRR see=3SG.OBJ while 1SG.S=IRR CERT go 'Remove one of your baking stones (close to you), I will see it and I will go.'

Demonstratives are also used to encode referents which are not available to the senses (that is, they cannot be seen or heard), but need to be individuated or made prominent. In (171), the referent of neika 'fish' is not visible and marked with $n a$ as the speaker wishes to make it prominent. Note that in the following clause neika is marked as definite with nge 'DEF', as the fish becomes the new topic of the narrative:

| $\begin{align*} & E=\text { malua } \tag{171}\\ & \text { 3SG.S=slowly } \end{align*}$ | | raus | neika | na, | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | follow | fish | DEM | | | |
| neika n | nge, | wan | $\mathrm{e}=\mathrm{ga}$ | lo | wus | walaa | |
| fish D | DEF | if | 3sG.S | R see | get | spear | 2sG.pos |

4.12.2.2 Spatial demonstratives wa 'DEM:MED', wa-s 'DEM-PROX' and wa-n ‘DEM-DIST’

These demonstratives encode a three-way contrast based on relative distance (proximal, medial and distal) between the deictic centre and the referent of the noun they modify. The three forms in this set are the medial wa 'DEM:MED', the proximal wa-s 'DEM-PROX' and the distal wan 'DEM-DIST'. The proximal was is used when the speaker wants to encode that a referent is close to the deictic centre or to themselves. The referent of the NP marked with was is always in sight. In (172), the speaker indicates to the hearer to dig the side of a yam mound closer to
him. Note that was co-occurs with the directional taafa 'inlandwards', which shows that the speaker is located on the inland side of the yam mound:

| $\tilde{\mathrm{P}} \mathrm{a}=\mathrm{mro}$ | panei, |
| :--- | :--- |
| $2 \mathrm{SG} . \mathrm{S}: I R R=$ AGAIN | come |

| paa=tla | rogo narp̃an | taafa | wa-s | to. |
| :--- | :--- | :--- | :--- | :--- |
| 2SG.S:IRR=lever | feel | side | inlandwards | DEM-PROX |\quad STAT

'Come, try levering the inland side (close to me).'

In (173), the speaker tells the hearer to get a digging stick that is located close to him:

| pa $a=$ traem | wus | kalwa-s | tkan=ia, | |
| :--- | :--- | :--- | :--- | :--- |
| 2SG.S:IRR=try | get | digging.stick | DEM-PROX | pierce=3SG.OBJ |

$\tilde{p} a=$ takorog $=e a=s$.
$2 \mathrm{SG} . \mathrm{S}: \mathrm{IRR}=$ feel $=3 \mathrm{SG} . \mathrm{OBJ}=3 \mathrm{OBL}$
'Please get this digging stick (close to me), (you'll) pierce it, you'll feel it with it.'
$W a$ is used to encode that the referent of the NP it occurs in is located at an intermediate distance, neither close nor far from the deictic centre. An additional contrast with was is that the referent marked with wa may or may not be in sight. In (174), wa encodes that the referent of nuwai 'water' is located at an intermediate distance from the deictic centre. In this example, it is in sight:
(174)

| Ur=panei, | ur=sraper | lop̃a=e | se... |
| :--- | :--- | :--- | :--- |
| 3PL.S=come | 3PL.S=be.surprised | see=3SG.OBJ | COMP |

| maala | nae | e=kat | tarpagor | nuwai |
| :--- | :--- | :--- | :--- | :--- |
| swamp.harrier | 3SG | 3SG.S=CERT cover | water | DEM:MED |
| 'They came, they were surprised to see that the swamp harrier covered that waterhole.' | | | | |

However, it is also possible for the referent not to be in sight, as with the referent of nalfa 'track' in (175):

```
(175) Tu=plag
nalfa.
1PL.INCL.S=look.for track
```

| Nalfa | fao $=\mathrm{n}$ | plok, | kite | nalfa | fao=n | wago, |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| track | new=POSS:NH | bullock | or | track | new=POSS:NH | pig |

nalfa fao wa
track new DEM:MED
'We look for tracks. New tracks of bulls, or new tracks of pigs, those new tracks.'

The third demonstrative in this series is wa-n 'DEM-DIST'. It encodes a referent as located in a position far from the speaker/deictic centre. Like with wa, the referent can be in sight or not. In (176) and (177), it is in sight:

| Kano | wa-n | e=to | mag | sinoa | put=ia. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| man | DEM=DIST | 3sG.S=IPFV | BEN | Chinese | pull=3sG.OBJ |

'That guy (far from speaker) holds the genitals of Chinese people.' (lit. that guy pulls it for the Cbinese)
(177)

| Moa! Nate wa-n | ku=msau-na | nisa! |
| :--- | :--- | :--- | :--- |
| INTERJ thing \quad DEM-DIST | 2SG.S=want-3SG.OBJ | FOC |
| 'Here! That thing you wanted!' | | |

It is also possible for the referent to not be in sight. In (178), the referent of nangta wan 'that child of ours' is not in sight, as the speaker does not know where that referent is:

| (178) | Kane nan-gta | wa-n, | e=pa-ki | sei | pa? |
| :--- | :--- | :--- | :--- | :--- | :--- |
| but child-1PL.INCL.POSS | DEM-DIST | 3sG=go-TR | where | GO | |
| 'But that child of ours, where did she go?' | | | | | |

In (179), the speaker cannot see the referent of natamol wan 'that man' as it is located in the distant forest:
(179) Mamei, natamol wa-n $\quad \mathrm{tu}=\mathrm{lo} \sim \mathrm{lo}=\mathrm{s} \quad \mathrm{e}=$ mato lag to. father man DEM-DIST 1PL.S.INCL=look~look=3OBL 3SG.S=stay.long up STAT 'Dad, that man we're looking for lives up there.'

In (180), the referent of neika wan 'that fish' is also not in sight:
(180) $\mathrm{Ku}=$ kano lao neika wa-n $\mathrm{e}=$ panei rwae, 2SG.S=cannot spear fish DEM-DIST 3SG.S=come turn 'You cannot spear that fish that comes to turn,'

In addition to its use as a determiner, wa can also function as a particle occuring at the end of the basic clause (see $7.1 .2,10.6$) to mark an event as being spatially close to the speaker or deictic centre. In this instance it is glossed 'THERE':
(181) $\mathrm{Te}=$ wei ur=to lao tapla wa. SBST=TOP 3 PL.S $=$ IPFV stand like.this THERE 'These people are standing there.'

Chapter 5 - Noun Phrases

5.1 Introduction

NPs are headed by nominals, that is, nouns or pronouns. The head is the only obligatory constituent of NPs and all modifiers are optional. NPs in Lelepa are mostly left-headed, although the distributive quantifier sara 'each' is the one modifier that occurs before the head. Two types of NPs can be recognised in the language, according to whether they are headed by a noun $\left(\mathrm{NP}_{\mathrm{N}}\right)$ or by a pronoun ($\left.\mathrm{NP}_{\mathrm{PRO}}\right)$. Each NP type has its own structure and internal order (see fig. 5.1 and fig. 5.2). After presenting the structure of the different NP types in 5.2, heads of NPs are discussed in 5.3 and modifiers in 5.4. Section 5.5 reviews the different grammatical and pragmatic functions NPs can fulfill. All NPs are in bold letters in the examples.

5.2 Noun phrases: structural overview

5.2.1 Structure of $\mathbf{N P}_{\mathrm{N}}$

The structure of NP_{N} is given in fig. 5.1. The head noun N is the only obligatory constituent of NP_{N}. The pre-N slot is filled by the pre-modifier sara 'each'. N and ADJ form a sub-unit (NPCore) comprised of the head and a following adjective phrase (see 5.2.3 and 5.4.2). The adjective phrase is formed with Adjectivals, a functional grouping comprised of adjectives (see 4.5) and adjectival verbs (see 8.3.3). NP ${ }_{\text {Core }}$ is further specified by determiners (DET), possessive pronominals and possessive NPs (POSS), and relative clauses (RC).

Fig. 5.1 Structure of NP_{N}
(PREMOD) [N (ADJ) $]_{\text {NPCoRE }}$ (POSS) (DET) (RC)
NP_{N} can simply be a noun, and has rarely more than three modifiers. In (1), NP_{N} is the single noun koria 'dog', while in (2) the two NPs are the compound nouns natul toa 'chicken egg' and natul maata 'snake egg':
(1) Koria e=rm̃aki.
dog 3sG.s=bark
'The $\operatorname{dog}(\mathrm{s}) \operatorname{bark}(\mathrm{s}) /$ barked' [elicited]
(2) Wan kar=ga to lo~lo natul toa,
if 2DU.S=IRR IPFV look \sim INT egg chicken
ma kar=ga lo parkat natul meaata.
but 2DU.S=IRR look catch egg snake
'If you two are looking for wild chicken eggs, beware of snake eggs.'

NPs can be more complex. The NP_{N} in (3) has three modifiers: the pre-modifier sara 'each', the adjective mauna 'every' and the possessive pronominal agnou '1SG.POSS':
(3) Sara nkarkik mauna agnouur=po wok Vila.
each child every 1SG.POSS 3PL.S=SEQ work p.name
'Every single child of mine went to work in Vila.' [elicited]

The NP_{N} in (4) also has three modifiers but in contrast to (3) they all occur to the right of the head. The possessive pronominal nag '2sG.POss' is followed by the indefinite determiner skei 'INDEF', and a relative clause introduced by the relativiser na 'REL' occurs in final position:
(4) Tera nag skei na a=lag ku=lom̃askoso=s.
garden 2SG.POSS INDEF REL 1SG.S=say 2SG.S=be.proud.of=3SG.OBJ
'(Here's) one of your gardens that I think you're proud of.'

5.2.2 Structure of $\mathbf{N P}_{\text {PRO }}$

$\mathrm{NP}_{\mathrm{Pro}}$ is headed by a pronoun (PRO). In addition to the head, it has a slot filled by the determiner na 'DEM' or a relative clause:

Fig. 5.2 Structure of $\mathrm{NP}_{\text {PRO }}$

Similarly to an NP_{N}, an $\mathrm{NP}_{\text {Pro }}$ often occurs without modifiers, as seen in (5) and (6). Pronouns from different subclasses are able to head an $\mathrm{NP}_{\text {PRO: }}$ Konou ' 1 SG ' in (5) is a personal pronoun
(see 4.6.1), while tena 'SBST.DEM' in (6) is a demonstrative pronoun formed with the substantiviser te and the demonstrative na (see 4.6.2):

| Ee, \quad konou | a=rog=ea. |
| :--- | :--- | :--- |
| no \quad 1SG | 1SG.S=hear=3SG.OBJ |
| 'No, I heard it.' | |

| (6) | A=ga | til | tena. |
| :--- | :--- | :--- | :--- |
| | 1SG.S $=$ IRR | tell | SBST.DEM |
| | 'I will tell this one.' | | |

In (7) the personal pronoun konou occurs with the demonstrative na 'DEM'. When modifying pronouns the demonstrative has a contrastive function and gives the referent of the NP discourse prominence (see 5.5.2.5):

| Tetei | $\mathrm{e}=\mathrm{kat}$ | $\mathrm{rog}=\mathrm{ea}$ | taplange, |
| :--- | :--- | :--- | :--- |
| mother | 3sG.S=CERT | hear=3SG.OBJ | like.this |

| $\mathrm{e}=$ marop̃a=e | lag | konou | na, |
| :--- | :--- | :--- | :--- |
| 3SG.S=think=3SG.OBJ | COMP | 1 SG | DEM |

a=kat psapula to na
1SG.S=CERT say.something.wrong STAT DEM
'Mother heard it like this, she thought that I, I definitely said something wrong.

In (8) the demonstrative pronoun tena 'this one' takes a relative clause introduced by na 'REL':

|) | Tena
 SBST.DEM | na REL | ur $=$ pa$3 \mathrm{PL.S}=$ go | mag
 BEN | maala peregrine.falcon | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | |

ur=pi nalaklak.
3PL.S=COP white.eye
'As for those who went to plant for the peregrine falcon, they were white-eyes.'

5.2.3 The core unit of $\mathbf{N P}_{\mathrm{N}}: \mathbf{N P}_{\text {Core }}$

$\mathrm{N}+\mathrm{ADJ}$ form a unit which cannot be interrupted by other NP constituents. This unit is called NP ${ }_{\text {CORE }}$. As shown in fig. 5.1, possessives, determiners and relative clauses occur after the ADJ slot, which suggests that $\mathrm{N}+\mathrm{ADJ}$ forms a unit within NP_{N}. This order is illustrated in (9) which shows a possessor NP following NP ${ }_{\text {Core }}$. The possessive enclitic $=g$ 'POSs: H ' attaches to NP Core and the possessor NP Namuan 'p.name' follows:
(9)

| | N | ADJ | POSS |
| :--- | :--- | :--- | :--- |
| E=pi | rarua | kiki=g | Namuan. |
| 3sG.S=COP | canoe | be.small=POSS:H | p.name |
| 'It is Namuan's small canoe.' | | | |
| [elicited] | | | |

In (10), Namuan occurs between the noun rarua 'canoe' and the adjectival kiki 'be small'. In contrast to (9), kiki modifies Namuan which is the head of the possessor NP and not rarua, which functions as the head of the whole NP:
(10)

| | N | POSS | |
| :--- | :--- | :--- | :--- |
| E=pi | rarua=g | Namuan | kiki. |
| 3sG.S=COP | canoe= POSS:H | p.name | be.small |
| 'It is little Namuan's canoe' | | | |
| '*It is Namuan's small canoe.' | | | |
| [elicited] | | | |

Similarly, other forms occurring in the POSS slot cannot occur inside NPCore. In (11), the possessive pronominal aginta '1PL.INCL.POSS' occurs after the adjective fao 'new' and follows NP Core:

| | | N | ADJ | POSS |
| :--- | :--- | :--- | :--- | :--- |
| Tu=laelae, | $\mathrm{e}=\mathrm{pi}$ | ntau | fao | aginta. |
| 1PL.INCL.S=be.happy
 'We're happy, it's our new year.' | | | | |
| Welicited] | | | | |

In contrast, example (12) shows that is it ungrammatical for possessive pronominals to occur inside NP Core:

| | | N | ADJ | POSS |
| :--- | :--- | :--- | :--- | :--- |
| *Tu=laelae, | $\mathrm{e}=\mathrm{pi}$ | ntau | aginta | fao. |
| 1PL.INCL.S=be.happy | 3sG.S=COP | year | 1PL.INCL.POSS | new |
| We're happy, it's our new year.' | | | | |
| [elicited] | | | | |

Determiners have scope over $\mathrm{NP}_{\text {Core }}$ rather than over one of their constituents. In (13): matua 'be old' occurs in the ADJ slot and modifies the compound noun naforfor nanu 'bundle of coconuts'. It is followed by the determiner skei 'INDEF':
(13)

| | | N | | ADJ | DET |
| :--- | :--- | :--- | :--- | :--- | :--- |
| E=pa | lkot-ia | naforfor | nanu | matua | skei. |
| 3sG.S=go | tie-3sG.OBJ | bundle | coconut | be.old | INDEF |
| 'He went to tie it to an old bundle of coconuts.' | | | | | |

The determiner has scope over $\mathrm{N}+\mathrm{ADJ}$ rather than on one of these two constituents, as shown in (14) and (15) which are ungrammatical. In (14), the determiner skei cannot occur between N and ADJ , and in (15) it cannot occur between the nouns forming the compound:

| | | N | | DET | ADJ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| *E=pa | lkot-ia | naforfor | nanu | skei | matua. |
| 3sG.S=go | tie-3SG.OBJ | bundle | coconut | INDEF | be.old | 'He went to tie it to an old bundle of coconuts.' [elicited]

| | | N | DET | N | ADJ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $*$ E=pa | lkot-ia | naforfor | skei | nanu | matua. |
| 3SG.S= go tie-3SG.OBJ bundle | INDEF | coconut | be.old | | |
| 'He went to tie it to an old bundle of coconuts.' | | | | | |
| [elicited] | | | | | |

5.3 Heads of NPs

5.3.1 Head nouns

A head noun can be a free noun, a compound noun, a bound noun or bound compound noun. Free nouns can be common or proper (see 4.2.2). In (16), the head is the free common noun nawi 'yam' while in (17), the head is the free proper noun Artok 'p.name':

Ur=mato mas nawi | nag-na. |
| :--- |
| 1PL.EXCL.S=IPFV cut yam | ASS-3SG.POSS

(17) $\quad \mathrm{Au}=\mathrm{ga} \quad$ fa \quad raika \quad Artok

1PL.EXCL.S=IRR go:IRR spear.fish p.name
'We would go spear fish at Artok.'

NPs can also be headed by compound nouns. In (18) there are two NPs headed by the compound noun tatau tkarkei 'last-born baby'. The first NP is only comprised of a head, while in the second NP the possessive pronominal agnou '1sG.POSs' occurs as a modifier:
(18) Bruce, nae, $\mathrm{e}=\mathrm{pi}$ tatau tkarki, tatau tkarki agnou. p.name 3sG 3SG.S=COP baby last.born baby last.born 1SG.POSS
'As for Bruce, as for him, he is the last born baby, my last born baby.'

Bound nouns take a possessive suffix to encode their possessor in person and number (see 3.2.1, 6.3.1). They head NPs like any other nouns. In (19), the bound noun namta-go 'eye1sG.Poss' heads an NP without modifiers:
(19) Namta-go e=lag sa,
eye-1SG.POSS 3SG.S=maybe be.bad

| a=lag | kano | lopa | tena | $\mathrm{e}=$ to | a=ñae. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1SG.S=maybe | cannot | see | SBST.DEM | 3SG.S=stay | LOC=away |

'My eyes may be bad, I may be unable to see this one which is far away.'
In (20) the bound noun nãatko-ra 'body-3pl.POSs' is modified by wia 'be good'. The suffix -ra '3PL.POSS' attaches to the bound noun and wia follows, as expected from fig. 5.1:
(20) Nap̃atko-ra wia, ur=ga tae paam=ra.
body-3PL.POSS be.good 3PL.S=IRR able eat=3PL.OBJ
'As for their nice bodies, they would be able to eat them.'

5.3.2 Head pronouns

5.3.2.1 Personal pronouns

Personal pronouns are free forms which mark their referent for person and number and mostly encode human referents (see 4.6.1). They head NPs as shown in (21) to (22):

| A=lag, "konou | a=msau-na | lag | a=ga | fa." |
| :--- | :--- | :--- | :--- | :--- |
| 1SG.S=say 1SG | 1SG.S=want-3SG.OBJ | COMP | 1SG=IRR | go:IRR |
| 'I said, "I want to go."" | | | | |

(22) $\mathrm{E}=$ sua fonu, $\mathrm{e}=\mathrm{lag}$, "fonu, nag $\mathrm{ku}=$ tae slae-ou?" 3SG.S=meet turtle 3 SG.S=say turtle 2 SG 2SG.S=can help=1SG.OBJ 'He met the turtle and he said, "Turtle, can you help me?""

| (23) Naara \quad ar=po | palgat | nasum̃a | tap | nge, | 1948. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3pl | 3DU.S=SEQ | open
 'Then they opened the church, in 1948.' | be.taboo | DEF | 1948 |
| | | | | | |

Fig. 5.2 shows that personal pronouns can be modified by the determiner na 'DEM' or by a relative clause. When a personal pronoun is modified by $n a$, the NP is pragmatically contrastive
(see 5.5.2.5). In (24), the referent of nae is encoded with a personal pronoun, showing that it is a previously established topic. In addition, nae is modified with na which marks the NP as a contrastive topic. Similarly, in the following clause, the contrast moves to k.utu 'louse' which is modified by na 'DEM' and becomes the new contrastive topic:

| E=lag, | "nae | na, | $\mathrm{e}=\mathrm{ga}$ | fi | nate | nge, |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3SG.S=SAY | 3SG | DEM | 3SG.S=IRR | COP:IRR | thing | DEF |

| kutu | na, | $\mathrm{e}=\mathrm{ga}$ | fatu=s | $\mathrm{e}=$ go | pag." |
| :--- | :--- | :--- | :--- | :--- | :--- |
| louse | DEM | 3SG.S=IRR | step=3SG.OBJ | 3SG.S=IRR | climb |

'He said, "As for him, he will be this thing, and as for louse, he will step on him to climb.""

In (25) and (26), the personal pronouns naara '3pl' and kenem '1PL.EXCL' are modified by relative clauses introduced by na 'REL' (underlined). Here, the function of these RCs is to delimit the referent of the pronouns more specifically, which is the same function that RCs have when they modify nouns (see 12.6.1):

| Naara \quad na \quad ur=panmei, | a=mtouki=ra. | |
| :--- | :--- | :--- |
| 3PL | REL \quad 3SG.S=come | 1SG.S=fear=3PL.OBJ |
| 'As for those who came, I'm afraid of them.' | | |

'As for those who came, I'm afraid of them.'
[elicited]

| Kenem | na | nagi | kenem | $\mathbf{e}=\mathbf{p i}$ | K, |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | 1PL.EXCL | REL | name | 1PL.EXCL | 3SG.S=COP |

| $\mathrm{ur}=\mathrm{ti}$ | msau-na | mau. |
| :--- | :--- | :--- |
| 1PL.EXCL.S=NEG | want-3SG.OBJ | NEG2 |

'As for us whose name is K., we don't want this.' [elicited]

5.3.2.2 Demonstrative pronoun tena

The demonstrative pronoun tena 'SBST.DEM' is a combination of the substantiviser te 'SBST' and the demonstrative na (see 3.4.2.4, 4.6.2). It encodes a third person referent regardless of its number and humanness/animacy status: it can have singular, plural, human, non-human or inanimate referents. It can only be modified by relative clauses. Like other NPs, NPs headed by tena can bear a variety of grammatical and pragmatic functions (see 5.5). In (27), tena heads an NP without modifiers. Its referent is non-human and singular:
E=paam tena.
3SG.S=eat SBST.DEM
'He ate this one.'

In contrast, the referent of tena in (28) is plural and human:
(28) Tena ur=to si tapla, ur=ga fat bunia. SBST.DEM 3PL.S=IPFV peel like.this 3PL.S=IRR do:IRR roast
'As for these ones who are peeling (vegetables) like this, they will make the roast.'

In (29) there are two NPs headed by tena which share the same referent. In the first NP tena functions as the object of the serial verb kil rogo 'try digging'. In the second NP tena is modified by a relative clause which further specifies the referent, a kind of yam called wailu:

| A=ga | kil=rogo | tena, | tena | na | e=pi | wailu. |
| :--- | :---: | :---: | :---: | :--- | :--- | :--- |
| 1SG.S=IRR | dig=feel | SBST.DEM | SBST.DEM | REL | 3SG.S=COP | yam.sp |
| 'I will try digging this one, this one that is a wailu.' | | | | | | |

5.3.2.3 Demonstrative pronoun tenge

Like tena, tenge 'SBST.DEF' is a derived pronoun with a third person referent (see 3.4.2.4, 4.6.2.2). Its base is the determiner nge 'DEF'. In contrast to tena its referent is abstract, as seen in (30), in which the referent of tenge is the narrative that the speaker just produced:
(30) Tenge $\mathrm{e}=\mathrm{pi}$ histri $=\mathrm{n} j \mathrm{jioj}$ nge $\mathrm{e}=$ laotapla mato. SBST.DEF 3SG.S=COP history=POSS:NH church DEF 3SG.S=stand like.this STAT 'This was the history of the church as it stands.'

5.3.3 Determiners as heads

As seen with tena and tenge, the determiners na 'DEM' and nge 'DEF' derive pronouns with the substantiviser te to head NPs. However, there are instances of determiners functioning as heads of NPs without apparent derivation. This is the case with skei 'INDEF', tete 'some', and nge 'DEF' but it is not attested with na 'DEM'. Note that te does not combine with te 'SBST', Because of a semantic incompatibility between them. Skei is inherently indefinite, while te creates substantives that are typically definite. In (31) skei is the head of an NP. In this example, the speaker assists the hearer who is digging a yam using a digging stick. The hearer spears the yam with his digging stick and breaks out a piece, which prompts the speaker's comment. Skei functions as the object of the serial verb lao $\tilde{p r a}$ lwa 'spear split remove $>$ spear and cut out':

| Tetei! \quad Ku=laop̃ra \quad lwa | skei! | | |
| :--- | :--- | :--- | :--- |
| mother | 2SG.S=spear | split | removed INDEF |
| 'Gosh! You speared (it) and cut one (piece) out!' | | | |

Similarly to skei, tete 'some' cannot derive a pronoun with te as it is inherently indefinite. In (32), tete functions as an object NP:

| Ar=msau-na | lag | ar=ga | mro | paam | tete. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1DU.EXCL.S=want=3SG.OBJ. COMP | 1DU.EXCL.S=IRR | AGAIN | eat | some | |
| 'We want to eat some again.' | | | | | |

In (33), nge functions as the head of an NP. In this example, speakers A and B are in Speaker A's garden. Speaker A gives a reason as to why the soil is sticky by using an adverbial clause of reason introduced with nlakan 'because' (see 12.5.2). Speaker B concurs with him by using nge as an NP referring to the whole adverbial clause of reason in Speaker's A utterance:
(33) Speaker A:

| Nlakan | nuwai e=sara taafa | narum̃a, | e=sara | wuru | wara. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| because water | 3SG.S=run inlandwards | lake | 3SG.S=run | pass | here |

Speaker B:
$\begin{array}{llll}\text { Ao, } & \mathrm{e}=\mathrm{pi} & \text { nlakan } & \text { nge. } \\ \text { yes } & \text { 3sG.S=COP } & \text { because } & \text { DEF }\end{array}$
Speaker A: 'Because the water runs from the lake up there, and it runs through here.'
Speaker B: 'Yes, that's because of this.'

5.4 Modification within NPs

5.4.1 Pre-NP ${ }_{\text {Core }}$ modification: sara 'each'

The pre-modifier sara 'each' is the only form able to occur in this slot. Semantically, it is a quantifier, but its unique distribution calls for a different treatment to other quantifying lexemes occurring in the NP. Sara is a distributive quantifier which individuates individual members of a given set. Note that it is not a floating quantifier and that it only functions to modify the head of an NP. In (34) and (35) it is the only modifier:

| Te=matua | agnem | ur=tumalua | sara | nali | A=fate |
| :--- | :--- | :--- | :--- | :--- | :--- |

'Our ancestors left each place on Efate.'

```
Sara p̃og, a=pa-ki n-taakae-na.
    each night 1SG.S=go-TR N.SPEC-dance-NMLZ
    'Each night, I went to the nightclub.'
```

There are only few examples of NPs with sara occurring with other NP modifiers in texts, thus some combinations of sara and NP modifiers were obtained through elicitation. In (36) it occurs with the possessive pronominal agnou '1sG.POSs':
(36) Sara nkarkik agnou, ur=po wok Vila.
each child 1SG.POSS 3PL.S=SEQ work p.name
'As for each of my children, they went to work in Vila.'
[elicited]

In (37), sara occurs with the adjective mauna 'every' and the possessive agnou '1sG.POSs'. In this example, mauna interacts with sara which expresses distributivity by emphasising on the exhaustive plurality of the referent:
(37) Sara nkarkik mauna agnou, ur=po wok Vila.
each child every 1SG.POSS 3PL.S=SEQ work p.name
'As for every single child of mine, they went to work in Vila.'
'As for every single child of mine, they went to work in Vila.'
[elicited]

In (38) sara occurs with a relative clause. In this example, it individuates members of a set, while the relative clause further specifies the referent by locating it in space:

| (38) | Sara each | rarua
 canoe | na REL | ur=mato
 3PL.S=stay.long | nakerker
 sand | to, STAT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\mathrm{e}=\mathrm{pi}$ | te $=\mathrm{g}$ | | natam̃ol sk | \sim skei. | |
| | 3sG.S=COP | SBST | OSS:H | person RED | \sim INDEF | |
| | 'Each canoe [elicited] | that is | tioned | n the beach belo | to a parti | |

The textual example in (39) shows sara occurring with two other NP modifiers: the reduplicated adjective fanfanpata 'different' and a relative clause. This example is taken from a story in which the main characters are looking down a valley planted with banana trees on which many birds are feeding. The referent of maanu 'bird' is highly specified: it is modified by the adjective fanfanpata 'different' to refer to different species of birds, while the relative clause delimits the referent further by reminding what the referent is doing (i.e. eating the bananas).

Finally, sara individuates each member of the set constituting the referent (i.e. each different species of birds):

| Sara maanu | fan~fanpata | na | ur=to | pat=ia tapla, |
| :--- | :--- | :--- | :--- | :--- |
| each bird | INT \sim different | REL | 3PL=IPFV | do=3SG.OBJ |
| 'As for each different species of birds that were doing it like that,' | | | | |

In (40) and (41), sara occurs inside possessor NPs in the POSS slot (see 5.4.3). Note that brackets indicate the outer NP boundaries and the internal boundaries of the POSS slot. In (40), sara does not have scope over the head of the NP maanu 'bird' but modifies the head of the possessor phrase maanu 'bird':
(40) Maanu, $\left[\operatorname{maanu}\left[=\mathrm{n} \text { sara maanu } u_{\text {Poss }}\right]_{\mathrm{NP}}\right] \quad$ ur=to panei paam=ia. bird bird=POSS:NH each bird 3PL.S=IPFV come eat=3SG.OBJ 'Birds, birds of each kind came to eat it.'

Similarly, in (41) sara occurs inside a possessor phrase, to modify the head matmai 'tomorrow' with another modifier, the possessive pronominal agnou '1sG.POSS'. The head of the NP is the noun nawesina 'work':

| (41) | Tenge, SBST DEF | $\begin{aligned} & \mathrm{e}=\mathrm{pi} \\ & 3 \mathrm{SG} . \mathrm{S}=\mathrm{COP} \end{aligned}$ | [nawesina[=n | sara
 each | matmai
 tomorrow | agnou $\left._{\text {Poss }}\right]_{\mathrm{NP}}$]
 1SG.POSS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\mathrm{a}=$ to | pat=ia. | | | | |
| | 1SG.S=IPFV | do=3SG. | | | | |
| | ${ }^{\text {'This, it was }}$ | everyday w | k that I used to do.' | | | |

In (42), sara is reduplicated. This property sets sara apart from many other NP modifiers which cannot be reduplicated. ${ }^{1}$ In this example, reduplication serves as an intensifier of the distributive meaning of sara, :

| sar \sim sara | natamol | ur=to | nakamal | to. |
| :--- | :--- | :--- | :--- | :--- |
| RED \sim each | person | 3PL.S=stay | kava.bar | STAT |
| 'Every single person is at the kava bar.' | | | | |
| $[$ elicited] | | | | |

[^16]
5.4.2 Modification within NP core: ADJ

5.4.2.1 The ADJ slot

The ADJ position is filled by members of two distinct word classes, adjectives and stative intransitive verbs (see 4.5, 8.3.3). Despite differences in their syntactic distribution, adjectives and stative intransitives share the property of modifying nouns. In this section, forms occurring in this slot will be referred to under the label 'adjectivals'. In (43) to (45), intransitive verbs modify nouns in the ADJ slot. In (43), the intransitive verb wia 'be good' modifies the head noun mala 'time':
(43) $\mathrm{Tu}=$ laelae malange, tu=pitlaka mala wia.

1PL.S.INCL=happy then 1PL.S.INCL=have time be.good
'We were happy then, we had a good time.'

In (44), the intransitive verb sa 'be bad' modifies the head noun srago 'thing':

| (44) | Kane | $\mathrm{e}=\mathrm{ga}$ | fi | srago | sa, |
| :--- | :--- | :--- | :--- | :--- | :--- |
| but | 3SG.S=IRR | COP:IRR | thing | be.bad | |

| $\mathrm{e}=\mathrm{ga}$ | faam | tena | nmau-na | $\mathrm{e}=$ to=s. |
| :--- | :--- | :--- | :--- | :--- |
| 3SG.S=IRR | eat:F | SBST.DEM | feather-3SG.POSS | 3SG.S=stay=3OBL |

'But if he is a malevolent being, he will eat the one with feathers on.'

In (45), the intransitive verb frau 'be long' modifies the head noun nakai 'traditional.story':

| E=ti | pi | nakai | frau | mau. |
| :--- | :---: | :--- | :--- | :--- |
| 3SG.S=NEG | COP | traditional.story | be.long | NEG2 |
| 'It is not a long story.' | | | | |

In contrast, in (46) to (49) adjectives modify nouns in the ADJ slot. In (46), the adjective ftes 'different' modifies the head noun naora 'landing':
(46)

| E=wus | naora | ftes | panmei. |
| :--- | :--- | :--- | :--- |
| 3sG.S=follow landing | different | COME | |
| 'He was following the different landings.' | | | |

In (47), the adjective $\tilde{m} a s k o s k o$ 'mature' modifies the head noun natamol 'people':
(47)

| Tu=panei | pi | natam̃ol | maskosko. |
| :--- | :--- | :--- | :--- |
| 1PL.INCL.S=come
 'We became adults.' | COP | people | mature |

In (48), the adjective fao 'new' modifies the compound noun nasuma tap 'church'. Note that tap 'be taboo' is an adjectival verb modifying the noun nasuma 'house. Nasuma tap is a common collocation that has been lexicalised and is regarded as a compound:
(48) Nlagiot e=pat sa-ki-nia, ur=mro pat nasuma tap fao. cyclone 1PL.S=make be.bad-TR-3SG.OBJ 3PL.S=again make house be.taboo new 'The cyclone destroyed it, they built a new church again.'

In (49), the adjective naruru 'cold' modifies the head noun nuwai 'water'. Note that in this example, jumping in cold water means getting into trouble:
(49) P̃ete e=lag ' $\tilde{a} a=m u n \quad$ sei? pa $a=m u n \quad$ sei?
p.name 3SG.S=say 2SG.S:IRR=drink where 2SG.S:IRR=drink where

```
Kane ku=sok nuwai naruru.
but 2SG.S=jump water cold
'P̃ete means 'where should you drink, where should you drink?' But eventually you get into
trouble.' (lit. you jump in cold water)
```


5.4.2.2 The adjective phrase

Adjectivals co-occur and are ordered within the NP. While this is difficult to establish from the corpus since co-occurrences of adjectivals are rare, through elicitation coupled with textual data it was possible to test the ordering of adjectivals and determine that the parameters conditioning this ordering are sensitive to their semantic type (see 4.5; Dixon 1977b:31). The following patterns are observed:

1. The adjectivals of value wia 'be good' and sa 'be bad; very', can function as intensifiers and occur last.
2. The ordering of adjectivals is free when they are of the same semantic type.
3. Adjectivals of dimension and colour and of dimension and age are freely ordered.
4. Adjectivals of colour and age have a fixed order: colour $>$ age.

Pattern 1 is shown in (50) to (59). The adjectival of value wia 'be.good' must occur before taare 'be white', as seen in (50) and (51):

| $\mathrm{E}=\mathrm{pi}$ | nasumna | taare | wia | skei. |
| :--- | :--- | :--- | :--- | :--- |
| 3sG.S=COP | house | be.white | be.good | INDEF |
| 'It is a nice white house.' | | | | |
| [elicited] | | | | |

| *E=pi | nasum̃a | wia | taare | skei. |
| :--- | :--- | :--- | :--- | :--- |
| 3SG.S=COP | house | be.good | be.white | INDEF |
| 'It is a nice white house.' | | | | |
| [elicited] | | | | |

Similarly, in (52) and (53), the adjectival of value sa 'be bad' must follow the adjectival of colour taare 'be white':
(52)

| E=pi | koria | taare | sa | skei. |
| :--- | :--- | :--- | :--- | :--- |
| 3sG.S=COP dog | be.white | be.bad | INDEF | |
| 'It is a bad white dog.' | | | | |
| [elicited] | | | | |

| *E $=$ pi | koria | sa | taare | skei. |
| :--- | :--- | :--- | :--- | :--- |
| 3sG.S=COP\quad dog | be.bad | be.white | INDEF | |
| 'It is a bad white dog.' | | | | |
| [elicited] | | | | |

In (54), wia be good' follows laapa 'be many', then the possessive aginta occurs. However in (55), aginta cannot occur between the adjectivals. This shows that laapa and wia form a constituent in which other word classes cannot occur:
(54) Noana kas laapa wia aginta ur=to tako taafa fruit tree be.many be.good 1PL.INCL.POSS 3PL.S=stay outside.yard inlandwards
wara-e to.
here-ADD STAT
'Our many and good fruits are outside of the yard inland there (close to you).'

| *Noana | kas laapa | aginta | wia | ur=to | tako | taafa |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| fruit | tree many | 1PL.INCL.POSS | be.good | 3PL.S=stay | outside.yard | inlandwards |
| wara-e | to. | | | | | |
| here-ADD | stay | | | | | |
| 'Our many and good fruits are outside of the yard inland.' | | | | | | |
| [elicited] | | | | | | |

Note that sa 'be bad; very' can also function as an intensifier. In (56) and (57), it occurs as an intensifier of the adjectival verb kiki 'be small' to give the meaning 'very small', and in (58) with the adjectival verb kasua 'be strong', to give the meaning 'very strong':

| E=to | lega | nalegana | kiki | sa |
| :--- | :--- | :--- | :--- | :--- |
| 3sG.S=IPFV sing | song | be.small | very | |
| 'He was singing the very short song to the octopus.' | | | | |

nge paki wita.
DEF to octopus
'He was singing the very short song to the octopus.'
(57) Nalaklak ur=pimaanu kiki sa laapa na e=to.
bird.sp 3pL.S=COP bird be.small very be.many REL 3sG.S=stay
'The white-eyes are the many very little birds that stay.'
(58) Marifatu $e=p i$ naota skei na $e=p i \quad$ naota kasua sa skei. p.name 3SG.S=COP chief INDEF REL 3SG.S=COP chief be.strong very INDEF 'Marifatu was a chief who was a very authoritarian chief.'

Recall form 4.7.1.2 that sa can also be an intensifier of adverbs, as seen in (59):

```
Ur=faam \tilde{mrafraf sa.}
3SG.S=eat:F quickly very
'They ate very quickly.'
[elicited]
```

Pattern 2 is illustrated in (60) and (61). The adjectivals of dimension pela 'be big' and roona 'huge' are freely ordered as they belong to the same type:
(60) $\mathrm{E}=\mathrm{pi}$ faatu p̃ela rgona.

3SG.S=COP stone big huge
'It is a huge big stone.' [elicited]
E=pi \quad faatu

| rgona |
| :--- |
| 3sG.S=COP |
| 'It is a huge big stone. |

| stone. |
| :--- |
| [elicited] |

Pattern 3 is illustrated in (62) and (63) with kiki 'be small' (dimension) and fao 'new' (age) which are freely ordered:
(62)

| $\mathrm{E}=\mathrm{pi}$ | rarua | $\underline{\text { fao }}$ | kiki=g |
| :--- | :--- | :--- | :--- |
| 3SG.S=COP | canoe | be.new | be.small=POSs:H |
| 'It is Namuan's new small canoe.' | | | |
| [elicited] | | | |

(63)

| $\mathrm{E}=$ pi | rarua | kiki | fao $=\mathbf{g}$ |
| :--- | :--- | :--- | :--- |
| 3SG.S=COP | canoe | be.small | new=POSS:H |

Namuan.

p.name

Namuan.
p.name
'It is Namuan's new small canoe.' [elicited]

Pattern 3 is also illustrated in (64) and (65) with the adjectivals of colour taare 'be white' and dimension pela 'big' being freely ordered:

| E=pi | koria | taare | p̃ela | skei. |
| :--- | :--- | :--- | :--- | :--- |
| 3sG.S=COP$\quad \operatorname{dog}$ | be.white | big | INDEF | |
| 'It is a big white dog.' | | | | |
| [elicited] | | | | |

(65)

| E=pi | koria | p̃ela | taare | skei. |
| :--- | :--- | :--- | :--- | :--- |
| 3SG.S=COP | dog | big | be.white | INDEF |
| 'It is a big white dog.' | | | | |
| [elicited] | | | | |

Pattern 4 is illustrated in (66) and (67). The adjectival of colour taare 'be white' must occur before the adjectival of age fao 'be new':

| $\mathrm{E}=\mathrm{pi}$ | nasumna | taare | fao | skei. |
| :--- | :--- | :--- | :--- | :--- |
| 3SG.S=COP | house | be.white | new | INDEF |

3sG.s=COP house
'It is a nice white house.' [elicited]

| (67) | * $\mathrm{E}=\mathrm{pi}$ | nasum̃a | fao | taare |
| :--- | :--- | :--- | :--- | :--- |
| 3sG.S=COP | house | new | be.white | INDEF |
| 'It is a nice white house.' | | | | |
| [elicited] | | | | |

Based on the data above, a hierarchy of adjective order is suggested in fig. 5.3. It can be compared to the hierarchy proposed in Dixon (1982) given in fig. 5.4. In these hierarchies, " $>$ " indicates left to right precedence. Note that the Lelepa hierarchy does not include some of Dixon's categories (physical property, speed and human propensity), as these were not tested. For the types investigated (age, colour, dimension and value), the two hierarchies are reversed:

In Lelepa, adjectives of colour occur first in the adjective phrase while those of value are last, but Dixon's hierarchy predicts the opposite.

Fig. 5.3 Adjective order in Lelepa

| ADJ [- VALUE] > ADJ [+VALUE] |
| :--- |
| COLOUR > AGE > VALUE |

Fig. 5.4 Dixon (1982) hierarchy of adjective order
VALUE > DIMENSION > PHYSICAL PROPERTY > SPEED > HUMAN PROPENSITY > AGE > COLOUR

5.4.3 The POSS slot

This slot is filled by possessive pronominals, personal pronouns, and possessor NPs encoding the possessor of the head noun. Possessor NP follows a possessive enclitic which can be either $=n$ 'POSS:NH’ or $=g$ 'POSS:H’ (see 6.4.2, 6.4.3). Possessive pronominals, personal pronouns and possessor NPs are in complementary distribution in the poss slot, as shown in (68) to (75). Note that agnou ' 1 SG.POSS' in (75) is a possessive pronominal:

| (68) | $\mathrm{E}=\mathrm{pi}$ | rarua=g |
| :--- | :--- | :--- |
| 3sG.S=COP \quad canoe=POSS:H | Thompson. | |
| 'It is Thame | | |
| | [elicited] | |

| E=pi | rarua | nae. |
| :--- | :--- | :--- |
| 3SG.S=COP | canoe | 3SG.POSS |
| 'It is his canoe.' | | |
| [elicited] | | |

(70) $\begin{array}{lll}\mathrm{E}=\mathrm{pi} & \text { np̃ou } & \text { konou. } \\ & \text { 3sG.S=COP } & \text { head }\end{array} \quad \begin{aligned} & \text { 1SG }\end{aligned}$ 'It is my head.' [elicited]
(71) ${ }^{*} \mathrm{E}=\mathrm{pi}$ rarua nae $=\mathrm{g}$ Thompson. [elicited]
(72) ${ }^{*} \mathrm{E}=\mathrm{pi}$ nae rarua $=\mathrm{g}$ Thompson. [elicited]
(73) $\underset{\text { EE=pi }}{ }$ np̃ou=n konou. [elicited]
(74) ${ }^{*} \mathrm{E}=\mathrm{pi} \quad$ nãou $=\mathrm{g}$ konou. [elicited]

(75) $\underset{\substack{* E=p i \\[\text { elicited] }}}{* \text { np̃ou }}$ konou agnou.

5.4.3.1 Possessive pronominals

Possessive pronominals modify the head noun. They are free forms which encode the person and number of a possessor, as well as alienable, or general, possession. They follow NPCore in the unmarked order given in fig. 5.1. However, see 6.3 .3 for a variation in order in which they precede the head. They can derive pronouns with the substantiviser te 'SBST' (see 3.4.2.3). Possessive pronominals can be the only modifiers of the head noun. In (77) wala 'spear' is modified by nae '3SG.POSs':

| $\mathrm{E}=$ to | se, | e=slat | wala | nae, | e=sua | pa-ki | lau. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3SG.S=stay | while | 3SG.S=carry | spear | 3SG.POSS | 3SG.S=go.down | go-TR | seawards |
| 'He stayed, | en he | carried his sp | r, he | t down | the shore.' | | |

Similarly, in (78), the head taatua 'paternal grandmother' is modified by agnou '1sG.POss'. The NP taatua agnou 'my paternal grandmother' is a left-dislocated topic:

| (78) | Taatua | agnou, | nagi-na | e=pi |
| :--- | :--- | :--- | :--- | :--- |
| paternal.gdmother | 1SG.POSS | name-3SG.POSS | 3SG.S=COP | Lopa. |
| p.name | | | | |

Possessive pronominals also co-occur with other NP modifiers. In (79) the possessive pronominal agnem '1PL.EXCL.POSs' follows the adjectival tap 'be taboo':

In (80) to (82), possessive pronominals precede definite and indefinite determiners, which also encode specificity. Since possessive pronominals contribute to a narrow specification of the referent of the NP by marking possession, one may expect that possessives cannot occur with specific determiners, as in languages like French or English which prohibit strings such as
*le/un mon livre and *the/a my book. However, in Lelepa possessive pronominals occur with determiners, thus the referent may be redundantly specified:

| (80) | Gaio, | $\mathrm{a}=\mathrm{ga}$ | til | kai | agnou | nge |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | okay | 1SG.S=IRR | tell | folktale | 1sG.POSS | EF |
| | 'Okay | tell this story | min | | | |

(81) te=matua aginta skei na ur=pea lo parkat kinta SBST=be.old 1PL.INCL.POSS INDEF REL 3PL.S=first look catch 1PL.INCL 'Some of our elders who first look after us.'
te=matua aginta tete
SBST=be.old 1PL.INCL.POSS some
"Some of our elders.'
[elicited]

5.4.3.2 Possessor NPs

Possessor NPs are embedded within the main NP. Evidence for embedding is given by the fact that possessor NPs can expand, as shown by (87) and (88). Possessor NPs can be headed by a single noun or a compound noun. They are preceded by either of the two possessive enclitics $=n$ 'POSS:NH' or $=g$ 'POSS:H' which attach to the last constituent of NP ${ }_{\text {Core }}$, which can be the head noun or an adjectival. The occurrence of a particular clitic over the other depends on whether the referent of the possessor is human or non-human (see 6.4.2, 6.4.3). In (83) srago 'thing' takes the enclitic $=n$ 'POSS:NH'. Srago is possessed by the non-human possessor maket 'market':

| Ur=mur | suk~suk | srago $=$ n |
| :---: | :---: | :---: |
| 3pL.S=bring | tighten \sim INT | thing=POSS:NH |
| ${ }^{\prime}$ They prepat | he market pr | uce.' |

In contrast, in (84) mameia 'father' takes $=g$ 'POSs: H ' as it is possessed by the human possessor Kaltalu 'p.name':
(84) Mameia $=$ g Kaltalu $\mathrm{e}=$ panei pan pa $\mathrm{e}=\mathrm{rki}$ konou=s. father=POSS:H p.name 3SG.S=come GO GO 3SG.S=tell 1SG=3PL.OBJ 'Kaltalu's father came and told me about it.'

When the possessed NP has a complex NP $_{\text {Core, }}$, the possessive enclitic attaches to its final element. In (85) $\mathrm{NP}_{\text {Core }}$ is formed with the head noun mala 'time' and the adjectival kasua 'be hard'. The enclitic $=n$ 'pOSs:NH' attaches to kasua:

If a compound noun is the only constituent of an NP , the possessive enclitic attaches to the right edge of the compound. This is shown in (86):
(86)

| Marka old.man | naota=n
 chief=POSS:NH | Mele
 p.name | $\begin{aligned} & \mathrm{e}=\mathrm{lag}, \\ & 3 \mathrm{sG} . \mathrm{s}=\text { say } \end{aligned}$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| "e=wia, | a=pitlaka | nan-go | | ur=piralma | skei." |
| $3 \mathrm{SG} . \mathrm{s}=\mathrm{be} . \mathrm{g}$ | od 1SG.s=have | offsprin | -1sG.poss | $3 \mathrm{PL} . \mathrm{S}=\mathrm{COP}$ | ten |
| 'The old chief of M̃ele said, "that's good, I have ten children."' | | | | | |

As shown in fig. 5.2, determiners and relative clauses can follow the POSS slot. In (87), the definite determiner nge follows the possessor NP Saone 'p.name':

| (87) | Nae, | [[P̃laka=n Saone] | | nge, $]$ | e=lao | maleputa $=$ n | napua. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 3sG | rail=POSS:NH | p.name | DEF | 3sG.S=stand | middle=POSS:NH | |
| | 'As for | him, the buff-bande | | | , stood in the | of the road.' | |

However, it is also possible for NP modifiers occurring finally to modify the head of the possessor NP rather than the head of the possessed NP. In (88), the possessor NP natrausina agnou 'story 1SG.POSS' is embedded within the main NP headed by nanou 'end':

| (88) | $\mathrm{E}=\mathrm{pi}$ | [nanou $=$ n | [natrausina | agnou.]] |
| :---: | :---: | :---: | :---: | :---: |
| | 3SG.S $=$ COP | end=POSS:NH | H story | 1sG.poss |
| | 'It is the e | y story.' | | |

5.4.4 Determiners

5.4.4.1 Indefinite specific $s k e i^{\text {' }}$ ' ${ }^{\text {INDEF }}$ '

Recall form 4.12.1.1 that the function of skei is to modify the head noun of an NP to mark it as indefinite and specific. In (89), skei is the only modifier of the head rarua 'canoe'. Here, the
referent of rarua is not accessible to the speaker and the hearer. The canoe does not exist except in an indefinite form in the mind of the speaker and possibly of the hearer. In addition, it is specific as the referent is an individual member of the class of canoes:

| (89) | Kinta | ta $=$ ga | fa | ta | rarua | skei | malmauna. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 1PL.INCL | 1DU.INCL.S=IRR | go:IRR | cut | canoe | INDEF | now |
| | 'Let's cut a canoe now.' | | | | | | |

In (90), it follows the adjectival kiki 'be small', occurring after NP ${ }_{\text {Core }}$. In contrast with (89), here the referent of the NP is accessible to the speaker but not to the hearer:

| (90) | e=pi | naure | kiki | skei | e=to | mlatig-ki | Tahiti. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 3sG.S=COP | island | be.small | INDEF | 3SG.S=stay | close-TR | p.name |
| 'It is a small island close to Tahiti.' | | | | | | | |

In (91), skei occurs with the possessive aginta '1PL.INCL.POSS'. This is noteworthy as possessed nouns can be viewed as definite, especially with a second and third person possessor. Thus there could be a mismatch between skei marking the referent as indefinite and a possessive contributing definiteness. However, in (91) this is not the case, as the indefinite but specific referent is not accessible to the hearer. Note also that the referent is a part of a definite whole, as naluokia 'proverb' constitutes a definite group, while skei marks the referent as an indefinite and specific part of this whole:

In (92) skei occurs with a relative clause introduced by the relativiser na 'REL':

| Go | $\mathrm{e}=\mathrm{pi}$ | naleati | skei |
| :--- | :--- | :--- | :--- |
| and | 3sG.S=COP | day | INDEF |

na tu=gati tae tap̃argor=ea mau.
REL 1PL.INCL.S=IRR NEG can forget=3sG.OBJ NEG2
'And it is a day that we cannot forget.'

In (93) skei occurs with the possessive agnou '1sG.POSs' and a relative clause. ${ }^{2}$ Here, skei marks indefiniteness while both the possessive pronominal and the relative clause contribute in making the NP specific. However, there is no mismatch here: the speaker uses skei as he recognises that the referent of the NP (i.e., the prawns) is not accessible to the hearer:

```
A=to plag
1SG.S=IPFV search
\begin{tabular}{llllll} 
ura & agnou & skei & a=trus=iato & wara to, & \\
prawn & 1SG.POSS & INDEF & 1SG.S=leave=3SG.OBJ & stay & here
\end{tabular}
kane e=kat pueli.
but 3SG.S=CERT be.gone
'T'm looking for my prawns that I left here, but they're gone.'
```


5.4.4.2 Indefinite specific tete 'some'

The other indefinite determiner is tete 'some'. Like skeei, it marks an NP as indefinite and specific. In addition, it has a quantifying function as it encodes that the referent is of a small quantity. It mostly functions as a modifier of the head noun, but can also function as an NP, as discussed in 5.3.3. In (94) it follows the adjective fao 'new':
(94) Nasum̃a e=laapa, nasum̃a paela, nasum̃a kiki, nasum̃a fao tete. house 3SG.S=be.many house big house be.small house new some 'There were many buildings, big buildings, small buildings, some new buildings.'

In (82) it follows the possessive pronominal aginta '1 PL.INCL.POSS':

| (95) | So | te=matua | aginta | tete | naara | ur=po | lop̃a=e,see $=3$ SG.OBJ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | so | SBST=be.old | 1SG.POSS | some | 3PL | $3 \mathrm{PL.S}$ =SEQ | |
| | ur | lop̃a | faatu | ge. | | | |
| | | SEQ see | stone | DEF | | | |

'So some of our elders then saw it, they saw the stone.'

In (96) it precedes a relative clause introduced by na 'REL':

[^17](96)
Nafarkal
bush.spirit nge DEF

| ur=silf | nmal | nkas | tete | na | $e=$ roa | wan napua. | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3PL.S=enter | trunk | tree | some | REL | 3SG.S=fall | lie | road |

'The bush spirits stayed and got inside the trunk of some tree which fell down on the road.'

5.4.4.3 Definite specific nge 'DEF'

Nge marks a head noun as definite and specific. It is typically used with previously mentioned referents (see 4.12.1.2). It occurs in the slot immediately after POSS as shown in (97) to (101). In (97) nge marks the head noun nakai 'traditional story' as definite:
(97) Nakai nge e=tapla.
folktale DEF 3SG.S=like.this
'The story goes like this.'

In (98) the proper noun Matnarfarfa 'p.name' is modified by nge. This is noteworthy, as referents of proper nouns are inherently definite and specific. In this example, the NP headed by Matnarfarfa is a left-dislocated topic, and the occurrence of nge increases its pragmatic prominence:
(98) Matnarfarfa nge, nagi-nae=rua: Matnarau, Matnarfarfa. p.name DEF name-3SG.POSS 3SG.S=two p.name p.name
'As for Matnarfarfa, it has two names: Matnarau, Matnarfarfa.'

In (99) and (100) nge occurs immediately after the adjectivals fea 'be first' in (99) and wia 'be good' in (100):

| $\tilde{\text { Pa }}=$ =false | raus | rarua | fea | nge. |
| :--- | :--- | :--- | :--- | :--- |
| 2SG.S:IRR=paddle:IRR | follow | canoe | be.first | DEF |

'You will paddle following the first canoe.'
(100) Roaleo wia nge $\begin{aligned} & \text { e=to } \\ & \text { clamour }\end{aligned}$
clamour be.good DEF 3SG.S=IPFV go
'The great clamour was going on.'

In (101) nge occurs to specify a complex NP Core with the two adjectivals kiki 'be small' and sa 'be bad; very'. Note that sa functions as an intensifier of the first adjectival kiki (see 5.4.2.2):
(101)

| $E=10$ ãa=e | | se | nkas | kiki | sa | nge, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $3 \mathrm{SG} . \mathrm{S}=\mathrm{see}=3 \mathrm{SG} . \mathrm{OBJ}$ | | COMP | tree | be.small | very | DEF |
| lima
 five | e=mato | | to. | | | |
| | $3 \mathrm{SG} . \mathrm{S}=\mathrm{st}$ | 3OBL | STAT | | | |

'He saw that out of these very little pieces of wood, five remained there.'

In (102) nge is followed by a relative clause introduced by $n a$:
(102) Taos te=laapa kasu nge na ur=tu a=fate na tu, thus SBST=many too.much DEF REL 3PL.S=stay LOC=p.name DEM STAT
ur=pa-ki naure pan.
3PL.S=go-TR island go
'Thus as for too many of those who lived on Efate, they went to the small island.'

5.4.4.4 Demonstrative na 'DEM'

The demonstrative $n a$ functions as a modifier of the head of an NP and is homophonous with the relativiser $n a$ 'reL' (see 5.4.5, 12.6). Prototypically, this determiner is used to designate an item visually accessible to both the speaker and the addressee, with the speaker pointing to it with fingers or eyebrows (see 4.12.2.1). This is shown in (103) below, where the speaker uses na to modify the head kano 'man' while simultaneously pointing at the referent of that NP:

```
(103) Kano e=mro tau, e=pi kuk,
man 3SG.S=AGAIN stay 3SG.S=COP cook
e=pi chef de cuisinier, kano na.
3sG.S=COP chef of cook man DEM
'The man who's there, he's the cook, he's the chef, this man (pointing).'
```

In (104) na follows the adjectival memi 'be ripe'. In contrast to (103), it does not refer to a visually accessible item; however, the referent is accessible to both the speaker and hearer as it has been previously established in the narrative:
(104)

| Ar=lo | pa-ki | tan | tapla, |
| :--- | :--- | :--- | :--- |
| 3DU.S=look | go-TR | down | like.this |

| se maanu | ur=to | pat | nati | memi | na. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| while | bird | | | | |
| 'They | 3PL.S=IPFV | make | banana | ripe | DEM |

5.4.5 Relative clauses

Relative clauses (RCs) occur in last position in the NP, as seen in figs. 5.1 and 5.2. They specify the head noun or head pronoun of an NP. While a detailed discussion of relative clauses is held up until 12.6, this section shows the co-occurrence of RCs and other NP modifiers. In (105), the relative clause introduced with $n a$ 'REL' occurs with the adjective fao 'new':

| (105) | Ur=pnak | rarua | fao | na | Tafmanu | $\mathrm{e}=\mathrm{mnae}$ | pat=ia. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 3PL.S=steal | canoe | new | REL | p.name | 3sG.S=3sG.BEN | make=3sG.OBJ |
| | 'They stole [elicited] | new | | | e for him.' | | |

In (106), the relative clause introduced by na occurs after the possessive pronominal agnou '1sG.POSs':

| (106) | Tai | kiki | agnou | na | e=to | Mlakula |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| sibling | be.small | 1SG.POSS | REL | 3sG.S=stay | p.name | STAT |

nae $\quad \mathrm{e}=$ sor \quad nmaloku.
3SG 3SG.S=sell kava
'As for my younger brother who lives in Malakula, he sells kava.' [elicited]

In (107), a relative clause introduced with na follows the determiner nge 'DEF':
(107) E=seiki nkas nge na e=pat=ia pi rarua.

3SG.S=push wood DEF REL 3SG.S=do=3SG.OBJ COP canoe
'He launched the pieces of wood that he made into a canoe.'

The relativiser na is homophonous with the demonstrative na. Although these two forms may be historically related, synchronically they are separate lexemes. This is shown in (108) below in which both the demonstrative and the relativiser co-occur. The first occurrence of $n a$ is the demonstrative occuring in the DET slot, and the second occurrence of na is the relativiser introducing the relative clause:
(108) Sara maanu fan~fanp̃at na na ur=to pat=ia tapla,
each bird INT~be.different DEM REL 3PL.S=IPFV make=3SG.OBJ like.this
'Each of these different species of birds which were doing it like this,'

5.5 Functions of NPs

According to their position in the basic and extended clause (see 7.1.2), and to whether their head is a noun or a pronoun, NPs bear different grammatical and pragmatic functions. In the basic clause, NPs tend to bear grammatical functions such as subject, object and oblique, while in the extended clause, they tend to have pragmatic functions relating to the prominence of their referent in the discourse (see 5.5.2, 7.6). However, note that subject NPs occur in the basic clause for pragmatic reasons, and that the extended clause is not reserved to NPs with pragmatic functions, since adjunct NPs also occur in that position (see 7.5).

5.5.1 Grammatical functions

5.5.1.1 Subject NPs

Subject NPs immediately precede subject proclitics, with which they are co-referential. They are prosodically unmarked and part of the intonation phrase of the basic clause (in contrast with left-dislocated NPs, see 7.6.2). Subject NPs occur when their referent is introduced for the first time in discourse, or when there is a switch in topic. Thus, although they are grammatical subjects, their occurrence is conditioned by pragmatic factors (see 5.5.2.1, 7.6.2.1). Subject NPs can be NP_{N}, as in (109) and (110):
(109) Mala misi Peter Milne e=panei pa-ki A=guna, when missionary p.name p.name 3sG.S=come go.TR LOC=p.name
A=guna, \quad ur $=$ ti \quad pi te=lotu rog mau.

LOC=p.name 3pl.s=NEG COP SBST=pray feel NEG2
'When the Missionary Peter Milne came to Nguna, in Nguna, they weren't Christians.

| (110) | Tama-p̃al-ra | skei | ar $=$ mato | A=siwo | warampa. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | DYAD-brother-3PL.POSS | INDEF | 3DU.S=stay.long | LOC=p.name | there.forward |
| | wo brothers lived in | there | | | |

Subject NPs can also be $\mathrm{NP}_{\mathrm{Pro}}$, in which case the head can be a personal pronoun or a demonstrative pronoun. In (111), the personal pronoun konou ' 1 SG ' is the subject of the verb to 'stay':

| (111) | Konou | $\mathrm{a}=$ to | natkon | kiki | sa | na | to, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1SG | 1SG.S=stay | village | be.small | very | DEM | STAT |
| | nagi-na | $\mathrm{e}=\mathrm{pi}$ | | Magatorua. | | | |
| | name-3S | OSS 3sG.S $=$ | COP | p.name | | | |
| | 'I live in this very small village, its name is Mangatorua.' | | | | | | |

In (112) the demonstrative pronoun tena 'SBST.DEM' heads an NP which is the subject of the copula $p i$ 'COP'. As the referent of the NP is unknown to the hearer, tena is modified by a relative clause in order to specify its referent more narrowly:

| (112)Tena
 SBST.DEM na REL \quad e=to | 3SG.S=stay | 3SG.S=COP | Totokiki. |
| :--- | :--- | :--- | :--- | :--- |
| | p.name | | |
| | 'This one who is there is Totokiki.' | | |

5.5.1.2 Object NPs

In contrast to subject NPs, object NPs do not occur with a co-referential clitic: objects are encoded either with an NP or an enclitic. However, like subject NPs, they occur when their referent is mentioned for the first time in the discourse. They can be NP_{N} or $\mathrm{NP}_{\text {PRO }}$. In (113) there are two NP_{N} functioning as the objects of the verbs tae 'know':
$\begin{array}{llll}\text { (113) } \begin{array}{l}\text { Misi } \\ \text { missionary }\end{array} & \mathrm{e}=\mathrm{kat} & \text { 3sG.S=CERT } & \text { pat=ra } \\ \text { make=3PL.OBJ } & \text { na-lotu-ki } & \text { N.SPEC-pray-TR God-nMLZ }\end{array}$
go kanei ur=ga tae sup̃e,
and how 3PL.S=IRR know God
go ur=ga tae na-fsa-na tap nae.
and 3PL.S=IRR know N.SPEC-speak-NMLZ be.taboo 3SG.POSS
'The missionary was training them in Christian worshipping, and how they would know God, and they would know his word.'

In (114), the personal pronoun kinta '1PL.INCL' occurs twice and heads two $\mathrm{NP}_{\text {pros }}$ functioning as the objects of the transitive verbs fleas 'chase:IRR' and faam 'eat:F':

| E=ga | fkas | kinta, | e=ga | faam | kinta. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3SG.S=IRR | chase:IRR | 1PL.INCL | 3SG.S=IRR | eat:F | 1PL.INCL |
| 'He will chase us, he will eat us.' | | | | | |

In (115) the demonstrative pronoun tena 'SBST.DEM' heads an $\mathrm{NP}_{\text {PRO }}$ functioning as the object of the serial verb 10 tae 'recognise'. It is modified by a relative clause introduced by $n a$ ' REL ':
(115)

| $\mathrm{ku}=\mathrm{lo}$ | tae | tena |
| :--- | :--- | :--- |
| 2SG.S =look | know | SBST.DEM |
| 'Do you recognise this one who is there?' | | |

na $\quad \mathrm{e}=\mathrm{to}$?
'Do you recognise this one who is there?'
REL 3SG.S=stay

5.5.1.3 Oblique NPs

Oblique NPs are added to intransitive and transitive clauses. They encode locations and instruments and follow intransitive verbs or objects of transitive verbs. When oblique NPs are added to intransitive clauses, no transitive derivation of the intransitive verb is required (see 7.4.2.2, 7.4.4.4). In contrast to adjuncts, they occur before clause-final particles and are not introduced by prepositions. In (116), the NP sara nalia is an oblique following the intransitive verb tumalua 'leave':

te=matua aginta ur=tum̃alua sara nalia $A=$ fate na. SBST=be.old 1PL.INCL.POSS 3PL.S=leave each place LOC=p.name DEM 'Yes, thus long ago, our ancestors left from each place in Efate.'

5.5.1.4 Adjunct NPs

Some adjunct NPs are introduced by prepositions and thus are objects of prepositional phrases (see 4.8, 7.5). In (117), kinta '1PL.INCL' is the object of the preposition paki 'to':

| (117) | A=ga | traus=ia | paki | kinta |
| :--- | :--- | :--- | :--- | :--- |\quad malmauna.

Other adjuncts are bare NPs identifiable as such according to their position. They follow basic clause-final particles and are part of the extended clause (see 7.1.2). In (118), wan wik nge follows the stative particle to 'STAT' which marks the end of the basic clause:

5.5.2 Pragmatic and discourse functions

It is important to understand pragmatics and information structure to analyse occurrences and uses of NPs (Erteshik-Shir 2007:1-2). NPs bearing pragmatic or 'discourse' functions such as
topic, contrastive topic, focus, first mention and switch topic are briefly shown here (see 7.6 for definitions and a more detailed discussion of these phenomena). In Lelepa, these functions are manifested through particular constructions (left- and right-dislocation, filling of the subject NP slot, occurrences of topic particles) and also whether NPs are lexical or pronominal.

5.5.2.1 Subject NP position

The subject NP position is filled when the referent of the NP is mentioned for the first time in a narrative. In this case the head noun is often marked as indefinite with skei 'INDEF' (see 4.12.1.1). This is seen in (119), in which nmatuna 'thing' is the head of a subject NP. It is modified with skei and yields the meaning 'something':

```
(119)
\begin{tabular}{llllll} 
Ar=laka=e & lag & nmatuna & skei & \(\mathrm{e}=\) mato & \(\mathrm{a}=\) maae, \\
3DU.S=see=3SG.OBJ & COMP & thing & INDEF & 3sG.S=stay.long & LOC=far
\end{tabular}
\begin{tabular}{lll}
\(\mathrm{e}=\) to & \begin{tabular}{l} 
sale \\
drift
\end{tabular} & \begin{tabular}{l} 
panmei. \\
COME
\end{tabular}
\end{tabular}
'They saw that something was afar, it was drifting towards them.'
```

Referents with an inherently high level of definiteness such as proper nouns do not take skei when they occur as first mentions in subject position, as in (120):

5.5.2.2 Lexical vs. pronominal realisation of NPs

NPs have head nouns when the referent is mentioned for the firts time in discourse or when there is a switch in topic and a previously established referent becomes the current topic. In (121), the referent of the first NP is a first-mention. The head is a noun marked as indefinite with skei 'INDEF' as the referent is not accessible to the hearer:

| $\mathrm{E}=\mathrm{pi}$ | marka | naota | skei | to | malange, |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3SG.S=COP | old.man | chief | INDEF | STAT | then |

| nagi-na | $\mathrm{e}=\mathrm{pi}$ | marka | naota | Marfaatu. |
| :---: | :---: | :---: | :---: | :---: |
| name-3SG.PC | 3SG.S=COP | old.man | chief | |
| ${ }^{\text {'There was a chief then, his name was Chief Marfa }}$ | | | | |

NPs also encode topic continuity and topic switch. Topic continuity corresponds to the use of an NP to encode a referent which is a current topic but has not been encoded by an NP recently. In contrast, a topic switch occurs when a previous topic that hasn't been referred to recently becomes the current topic (Andrews 2007a:149). Example (122) is an example of topic continuity. It is taken from a narrative about missionaries in the Lelepa region. The NP Pita Milne 'Peter Milne' occurs twice to encode topic continuity. Peter Milne was the first missionary stationed in Nguna, and is established as a topic earlier in the narrative. The subject proclitic $e=$ ' $3 \mathrm{SG} . \mathrm{S}$ ' in the first clause refers to him. It doesn't occur with a co-referential subject NP in this clause because it is not a first mention and has been established as a topic previously. However, in the following clauses the subject NP Pita Milne occurs twice, so that the previously established topic remains current:

| E=po
 3SG.S=SEQ | panei | pa-ki | A=guna, |
| :--- | :--- | :--- | :--- |
| come | go-TR | LOC=p.name | |

Pita Milne $\quad \mathrm{e}=$ lao $\quad \mathrm{A}=$ guna.
p.name p.name 3 SG.S=stand $L O C=$ p.name
'He came to Nguna, and Peter Milne appeared in Nguna, in 1870, it was the month of July, the 19 July, Peter Milne appeared in Nguna.'

NPs can also be realised by personal pronouns (see 5.2.2). When this occurs, the referents of these pronouns tend to be human. In (123) and (124), the personal pronouns and subject proclitics of the first and second clauses are co-referential. In the second clauses the personal pronouns do not occur, and the subject proclitics remain. Personal pronouns establish the subject as topic, and once this is done full pronouns do not need to be repeated:

| (123) | Naara_{i} | $\mathrm{ar}_{\text {F }}=$ to | pan | pan | pa, | $\mathrm{ar}_{\text {F }}=$ ptolo. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 3PL | 3DU.S=stay | go | GO | GO | 3DU.S=hungry |

$\begin{array}{llllll}\text { (124) } \mathrm{Konou}_{i} & \mathrm{a}_{i}=\text { panei } & \text { to } & \text { Magaliliu to mala kiki, } \\ \text { 1SG } & \text { 1SG.S=come } & \text { stay } & \text { p.name } & \text { STAT }\end{array}$
1SG 1SG.S=come stay p.name STAT time small

| a=msou=na | lag | a=ga | til | naluokia |
| :--- | :--- | :--- | :--- | :--- |
| 1SG.S=want=3SG.OBJ | COMP | 1SG.S=IRR | tell | proverb three |

5.5.2.3 Left-dislocated NPs

Left-dislocated NPs can be subjects, objects, obliques and possessors (see fig. 7.2, 7.6.2). Their referents are accessible and identifiable to the interlocutors as they have been previously mentioned in the discourse. The function of self-dislocation is to contrast a referent against another referent. In (125), the speaker comments on several small groups who gathered to prepare a village feast. The NP headed by tena refers to one of these small groups, and tena is specified by a relative clause in order for its referent to be singled out amongst the other groups performing similar tasks. In addition, it is left-dislocated so that it can be contrastive:

| (125) | Tena | na | ur=tapla | wan, | ur $=$ to | mas | nap̃as. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | SBST.DEM | REL | 3PL.S=like.this | lie | $3 \mathrm{PL} . \mathrm{S}=\mathrm{IPFV}$ | cut | meat |
| | 'As for tho | o 1 | wn like this, th | are c | meat.' | | |

5.5.2.4 Right-dislocated NPs

Right-dislocated NPs are also part of the extended clause and have their own prosody. Their function is to re-code a referent in a more precise manner, so that the speaker is sure that the referent of the right dislocated NP is fully accessible to the hearer (see 7.6.3). In (126), tena is a right-dislocated subject NP:

| E=kis | noas, | tena. |
| :--- | :---: | :--- |
| 3SG.S=press | island.cabbage | SBST.DEM |
| 'She spreads island cabbage, this one.' | | |

5.5.2.5 Pronouns modified with na 'DEM'

Pronouns modified by the demonstrastive na also mark their referent as contrastive topics. In (127) and (128), na occurs in NP Pros in subject NP position. They follow co-referential leftdislocated NPs. Thus both examples show a combination of contrasting strategies: left dislocation and the use of $n a$:
(127) Maika Fartap̃ar, nae na $e=p a t$ nasum̃a tap nge. p.name p.name 3SG DEM 3SG.S=do house be.taboo DEF 'As for Maika Fartapar, he made the church.'
(128) Konou $a=g a \quad$ fi walak, kutu, 1SG 1SG.S=IRR COP:IRR climbing.rope louse
nae na $e=g a \quad$ fatu konou; $e=g a \quad$ fag pa-ki lag. 3SG DEM 3SG.S=IRR step:IRR 1SG 3SG.S=IRR climb:IRR go-TR up 'I will be the climbing rope, as for Louse, he will step on me; he will climb to the top.'

Personal pronouns modified with na 'DEM' are not limited to being subjects. In (129), kinta '1PL.INCL' heads an object NP. Like in (127) and (128), the occurrence of na 'DEM' to modify the pronoun kinta marks a switch in topic:
(129)
$\mathrm{E}=$ polsal kinta na to.
3sG.S=lie 1PL.INCL DEM STAT
'He lied to us (i.e. not to someone else).'

Chapter 6 - Possession

6.1 Introduction

Lelepa has several possessive constructions differing in their semantics, as they encode different types of possessive relationships. They also differ according to whether the possessor is encoded with an NP or a free or bound pronominal. Oceanic languages are known to use several strategies to mark possession according to the type of possessive relationship existing between the possessor and the possessum (Lynch 1973, Lichtenberk 1985, Crowley 1996, Lynch, Ross and Crowley 2002:40), and often have two types of possessive constructions, termed 'direct' and 'indirect'. These two types denote each poles of an inalienability/alienability semantic opposition. In direct possessive constructions, the possessor is encoded with a suffix on the possessed noun, as seen in the Fijian example (1)a (Lynch, Ross and Crowley 2002:40). In contrast, in the indirect possessive construction in (1)b the possessor is encoded with a separate possessive constituent occurring with the uninflected possessed noun. Semantically, direct possession tends to be associated with inalienability, and indirect possession with alienability (Lynch, Ross and Crowley 2002:40-41).
(1) a. na mata-qu

ART eye-1SG
'my eye'
b. na no-qu vale
house POSS-1SG.POSS house 'my house'
[Fijian; Lynch, Ross and Crowley 2002:40]

6.2 Overview of possessive constructions

In Lelepa, there are possessive constructions that can be called direct possessive constructions, as seen in (2)a. In contrast, indirect possessive constructions are not attested. While (2)b expresses the semantic range that is normally denoted by indirect possessive constructions in other Oceanic languages, the pronominal agnou '1SG.POSs' is synchronically non-analysable and regarded as a portmanteau morpheme:
a. np̃ou-go
head-1SG.POSS
'my head'
b. nasum̃a agnou
house 1sG.POSS
'my house'
[elicited]

In addition, consider the construction in (3). It is semantically equivalent to (2)a, and like (2)a the possessor is pronominal, but encoded by a personal pronoun (see 4.6.1) instead of a suffix. If one was to consider (2)b an indirect possessive construction, then (3) could probably be as well, because in both examples the possessums are expressed by uninflected nouns, while the possessors are expressed by separate morphemes. However, (2)b and (3) do not have equivalent semantics, as (2)b encodes the semantics of indirect constructions in other languages (i.e. alienability), while (3) has the same semantics as direct constructions (i.e. inalienability):

(3) | nõou | konou | |
| :--- | :--- | :--- |
| | head | 1sG |
| | 'my head' | |
| [elicited] | | |

Lelepa has similar grammatical distinctions with parallel semantic associations to Fijian and many other Oceanic languages. However, (2)b shows a major grammatical difference in the lack of possessive marker, and (3) shows that the semantic associations do not match. For these reasons the direct/indirect possession contrast usually used in the Oceanic literature will not be used in here, since it does not give a reliable model to account for the Lelepa system. Instead, each possessive construction and their semantics will be described separately, without being grouped under the labels 'direct construction' and 'indirect construction'.

Except for the construction involving the local possessor noun kia- 'LOCAL' (see 6.5), the different possessive constructions are shown in table 6.1 (N stands for noun, PRO for pronoun, POSS for possessive pronominal and SUF for suffix, subscripts indicate the role of the referent). The constructions are distinguished according to their semantics and to whether the possessor is encoded pronominally or with a noun:

- Inalienable possession is used for possession of closely related items (body parts, body products, kin, voice, smell, photo depicting the possessor, etc), and is expressed with possessor-indexing suffixes occurring on the possessum noun (see 6.3.1, table 6.2). An alternative construction with equivalent semantics uses a personal pronoun postposed to the possessum (see 6.3.2, table 4.13).
- General possession is used for possession of other items, such as material goods, but also kin (when the kin is encoded with a vocative, see 4.2.4, table 4.5) and other attributes (language, thoughts, etc). It is expressed with possessive pronominals (see 6.3.3, table 6.3).
- Associative possession is a subpart of general possession rather than a separate semantic category since general and associative possession are encoded with the same construction with nominal possessors (see 6.3.4, 6.4.2, 6.4.3).

| | Semantics | | |
| :---: | :---: | :---: | :---: |
| | Inalienable possession | General possession | Associative possession |
| Pronominal possessor | $\mathbf{N}_{\text {possessum }}$-SUF Fossessor $^{\text {ren }}$
 namta-go
 eye-1SG.POSS
 'my eyes(s)'
 $\mathbf{N}_{\text {possessum }} \mathbf{P R O}_{\text {rossessor }}$
 namta konou
 eye 1SG
 'my eye(s)' | $\mathbf{N}_{\text {rossessum }}$ POSS $_{\text {rossessor }}$
 nafsana nae
 language 3sG.POSS
 'his language' | $\quad \mathbf{N}_{\text {possessum }}$ nag-SUF Possessor nafsana nag-na language ASS-3SG.POSS 'the story associated to it/him' |
| Nominal possessor | $\quad \mathbf{N}_{\text {Possessum }} \mathbf{N}_{\text {Possessor }}$ namta kano na eye man DEM 'this man's eye(s)' | nafsana $=\mathrm{n}$ language $=$ POSS. NH 'the language of Erakor' $\mathbf{N}_{\text {Possessum }}=$ nafsana $=\mathrm{g}$ language $=$ POSs. 'the language of the white p | $\mathbf{N}_{\text {Possessor [-human] }}$
 Erakor p.name
 $\mathbf{N}_{\text {Possessor [+human] }}$
 e=taare
 SBST=be.white
 le' |

Table 6.1. Possessive constructions

6.3 Pronominal possessor

6.3.1 Inalienable possession: $\mathbf{N}_{\text {possessum }}-$ SUF $_{\text {possessor }}$

This construction reflects the direct construction found in many Oceanic languages, as the possessor is encoded with a possessor-indexing suffix on the possessum noun. Possessorindexing suffixes (table 6.2) encode the possessor in person and number. Like with objects, dual is not encoded for possessors, and there are no means for constructing a dual possessor. The third person singular suffix has three allomorphs. The liquid-initial allomorphs are distributed following a process of liquid assimilation whereby the consonant of the suffix assimilates to the final consonant of the root if it is a liquid, with $\{-l a\}$ and $\{-r a\}$ occurring on liquid-final nouns as in (6) and (7), while $\{-n a\}$ occurs on all other roots, as in (4) and (5).

| | 1INC | 1EXC | $\mathbf{2}$ | $\mathbf{3}$ |
| :---: | :---: | :--- | :--- | :--- |
| SG | - | $-g o$ | $-m a$ | $-n a \sim l a \sim r a$ |
| PL | $-g t a$ | $-g a m$ | $-m u$ | $-r a$ |

Table 6.2. Possessor-indexing suffixes

This construction denotes a relationship of inalienability between the possessor and the possessum. That is, the relationship is not subjected to any sort of control on the part of the possessor or possessum. For instance, body parts and kin are an integral part of the possessor's body or family, and so are possessed with this construction. Even when body parts are separated from their owner's body or kin have passed away, the inalienable nature of the possessive relationship remains and is marked accordingly. Recall that nouns occurring in this construction are called bound nouns as they take possessor-indexing suffixes (see 3.2.1, table 3.1). Commonly, bound nouns refer to body parts, body products, parts of wholes, kin, and items closely associated to the possessor. Examples (4) to (7) show possessed body parts:
(4) Fakna, namta-m̃a naro-m̃a, $\quad \tilde{\text { pa }}$ =to \quad lo. p.name eye-2SG.POSS heart-2SG.POSS 2SG.S:IRR=IPFV look 'Fakna, (open) your eyes (and) your heart, keep on looking.'
(5) Tuaraka e=kat sasake to npap-na to se ar=kat roa, p.name 3sG.S=CERT sit STAT shoulder-3SG.POSS STAT while 3DU.S=CERT fall
ar=kat suk to napua to.

3DU.S=CERT be.hard stay road STAT
'Tuaraka was seating on her shoulder while they (two) fell, they (two) were petrified on the road.'
(6) $\mathrm{E}=$ lag $\mathrm{ar}=$ per nalul-la pan pa,

3SG.S=say 3DU.S=braid hair-3SG.POSS GO GO
'It says that they braided his hair on and on,'
(7) Matakutalo e=mro pan selki nar-ra. p.name 3sG.S=AGAIN go wave hand-3SG.POSS
'Matakutalo leaves again, he waves his hand.'

Examples (8) to (10) show possession of nouns referring to closely associated items:
(8) Melu-na e=wan nuwai wa.
reflection-3sG.POSS 3sG.S=lie water DEM
'His reflection was on the water.'

| E=rog \quad tae | nalo-na, | e=to | tagi. |
| :--- | :--- | :--- | :--- | :--- |
| 3sG.S=hear \quad know | voice-3SG.POSS | 3SG.S=IPFV | weep |
| 'She recognised her voice, she was weeping.' | | | |

(10) Srago nge e=tau we! Nap̃o-na e=to fif sak.
things DEF 3 SG.s=stay EMPH smell-3sG.POSS 3sG.s=IPFV waft go.up 'Wow, the things that were there! Their smell was wafting up.'

Obligatorily possessed kin terms cannot occur without a possessor-indexing suffix, unlike other bound nouns. Further, while a number of bound nouns can occur in different possessive constructions, kin terms lack this flexibility. As shown in (11) to (13), the kin term ati- 'paternal grandmother' can only be possessed inalienably and cannot occur outside of a possessive construction:

| *Tu=ga | ti | taos | Tuaraka ma | ati | mau. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1PL.INC.S=IRR | NEG like p.name and maternal.gdmother | NEG2 | | | |
| 'We will not be like Tuaraka and the maternal grandmother.' | | | | | |
| [elicited] | | | | | |

6.3.2 Inalienable possession: $\mathbf{N}_{\text {possessum }} \mathbf{P R O}_{\text {possessor }}$

In this construction, the possessum noun is followed by a personal pronoun (see table 4.13, 4.6.1) which encodes the possessor, as in (14)a. It is semantically equivalent to the possessive construction in (14)b, thus both constructions encode inalienability. (14)c shows that personal pronouns cannot encode possessors when the possessed noun is a free noun, and (14)d shows that free nouns are possessed with possessive pronominals instead (see 6.3.3):
a. np̃ou konou
head 1SG
'my head'
b. np̃ou-go
head-1SG.POSS
'my head'
c. *rarua konou
canoe 1SG
'my canoe'
d. rarua agnou
canoe 1SG.POSS
'my canoe'
[elicited]

Recall from 4.6.1 that personal pronouns mostly function as arguments of predicates. However, in (15), the personal pronoun kinta '1PL.INCL' occurs twice, first encoding a subject, then a possessor:

Currently, Lelepa has two semantically equivalent constructions to encode inalienable possession. Given that the language has the well-established possessor-indexing suffix (or direct) construction, why has the personal pronoun construction arisen in the language? Since the construction with possessor-indexing suffix, or direct construction, is found in the majority of Oceanic languages, the construction with personal pronouns is likely to be an independent innovation. It is not described in the closely related languages South Efate (Thieberger 2006), Nguna (Schütz 1969) and Namakir (Sperlich 1991), and neither it is in more distant Vanuatu languages such as Lewo (Early 1994), Lolovoli (Hyslop 2001), or Abma (Schneider 2010), amongst others. In Lelepa, although it is found in the speech of most speakers, younger speakers tend to use it almost exclusively and strongly disfavour the possessor-indexing suffix construction, except when the possessor is third person singular. In this case, speakers tend to use the possessor-indexing suffix construction and encode the possessor with -na ' 3 SG.POSS'. These two possessive constructions show a change in progress which is not affecting the whole system yet. This change can be viewed as a move towards standardising possessive constructions, from the current system showing a mix of inflectional and analytical strategies, towards a situation expressing possession with analytical constructions only.

6.3.3 General possession: N $_{\text {possessum }}$ POSS $_{\text {possessor }}$

In this construction, the possessed noun is followed by a free possessive pronominal (see table 6.3) encoding the possessor in person and number. Free possessive pronominals are not pronouns since they cannot function as NPs. They modify heads of NPs (see 5.4.3.1), and can be derived as possessive pronouns with the substantiviser te (see 3.4.2.3).

| | 1INCL | 1EXCL | $\mathbf{2}$ | $\mathbf{3}$ |
| :---: | :---: | :--- | :--- | :--- |
| SG | - | agnou | nag | nae |
| PL | aginta | agnem | agmu | naara |

Table 6.3. Free possessive pronominals

Semantically, this construction encodes a general possessive relationship, in contrast with those encoding inalienability discussed in 6.3.1 and 6.3.2. Generally, the possessor in this construction is human:

| A=to | natkon | agnou | Allaapa. |
| :--- | :---: | :--- | :--- |
| 1SG.S=stay village | 1SG.POSS | p.name | |
| 'I live in my village in Lelepa.' | | | |

(17) E=to se, e=pa-ki farea nae tapla,

3sg.s=stay while 3SG.S=go-TR chiefly.house 3sG.POSS like.this
e=lag pu tagot nae tapla,
3SG.S=MAYBE pull axe 3SG.POSS like.this
'He stayed, then he went to his chiefly house, maybe he got his axe,'
$\begin{array}{lllll}\text { (18) } & \text { Ur=msau-na } & \text { lag } & \text { nkarkik } & \text { agnem } \\ \text { 1sG.EXCL.S=want-3sG.OBJ } & \text { COMP } & \text { children } & \text { 1SG.EXCL.POSS }\end{array}$
ur=ga fitlaka na-tae-na.
3PL.S=IRR have:IRR N.SPEC-know-NMLZ
'We wanted our children to have an education.'

Note also that there is a variation in the order in which the possessive pronominal precedes the possessum noun. This variation is fairly rare in the corpus and encodes intensification of the possessive relationship, as in (19) to (21):
(19) $\mathrm{E}=\mathrm{pi}$ kanei a=to lao agnou neika.

3SG.S=COP how 1SG.S=IPFV spear 1SG.POSS fish
'This is how I spear my own fish.'
(20) A=to pa-ki stoa, $a=$ to pagtof agnem nafnag.

1SG.S=IPFV go-TR shop 1SG.S=IPFV buy 1SG.EXCL.POSS food
'I used to go to the shop, I used to buy or own food:'
(21) Tena Malarua, tena Llaapa, paki tena Tanoliu, SBST.DEM p.name SBST.DEM p.name to SBST.DEM p.name naara ur=maroa-ki-nia lag ur=ga fi naara sisen mau. 3PL 3pL.S=think-TR-3SG.OBJ COMP 3SG.S=IRR COP:IRR 3SG.POSS scission LIM 'As for those from Malarua, those from Lelepa and including those from Tanoliu, they thought they would just form their own scission.'

6.3.4 Associative possession: N $_{\text {possessum }}$ nag-SUF possessor

Structurally, this construction is the closest to what is usually recognised as an indirect possessive construction in Oceanic languages, as the possessor is indexed on a possessive constituent following the possessed noun (Lynch, Ross and Crowley 2002:40). Here, the possessive particle nag 'ASS' takes a possessor-indexing suffix and follows NP ${ }_{\text {CORE, }}$, as seen in (22):
a. nasu nag-na
beam ASS-3SG.POSS
'its beam'
b. na-maroa-na p̃ela nag-na
N.SPEC-think-NMLZ big ASS-3SG.POSS
'its main idea'
c. ntau nag-go
year ASS-1SG.POSS
'my age'
[elicited]

This construction denotes associative relationships, in which the possessum refers to a part, a characteristic, or a quality of the possessor. This excludes general possession and inalienable possession of body parts, but comprises certain part-whole relationships (e.g. parts of a canoe, of a house, etc). The associative possessor is often non-human, although not always: see (22)c, and (29) to (32). Non-human possessors are exemplified in (23) to (28). In (23), nag-na 'ASS3SG.POSS' encodes the association between a story and its ending:
(23) $\mathrm{E}=\mathrm{pi}$ na-trausi-na nge, na-nou nag-na $\mathrm{e}=$ taplinge. 3SG.S=COP N.SPEC-tell-NMLZ DEF NMLZ-be.finished ASS-3SG.POSS 3SG.S=like.this 'This is the story, the end of it is like this.'

Stories from the oral tradition are often accompanied by a song, and such songs can be viewed as an integral part of the story. In (24), the possessum nalegana 'song' refers to a song associated to a story, and the possessor encoded by -na '3SG.POSs' refers to the story that the speaker is telling:

| Na-lega-na | nag-na | $\mathrm{e}=$ pan tapla, | $\mathrm{a}=\mathrm{ga}$ | magmu | lega=s, |
| :--- | :--- | :--- | :--- | :--- | :--- |
| N.SPEC-sing-NMLZ | ASS-3SG.POSS | 3SG.S=go like.this | 1SG.S=IRR | 2PL.BEN | sing=3OBL |

kur=ga \quad rog=ea.
$2 \mathrm{PL} . \mathrm{S}=\mathrm{IRR} \quad$ hear=3PL.OBJ
'Its song goes like this, I will sing it for you, you will hear it.'

This construction also expresses part-whole relationships between concrete objects and their parts, as well as between abstract items and their parts (e.g. parts of a story, a song, a meeting, etc). In (25), the possessor-indexing suffix occurring on the associative particle refers to a canoe of which the speaker describes the fabrication:
(25)

$$
\begin{aligned}
& \text { E=to se, a=mro ta nakiat, a=ta lag, a=ta nasma, } \\
& \text { 3SG.S=stay while 1SG.S=again cut boom 1SG.S=cut stanchion 1SG.S=cut outrigger } \\
& \begin{array}{llllll}
\text { a=panei } & \text { trups=ia } & \text { e=to } & \text { ne } & \text { nap̃rat } & \text { nag-na, } \\
\text { 1SG=come } & \text { leave=3SG.OBJ } & \text { 3SG.S=stay } & \text { be.with } & \text { washboard } & \text { ASS-3SG.POSS }
\end{array} \\
& e=\text { to garagara. } \\
& \text { 3SG.S=IPFV dry } \\
& \text { 'And then, I cut the booms again, I cut the stanchions, I cut the outrigger, I leave them with its } \\
& \text { washboards, they are drying.' }
\end{aligned}
$$

Similarly, this construction is used to denote the association between a house and its parts:
(26) Go a=lag nag-na, ur=pat=ia, e=pi nasuma nous. and LOC=up ASS=3sG.POSS 3PL.S=make=3PL.OBJ 3SG.S=COP house wild.cane 'And as for its roof, they made it, it was a wild-cane house.'

In (27), the associative construction denotes a more abstract relationship, between a proverb and its message. The possessor-indexing suffix -na cross-references the left-dislocated NP nafsana naluokia nge 'the proverb':
(27)

| Na-fsa-na naluokia N.SPEC-speak-NMLZ | nge, proverb | DEF |
| :---: | :---: | :---: |
| na-maroa-ki tae-na | nag-na | e=tapla. |
| N.SPEC-think-TR know-NMLZ | ASS-3sG.POSS | 3SG.S=like.this |
| s for the proverb, its messa | like this | |

The associative construction also encodes relationships between naturally associated entities, as in (28), associating a car and its driver. The possessor-indexing suffix -na'3SG.POss' refers to a car that has been repaired:

| Draeva driver | nag-na
 ASS-3SG.POSS | $\begin{aligned} & \text { nae }=\mathrm{s} \\ & 3 \mathrm{SG}=\text { too } \end{aligned}$ | $\begin{align*} & \mathrm{e}=\mathrm{pat}=\mathrm{ia}, \tag{28}\\ & \text { 3sG.S=make=3sG.OBJ } \end{align*}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{e}=$ pat | enjin | $\mathrm{e}=$ wok. | |
| 3SG.S=make | engine | 3SG.S=work | |

Human possessors are much less frequent in this construction, but nevertheless attested. In (29), nag-go 'ASS-1SG.POSS' encodes the association between the speaker and his age:

| (29) | Ntau nag-go | $\mathrm{e}=\mathrm{pi}$ | ralma | latsa | atmate | lima. | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | year
 'I am sixty-five years old. | | ASG.S=COP | ten | six | CONJ.NUM | five |

In (30), the possessor-indexing suffix -ra'3PL.POSs' refers to a newly married couple who are posing to have their photos taken:

| (30) | $\mathrm{Ur}=$ to | pat | melu | nag-ra. |
| :---: | :---: | :---: | :---: | :---: |
| | $3 \mathrm{PL} . \mathrm{S}=\mathrm{IPFV}$ | make | photo | ASS-3PL.POSS |
| | ${ }^{\prime}$ They are ta | ng pho | of the | |

In (31), -ra also refers to a human possessor. Here the association is between a group of people and the number of people in that group:
(31) Te-na ur=panei malange, ur=panei p̃algat=ia, SBST=DEM 3PL.S=come then 3PL.S=come open=3SG.OBJ
namba nag-ra $\quad \mathrm{e}=\mathrm{pi} \quad 614$ pipol.
number ASS-3PL.POSS 3SG.S=COP 614 people
'Those who came then, they came to open it, they were six hundred and fourteen.' (lit. their number was six bundred and fourteen people)

In (32), nagra encodes the association between an individual and the group of individuals he belongs to:

| Ur=tu=s | pan | pa, | skei | nag-ra | e=mkalkal. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3PL.S=stay=3OBL | GO | GO | INDEF | ASS-3PL.POSS | 3SG.S=be.itchy |

6.4 Nominal possessor

6.4.1 Inalienable possession: $\mathbf{N}_{\text {possessum }} \mathbf{N}_{\text {possessor }}$

Recall that 6.3.1 showed that the inalienable possessor can be encoded with a possessorindexing suffix. It can also be encoded by a noun, in which case possessum and possessor nouns are simply juxtaposed, with the possessor following the possessum without any morphological marking. This is shown in (33) in which the possessor noun ofa 'heron' follows the possessum noun napa 'neck', and in (34), in which the possessor noun grunkiki 'girl' follows the possessum noun ñpou 'head':
(33) Ar=to pan, na-mu-na $e=m u, \quad e=k a s e m$ nap̃a ofa wara. 3DU.S=stay GO N.SPEC-go.in-NMLZ3SG.S=go.in 3SG.S=reach neck heron here 'They stayed on, the tide went in, it reached the heron's neck here.'

| E=lopa $=$ e | se | np̃ou | grunkiki | e=kat | pa-ki |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3sG.S=see=3SG.OBJ COMP | head liga. | girl | 3SG.S=CERT | go-TR | outside |
| 'He saw that the girl's head was poking out.' | | | | | |

6.4.2 General possession, non-human possessor: $\mathbf{N}_{\text {possessum }}=\mathbf{n} \mathbf{N}_{\text {possessor }}$

In this construction, the enclitic $=n$ 'POSS:NH' attaches to the possessum noun and the possessor noun follows. The enclitic expresses the fact that the referent of the possessor noun is non-human, in contrast with $=g$ 'POSS:H' which occurs with human possessors (see 6.4.3). In this construction, possessor nouns can have a range of referents: concrete inanimates as in (35), (36) and (38), abstract inanimates as in (37), or non-human animates as in (38):

| Ur=kat\quad pa | sil | paga=n | falea. |
| :--- | :--- | :--- | :--- | :--- |
| 3pL.S=CERT go | enter | inside= $=$ POSS:NH | cave |
| 'They entered the cave, | | | |

(36) Wara, ur=kut pat suk~suk wet=n nafnag. here 3PL.S=CERT make tighten~RED shelf=POSS:NH food 'Here, they prepare the table for the food.'

| $\mathrm{E}=\mathrm{pi}$ | na-nou=n | na-trausi-na | agnou. |
| :--- | :--- | :--- | :--- |
| 3sG.S=COP | N.SPEC-be.finished=POSS:NH N.SPEC-tell-NMLZ | 1SG.POSS | |
| 'It is the end of my story.' | | | |

(38) Naa... \quad paone $\quad \mathrm{e}=\mathrm{lao}$ a $=\mathrm{n}$ maleputa=n napua. HESIT buff.banded.rail=POSS:NH p.name 3SG.S=stand middle=POSS:NH road 'Hmm... the buff-banded rail from Saone stood in the middle of the road.'

Bound nouns referring to body parts occur in this construction to express the fact that their referent is detached from the body. This is shown in (39) in which npat refer to a pig's tusk used as an ornament to mark chiefly rank: ${ }^{1}$

| Konou, 1SG | sei, who | naota chief | Mila,
 p.name | $\begin{align*} & \mathrm{a}=\mathrm{ga} \tag{39}\\ & \text { 1SG.S=IRR } \end{align*}$ | p̃il blink | to, STAT | $\begin{aligned} & \mathrm{a}=\mathrm{ga} \\ & 1 \mathrm{SG} . \mathrm{S}=\mathrm{IRR} \end{aligned}$ | lo, look |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| npat=n | | wa | ga | e=ga | liko | | | о. |
| ooth=PO | | pig | IRR.two | 3SG.S $=$ | han | | -1SG.PO | STAT |

'As for me, Chief Mila, I will close my eyes, then I will look, and two pig's tusks will hang from my wrists.'

In (40) namta 'entrance' occurs with $=n$. Note that namta 'eye' is a bound noun referring to a body part, thus namta-n 'eye-POSS:NH' is not expected unless it occurs in a similar context to (39), in which a body part is detached from a body. However, the situation here is different as namta has undergone semantic expansion from 'eye' to 'entrance', which has resulted in two distinct lexemes, namta 'eye' and namta 'entrance', which respectively belong to the classes of bound and free nouns:

| E=pi | faatu to | namta=n falea | to. | |
| :--- | :--- | :--- | :--- | :--- |
| 3SG.S=COP | stone stay | entrance=POSS:NH | cave | STAT |
| 'It is the stone that is at the entrance of the cave.' | | | | |

6.4.3 General possession, human possessor: $\mathbf{N}_{\text {possessum }}=\mathbf{g} \mathbf{N}_{\text {possessor }}$

In this construction, the possessor noun is human and the possessum noun is a free noun hosting the enclitic $=g$ 'POSS:H' which agrees with the human possessor. In (41), the head noun nafsana 'language' is possessed by the human possessor tetaare 'white people':

[^18]| (41) | Go | nafsana=g | te=taare | ur=til=ia | $\mathrm{e}=\mathrm{pi}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| and language=POSS:H | SBST=be.white | 3PL. $S=$ tell=3sG.OBJ | 3SG.S=COP | "mosquito." | |
| | 'And in the white people's language they say, "mosquito."' | | | | |

The human possessor can be encoded by a common noun as in (41) - (43), or by a personal name as in (44) - (45):
(42) Ur=kut suara panmei, pasta e=kat pea,

3pL.s=CERT walk COME pastor 3sG.S=CERT be.first
teteia=g grun wa-n na, tena.
mother=POSS:H woman DEM-DIST DEM SBST.DEM
'They are walking (towards speaker), the pastor is first, as for that woman's mother, (it's) this one.'
(43) A=ga tae lao-ki nasum̃a=g tija.

1SG.S=IRR can stand-TR house=POSS:H teacher
'I will be able to build the teacher's house.'
(44) So e=pi tewei nge, wara $\mathrm{e}=\mathrm{pi}$ eria=g Masogo.
so 3SG.S=COP SBST.TOP DEF here 3SG.S=COP area=POSS:H p.name
'So this is it, here is Masogo's place.'
(45) Okis $\mathrm{e}=\mathrm{raki}$, nae $\mathrm{e}=\mathrm{pu} \quad$ fterki $=g \quad$ Bruce.
p.name 3sG.S=follow 3sG 3SG.S=pull wife=POSS:H p.name
'Okis follows, he's leading Bruce's wife.'

Obligatorily possessed kin terms do not occur in this construction, but body part nouns can occur in it when the possessive relationship is not one of inalienability. This is the case in (46), as the human possessor is the owner of a body part removed from an animal for a particular use, such as making soup:
$\mathrm{E}=\mathrm{pi} \quad$ naru=g
3sG.S=COP fishbone=POSs:H \quad Namuan.
'This is Namuan's fishbone (that he will use to make soup).'
[elicited]

6.5 Local possessum noun kia-

This construction is described separately and not included in table 6.1 as it has specialised semantics. It involves the bound noun kia- 'LOCAL' taking a possessor-indexing suffix to encode local possessions, that is, possession of items that are locally or geographically
associated to the possessor, such as their house, area or language. It is not as widespread as other possessive constructions in the corpus, and all examples denote possessive relationships in which the possessum noun refers to a local entity. The simplest instance of this construction is shown in (47), in which kia-takes a possessor-indexing suffix and acts as an NP. In this case, kia- refers to the possessor's house, village or locality in general:

| (47) | Ur=to | kia-ra |
| :--- | :--- | :--- |
| 3pL.S=stay | LOCAL | -3PL.POSS |
| 'They are at their place.' | STAT | |
| [elicited] | | |

If the possessor is a lexical noun as in (48), kia-must occur with a possessor-indexing suffix and be followed by the noun encoding the possessor. Thus in (48), the suffix $-n a$ ' 3 SG.POSS' is co-referential with the possessor noun Mtaktal:

| (48) | Ur=mato | kia-na | Mtaktal | to. |
| :---: | :---: | :---: | :---: | :---: |
| | 3PL.S=stay.long | LOCAL-3SG.POSS | p.name | STAT |
| | ${ }^{\prime}$ They are at Mta [elicited] | tal's.' | | |

It is possible for the possessum noun to be lexically encoded, to be more narrowly specified than with just kia-. In this case, the construction is an instance of the general possession construction described in 6.4.2: the non-human possessum noun takes the enclitic $=n$ 'POSS:NH' and is followed by the possessor noun formed with kia-. This is shown in (49) to (52), in which the possessum nouns refer to entities locally associated with their possessors: houses as in (49) and (50), or a canoe borne from the possessor's area as in (51):

| (49) | Ar=to \quad suma $=\mathbf{n}$ | kia-go | lag | e=ga | rikodem konou. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1DU.EXCL.S=stay house=POSS:NH | LOCAL-1SG.POSS | PURP | 3SG.S=IRR | record | 1SG |

(50) $\mathrm{Ar}=\mathrm{mro}$ pa-ki farea=n \quad kia-ra pan, 3DU.S=AGAIN go-TR
chiefly.house=POSS:H LOCAL-3PL.POSS
GO ar=wusu napua frau. 3DU.S=follow road be.long 'They went back to their chiefly house, they followed a long route.'
$\begin{array}{llllll}\text { (51) } & \text { P̃a=lopa } & \text { rarua=n } & \text { kia-m̃a } & \text { skei } & \text { e=palse }\end{array} \quad$ pa.

In (52), ntak $=n$ kia-gta 'backside=pOSS:NH LOCAL-1PL.INCL.POSS' denotes the other side of Lelepa island, which is currently uninhabited. This collocation is commonly used by Lelepa speakers to refer to that location, and literally means 'our backside':
$\begin{array}{lll}\text { (52) } & \text { E=lop̃a=e } & \text { se } \\ & \text { 3SG.S=see=3SG.OBJ } & \text { COMP }\end{array}$

| Pum̃a | e=po | lao | sua | ntak=n | kia-gta | panmei. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| p.name | 3SG.S=SEQ | stand | PRF | backside=POSS:NH | LOCAL-1PL.INCL.POSS | COME |
| 'He saw that Puma already stood on the other side of our island.' | | | | | | |

In (53) kia- hosts the locative proclitic $a=$ 'LOC' (see 3.4.3) which derives locational nouns:
(53) McDonald e=ti pat na-wesi-na frau~rau p.name 3sG.S=NEG make N.SPEC-work-NMLZ be.long~RED
a=kia-gta mau.
LOC=LOCAL-1PL.INCL.POSS NEG2
'MacDonald did work for a long time at our place (i.e. in Lelepa).'

Chapter 7 - Clause structure and grammatical relations

7.1 Introduction

This chapter describes independent clauses. A common way of distinguishing clauses is by looking at whether they are independent or subordinate. Independent clauses are free-standing units, while subordinate clauses are embedded in independent clauses. In Lelepa, their structures only differ in that subordinate clauses may be introduced by a subordinator (see chapter 12), which is not the case of independent clauses.

The chapter also establishes the grammatical relations subject, object and oblique (see 7.4.4). A typologically interesting feature of the language is that objects are split along two subclasses of transitive verbs, Class 1 and Class 2 (see 7.4.4.3, 8.5). The split is lexically determined since it operates over two verb subclasses, but it also relates to semantics because patientivity, animacy and person all play a role in setting the split. Prototypical patients tend to be animate, highly affected and occur with Class 1 transitives. In contrast, less prototypical patients tend to be inanimate and less affected, and occur with Class 2 transitives. This is reflected by the use of distinct object enclitics: the object of Class 1 pat 'hit' in (1)a is a highly affected animate encoded with $=i a$ ' 3 SG.OBJ', while that of Class 2 plaga 'look for' in (1)b is inanimate, unaffected, and encoded with $=s$ ' 3 sG.OBJ':
a. $E=\tilde{p} a t=i a$

3SG.S=hit=3SG.OBJ
'He hit him.'
b. $\mathrm{E}=$ plaga $=\mathbf{s}$

3sG.S=look.for=3sG.OBJ
'He looked for it/him.' [elicited]

In addition, note that oblique arguments are encoded by an enclitic identical in form to the object enclitic $=s$ in (1)b., but glossed '3OBL' as it has a different function. In (2)a. the oblique
has the role of location, and in (2)b that of instrument. The main difference between object and oblique is that the former is required by the verb, but not the latter (see 7.4.1.2, 7.4.1.3, 7.4.4.4):
a. $\quad \mathrm{E}=$ maturu $=\mathbf{s}$

3SG.S=sleep=3OBL
'He slept on it.'
b. $\mathrm{E}=\tilde{\mathrm{p}} \mathrm{at}=\mathrm{ia}=\mathrm{s}$
$3 \mathrm{sG} . \mathrm{S}=$ hit $=3 \mathrm{sG} . \mathrm{OBJ}=3 \mathrm{OBL}$
'He hit him with it.' [elicited]

Oblique arguments like those in (2)a \& b and the object in (1)b share certain properties: they tend to be inanimate, unaffected, and third person. The fact that the same form $=s$ ' $3 \mathrm{sG} . \mathrm{OBJ}$; 3OBL' is used to mark arguments with different syntactic functions (object vs. oblique) but common semantic properties (inanimate, unaffected, third person) is an interesting feature of the language. Lelepa has two types of objects: one with typical object properties, and another that is lower on the animacy hierarchy and in this respect, similar to an oblique. Typologically, this is significant as only a few Austronesian languages are known to have split objects: the South Halmahera language Taba has a split object based on animacy (Bowden 2001).

The chapter is organised as follows: the remainder of this section briefly defines important terminological notions in 7.1.1, the distinction between basic and extended clause levels is presented in 7.1.2, and an overview of basic clause structure is given in 7.2. Copular clauses are discussed in 7.3 , while other verbal clauses and grammatical relations are addressed in 7.4, and followed by a discussion on adjuncts in 7.5. Variations in clause structure are discussed in 7.6, and negation in 7.7.

7.1.1 Terminology

The notions of valency, argument, adjunct, intransitive and transitive clauses are common in linguistic description but are often used in different ways in the literature. They are defined here in the way they are used in this study to avoid terminological confusion.

Valency refers to the number of arguments of a clause. In Lelepa, clauses can have a valency of one to three: if a clause has a single argument it is monovalent, if it has two arguments it is divalent, and if it has three arguments it is trivalent.

Intransitive clauses do not have an object. They can be monovalent and only have a subject, or divalent and have a subject and an oblique. Transitive clauses can be either divalent and have a subject and an object, or trivalent and have a subject, an object and an oblique. As for ditransitive clauses, they are always trivalent, with a subject, a primary object and a secondary object.

Arguments are subcategorised for by the predicate. In Lelepa, an argument can be recognised primarily on its ability to be encoded by a pronominal clitic: subjects are encoded with subject proclitics, objects with object enclitics and obliques with the oblique enclitic. Arguments fall into two classes: core and oblique. Core arguments are required by the predicate, while oblique arguments are not but can be added to it. In this work, arguments are sometimes referred to by their grammatical functions A, S and P (Dixon 1972, Andrews 2007a, Haspelmath 2011): S is the single argument of an intransitive clause, A is the most agentive argument of a transitive clause, and P is the most patientive argument of a transitive clause. In addition, narrower labels are used (after Haspelmath 2005, 2011): R refers to a recipient argument and T to a theme argument. In Haspemath's terms, T and R are defined as the theme and the recipient of transfer verbs of possession such as 'give' as well as other arguments treated in the same way (Haspelmath 2011:558). In Lelepa, this includes the arguments of tua 'give', as well as those of the transfer verbs of speech rki 'tell' and paoseki 'ask' (6.4.1.2, 6.4.1.3, 6.4.2.3). In addition, L and I are used to refer to arguments with the role of location and instrument, respectively.

Adjuncts are not subcategorised for by the predicate. They are freely added to the clause but in contrast to arguments they cannot be encoded by pronominal clitics. They provide information not given by the predicate and its arguments, such as location in time, source and beneficiary.

7.1.2 Basic and extended clause levels

Two levels are distinguished within the clause: the basic clause and the extended clause. A basic clause consists of a predicate and its arguments. In contrast, the extended clause includes adjuncts such as sentential adverbs (see 4.7.2) and prepositional phrases, left- and rightdislocated NPs (see 7.6), and adverbial clauses (see 12.5). The left boundary of the basic clause is indicated by a pause separating left-dislocated material to the left and the basic clause to the right. The right boundary of the basic clause is indicated by the aspectual and directional
particles to 'STAT', $p a$ 'GO', pan 'GO', panei 'COME' and pea 'FIRST' (see 10.6). I refer to these particles as 'clause-final particles'; however, it is slightly counter-intuitive because they do not exactly mark the end of the clause, but that of the basic clause: clausal adjuncts follow them and are part of the extended clause. However, 'clause-final' is simpler and shorter than 'basic clause-final', thus 'clause-final' was chosen. The right boundary of the basic clause can also be indicated by a pause, however this only occurs in clause with right-dislocated NPs (see 7.6.3). In (3), panei marks the end of the basic clause and is followed by a prepositional phrase (underlined) introduced by $p a-k i$ 'go-TR'. Since prepositional phrases are not right-dislocated, there is no pause between panei 'COME' and paki 'to', and (3) is realised as a single intonational phrase:

| Ar=kat sfa llu | panei | paki | sum̃a. |
| :--- | :--- | :--- | :--- | :--- |
| 3DU.S=CERT run return | COME | to | house:SPEC |
| 'They ran back home.' | | | |

In (4) the clause-final particle to 'STAT' indicates the end of the basic clause. The temporal sentential adverb sral 'often' follows and functions as a temporal adjunct:
(4) $\mathrm{E}=\mathrm{pi}$ naure kiki nae, $\mathrm{e}=\mathrm{to}=\mathrm{s}$ to sral. 3SG.S=COPisland be.small 3sG.POSS 3SG.S=stay=3OBL STAT often 'It was his little island, he stayed there often.'

In (5), the extended clause position is filled by a purpose clause following the particle to 'STAT':
(5) Marka naota Marifatu $e=k a s u a \quad$ to, old.man chief p.name 3sg.s=be.strong STAT $\begin{array}{llllll}\text { lag } & \mathrm{e}=\mathrm{ti} & \text { msau-na lag } & \text { ur=ga fat } & \text { na-lotu-na } \\ \text { PURP } & \text { 3SG.S=NEG } & \text { want-3SG.OBJ } & \text { COMP } & \text { 3PL.S=IRR make:IRR } & \text { N.SPEC-pray-NMLZ NEG2 } \\ \text { ‘The chief Marifatu remained strong, as he didn't want them to be Christians.' }\end{array}$

A clause comprised of a basic clause with all positions filled and a topicalised adjunct part of the extended clause is given in the first line of example (6). The temporal adjunct slafea 'before' is separated by a pause (indicated by a comma), and the following basic clause comprises the subject NP natowia aginta 'our ancestors' and the object NP nanu 'coconut':

| (6)Slafea,
 before | natowia
 ancestors\quad aginta | 1PL.INCL.POSS |
| :--- | :--- | :--- | :--- | :--- |\quad| ur=to |
| :--- |
| 3PL.s=IPFV |\quad| wus nanu, |
| :--- |
| get |

'Before, our ancestors used to get coconuts, they used to fetch water with them.'

Example (7) shows both positions of the extended clause filled (in bold): a left-dislocated object NP occurs to the left of the basic clause while the temporal adjunct 1946 occurs to its right:
(7) Go nasum̃a tap ke-tolu nge, ur=stat pat=ia 1946.
and house taboo ORD-three DEF 3PL.S=start make=3SG.OBJ 1946
'And as for the third church, they started to build it in 1946.'

7.2 Overview of basic clause structure

The structure of the basic clause is represented in fig. 7.1. A clause minimally takes a predicate (PRED) and a preverbal subject argument $\left(A R G_{1}\right)$, and can have a maximum of three arguments. Non-subject arguments are postverbal and their occurrence is conditioned by the class of the verb occurring as the predicate. $A R G_{2}$ is always an object while $A R G_{3}$ can be an object or an oblique. In a ditransitive clause, ARG_{3} is an object; but in a divalent intransitive clause, the post-verbal argument is an oblique occurring in ARG_{3} position. As discussed in 7.1.2, adjuncts (ADJT) are not part of the basic clause and occur at its left and right periphery. However, the benefactive phrase occurs between ARG_{1} and PRED. The benefactive position is labelled $\mathrm{ADJT}_{\text {BEN }}$ to indicate that it is reserved to the benefactive phrase and that no other adjuncts can occur in this position (see 7.5.3):

Fig. 7.1. Basic clause structure

| SUBJ | | | OBJ | OBJ |
| :---: | :---: | :---: | :---: | :---: |
| ARG $_{1}$ | (ADJT ${ }_{\text {BEN }}$) | PRED | (ARG 2$)$ | (ARL |
| (AR) | | | | |

Since all predicates are realised by verbs, all clauses are verbal. Copular clauses are regarded as verbal clauses of a particular type and are discussed in 7.3. Other verbal clauses fall into three classes according to the number of arguments they have: monovalent clauses have one argument as in (8), divalent clauses have two arguments as in (9), and trivalent clauses have three arguments as in (10):
(8) $E=$ panei.

3SG.S=come
'He came.'
[elicited]
(9)
E=paam
3sG.S=eat
'He ate chicken.'
[elicited]
toa.
chicken
[elicited]

```
A=to psa=pseiki=nia na-fsa-na.
1SG.S=IPFV speak=show=3SG.OBJ
    'I taught him the language.'
    [elicited]
```


na-fsa-na.

```
N.SPEC-speak-NMLZ
```


7.3 Copular clauses

Unlike most Oceanic languages, Lelepa has a copula verb $p i / f i$ 'COP:R/IRR', and the same is true for a number of other central Vanuatu languages such as South Efate (Thieberger 2006:78) and Nguna (Schütz 1969), and some northern Vanuatu languages such as Paamese (Crowley 1982:169). Oceanic languages in general do not have a copula and allow classes other than verbs to be predicative (Lynch, Ross and Crowley 2002:49), see for instance the northern Vanuatu languages Mwotlap (François 2003:13), Abma (Schneider 2010:121), and Tamambo (Jauncey 2011:53-54), amongst others. For examples of southern languages see Lenakel (Lynch 1978:99) and Ura (Crowley 1999:198).

7.3.1 The functions of the copula

Copular clauses are a minor clause type. The copula enables members of word classes other than verbs to be predicative. It is analysed as a verb, albeit of a special kind: morphologically, it behaves like any other verb, taking subject proclitics and occurring with preverbal TAM particles, benefactive phrases and negators. In addition, it undergoes stem-initial consonant mutation like the majority of p / f initial verbs (see 11.2.2).

The argument structure of the copula is of a different nature to that of other verbs. First, it does not contribute any lexical meaning, and does not have a predictable case frame like lexical verbs such as 'sleep' or 'hit'. Instead, it is the complement of the copula which assigns lexical content to the predicate. For this reason, the copula does not conform to the clause structure given in fig. 7.1 , and its subject and complement are not in the A and P
function. Dryer (2007b.:225) clarifies the function of the English copula be by saying, "the verb be is more of a function word than a predicate; its function can be thought of as combining with nonverbal predicates to form what is syntactically a verbal predicate", a statement that fits Lelepa $p i / f i$ 'COP' rather well. The copula is used to form equative clauses (see $13,16,17,11,19$, 20), or to express a property of the subject as in (14) and (12). In (13), the subject of the copula is the NP nagigo tetaare 'my European name', and its complement is the NP George:

| (13) Kane nagi=go | te=taare | e=pi | George. | |
| :--- | :--- | :--- | :--- | :--- |
| but | name=1SG.POSS | SBST=white | 3SG.S=COP | p.name |
| 'But my European name is George.' | | | | |

In (14), the subject of the copula is the NP Suva, and its complement slot is the adjective \tilde{p} ela 'big':
$\begin{array}{lll}\text { (14) } \begin{array}{ll}\text { Suva } \quad \mathrm{e}=\mathbf{p i} & \text { pela. } \\ \text { p.name } \quad \text { 3sG.S=COP } & \text { big } \\ & \text { 'Suva is big.' }\end{array} & \end{array}$

The copula occurs with modality particles. In (15), pi occurs with kat 'CERT', and in (16) with lag 'MAYBE':
(15) Nfano nge $e=$ kat $\mathrm{pi} \quad a=$ mae.
country DEF 3SG.S=CERT COP LOC=far
'The country was certainly far away.'
(16) Nlag $\mathrm{e}=$ lag $\mathbf{p i}$ warpagas.
wind 3SG.S=MAYBE COP west.wind
'Maybe the wind was the west wind.'

In (17), the copula and a benefactive phrase (see 7.5.3) co-occur:
E=magnou \quad pi \quad namagana.

In irrealis clauses, the irrealis form of the copula $f i$ occurs, as in (18) and (19):
$\begin{array}{lll}\text { (18) } & \text { Wan } & \text { e=ga fi } \\ \text { if } & \text { 3sG.S=IRR } & \text { COP:IRR }\end{array}$

| kan | wan | e=ga | fi | srago | sa, |
| :--- | :--- | :--- | :--- | :--- | :--- |
| but if | 3SG.S=IRR | COP:IRR | thing | bad | |

e=ga faam tena nmau-na e=to=s.

3SG.S=IRR eat:F SUB.DEM feather-3SG.POSS 3SG.S=stay=3OBL
'If he is human, he will eat the one you plucked, but if he is a bad spirit, he will eat the one with feathers on.'
(19)

| $\tilde{P} a=$ fat | tera | nge; |
| :--- | :--- | :--- |
| 2SG.S:IRR=make:IRR | garden | DEF |

| e=ga | fi | tera=n | srago | mlaksa. |
| :--- | :--- | :--- | :--- | :--- |
| 3SG.S=IRR | COP:IRR | garden=POSS:NH | things | green |
| 'You will make the garden; it will be a greens garden.' | | | | |

Like any other clause, copular clauses can be negated:

| (20) Nuwai | nge | $\mathrm{e}=\mathrm{ti}$ | pi | nuwai | sara | mau. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| water | DEF | 3sG.S=NEG | COP | water | run | NEG2 |

'The water was not running water.'

Rarely, the copula is used to form existential clauses, as in (21):
(21) $\mathrm{E}=\mathrm{pi}$ mutuama skei, $\mathrm{e}=$ to Artoka, $\mathrm{e}=$ to Artoka to.

3sG.S=COP ogre INDEF 3SG.S=stay p.name 3SG.S=stay p.name STAT
'There was an ogre, he stayed in Artoka, he lived in Artoka.'

However, a more common way of forming existential clauses is to use the verb pitlaka 'have' as in (22):

| (22) | Go | E=pitlak | pasta | skei, | e=pi | pasta=n |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| And | 3SG.S=have | pastor | INDEF | 3sG.S=COP | pastor=POSS:NH | Mele |
| p.name | | | | | | |
| 'And there was a pastor, he was a pastor from | Mele.' | | | | | |

Note that $p i$ and pitlaka are etymologically related. The latter is a compound formed with $p i$ 'COP' and atlak 'owner'. The semantic link between pi atlak 'be owner' and pitlaka 'have' is obvious. Note also that the variant form piatlaka 'have' occurs.

7.3.2 Copula omission

The copula can be omitted in a few predictable circumstances. All recorded instances in which this occurs have the noun nagi 'name' as head of the subject NP. Compare the two textual examples in (23) and (24), which are both uttered by the same speaker as the first sentences of two different texts: in (23), the copula occurs with its subject proclitic, whereas in (24) they are both omitted:

| (23) Konou, | nagi | konou | e=pi | Thompson | Namuan. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1sG | name | 1SG | 3sG.s=COP | p.name | p.name |

(24) Konou, nagi konou Thompson.

1SG name 1SG p.name
'Me, my name is Thompson'.

In (25), $p i$ occurs in an equative clause with a subject NP headed by nagi-na 'name-3sG.POSs'. The following clause (underlined) is a repetition of the preceding one, with the difference that the copula and its subject proclitic are omitted:

There are also instances of omitted agreement, in which the copula occurs without the subject proclitic, as in (26) and (27). There are no instances in which the copula is omitted and the subject proclitic occurs:

| (26) | Konou, | nagi | konou | pi | Nagi. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 1SG | name | 1SG | COP | p.name |
| | 'Me, my name is Nagi'. | | | | |

| (27) Konou, nagi | konou | pi | Munalpa. | |
| :--- | :--- | :--- | :--- | :--- |
| 1SG | name | 1SG | COP | p.name |
| 'Me, my name is Munalpa'. | | | | |

Examples such as (23) and (24) seem to be in free variation in the language: no grammatical constraint has been observed as a condition to the omission of the copula. In addition, the very narrow scope of copula omission (eg. only in clauses in which the subject NP is headed by the noun $n a g z$) makes it a very marginal feature of the language. For these reasons, I regard these clauses with omitted copulas as underlyingly verbal, and do not posit the existence of a very restricted class of non-verbal clauses in the language.

7.4 Non-copular verbal clauses

7.4.1 Argument realisation

Pronominal clitics and word order are the two strategies used for coding arguments. They are not mutually exclusive and are both used in any clause. Arguments must be overtly realised in verbal clauses, and this is done by using one of two means: NPs or pronominal indexing. Strategies for realising arguments are chosen according to the grammatical function of the argument (see 5.5.1) and pragmatic factors (see 5.5.2). In table 7.1 the correlations between grammatical functions (S, A, P, R, T, L, I) and grammatical relations are given. Note that theme arguments of ditransitive verbs ($\mathrm{T}_{\text {Drrir }}$) are objects while theme arguments of intransitive and monotransitive verbs ($\mathrm{T}_{\mathrm{NTrR} / \mathrm{rR}}$) are obliques. These correlations are discussed and established in the following subsections.

| | Subject | Object | Oblique |
| :---: | :---: | :---: | :---: |
| S | + | - | - |
| A | + | - | - |
| P | - | + | - |
| R | - | + | - |
| $\mathrm{T}_{\text {DItr }}$ | - | + | - |
| $\mathrm{T}_{\text {INTR/Tr }}$ | - | - | + |
| L | - | - | + |
| I | - | - | + |

Table 7.1. Correlations between grammatical functions and grammatical relations

7.4.1.1 Realisation of S and A arguments: subjects

S and A arguments share the same morphosyntactic properties: they are obligatorily indexed with the subject proclitics given in Table 7.2. These proclitics are portmanteau morphemes marking subject, person (first, second, third and clusivity), and number (singular, dual and plural). The paradigm presents a certain amount of syncretism, with the person distinction between first exclusive and third person neutralised in dual and plural numbers. The second person singular $k u=$ ' 2 SG.S:R' and $\tilde{p} a=2$ SG.S:IRR' also distinguish mood. $\tilde{P} a=$ is not synchronically analysable as a combination of a subject proclitic and the irrealis particle ga 'IRR'. An irrealis clause with a second singular subject is always marked with $\tilde{p} a=$, and not $* k u=g a$ (see 11.2.1.2). In addition, the alternation between $a u=$ and $u r=$ '1PL.EXCL.s' appears to reflect change in progress: $a u=$ is only occasionally present in the speech of a few older speakers, while other speakers consistently use $u r=$ to encode a first person plural exclusive realis subject. It seems that $u r=$ is replacing $a u=$ and that this change is almost completed in the language. This is corroborated by Miller (1945), which lists $a u=$ '1PL.EXCL.S' and ur= '3PL.S', but no alternation between these two forms. ${ }^{1}$ Based on this work, we can observe that this change is fairly recent and has occurred in the last fifty to sixty years.

| | 1INCL | 1EXCL | $\mathbf{2}$ | $\mathbf{3}$ |
| :---: | :---: | :--- | :--- | :---: |
| SG | - | $a=$ | $k u=\sim \tilde{p a}=$ | $e=$ |
| DU | $t a=$ | $a r=$ | $k a r=$ | $a r=$ |
| PL | $t u=$ | $u r=\sim a u=$ | $k u r=$ | $u r=$ |

Table 7.2. Subject proclitics

Along with the verb root, subject proclitics are an obligatory constituent of well-formed clauses. They are regarded as syntactic subjects of clauses since subject NPs do not need to occur. They are also used as evidence for monoclausality, a test useful for the analysis of serial verb constructions (see 10.4). As (28) and (29) show, an S argument and an A argument with the same person and number values are encoded with the same proclitic:

$$
\begin{align*}
& \mathrm{E}_{\mathrm{i}}=\text { to. } \tag{28}\\
& \text { 3sG.S=stay } \\
& \text { 'He/she stayed.' } \\
& \text { [elicited] }
\end{align*}
$$

[^19]| $\mathrm{E}_{\mathrm{i}}=$ lag rog
 3SG.S=MAYBE feel
 'Maybe he dug it too early.' | tortor
 sweat | kil=iaj.
 dig=3SG.OBJ |
| :--- | :--- | :--- |
| | | |

In addition to subject proclitics, S and A arguments may be expressed by lexical NPs preceding the verb complex, as seen in (30) and (31). ${ }^{2}$ Whether or not bound person forms such as the Lelepa subject proclitics are pronouns and count as arguments in place of lexical NPs has been widely discussed (see, amongst others, Bresnan and Mchombo 1987, Evans 2002, Siewierska 2004, Corbett 2006, Haspelmath 2012). According to Haspelmath, lexical NPs occurring with bound person forms and sharing the same referent are called 'conominals'. They are defined as nominals able to occur with argument-indexing forms with the same role and reference in the same 'narrow clause' (Haspelmath 2012:7). ${ }^{3}$ In situations in which both conominals and argument-indexing forms co-occur, as in (30) and (31), it may be tempting to analyse subject proclitics as syntactic agreement markers, as in languages like English. Instead, subject proclitics can be regarded as anaphoric agreement markers. Further, since subject NPs are not obligatory as seen in (28) and (29), it is clear that subject proclitics fill the argument position in such cases:
(30) Ura nge ${ }_{i} \mathrm{e}_{\mathrm{i}}=$ kat pueli. prawn DEF 3sG.S=CERT not.be.there
'The prawns were gone.'
(31) Kanokiki e=kis suk np̃ou soup̃oumila.
boy 3SG.s=press tight head red.headed.honeyeater
'The boy squeezed the head of the red-headed honeyeater.'

S and A arguments can also be realised with personal pronouns co-referential with subject proclitics, as shown in (32). They fill the same syntactic position as NPs and are regarded as such. Constraints conditioning the occurrence of personal pronouns have to do with pragmatics and animacy. Non-humans are typically not referred to by these pronouns (see 4.6.1, 5.5.2.2):

[^20]| Kenem $_{i}$ | ur $_{i}=\mathrm{ti}$ | tae | kastom | mau. |
| :--- | :--- | :--- | :--- | :--- |
| 1PL.EXCL | 1PL.EXCL.S=NEG | know | tradition | NEG2 |
| 'We didn't know the traditions.' | | | | |

7.4.1.2 Realisation of P and R arguments: objects

In contrast to subjects, P and R arguments are realised either with an NP or a bound object marker (see table 7.3), but not by both, in the basic clause. Bound object markers mark their referent for person, clusivity and number, as expected for an Oceanic language (Lynch, Ross and Crowley 2002:35-36). Unlike subject proclitics, they do not encode any TAM categories and lack a dual distinction. The paradigm does not present any gaps or syncretism, with each combination of person and number values expressed by a different form. On the other hand, there is a significant amount of allomorphy for all persons in the singular.

| | 1 INCL | 1 EXCL | $\mathbf{2}$ | 3 | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SG | | $-i o u \sim$
 $-o u \sim-w o u$ | $-g o \sim=k o o$ | Class 1 | =ia~-nia $\sim=a \sim=e \sim=e a \sim-n a$ |
| | | Class 2 | $=s$ | | |
| PL | $=g a m$ | $=g t a$ | $=m u$ | $=r a$ | |

Table 7.3. Bound object markers

The distribution of object markers is complex and conditioned by phonological and lexical parameters (see 9.4.3.3), as well as verb subclass. Class 1 transitives (see 8.5.1) take the object enclitics in table 7.3 except for $=s$ ' 3 SG.OBJ', while Class 2 transitives (see 8.5.2) can only take $=s$ to encode a third person singular object. Class 2 transitives cannot host the other object enclitics directly and need to take the suffix $-k_{i} i$ 'TR' followed by the appropriate object suffix if their object is not third person singular. An example of Class 1 transitive verb is lopa 'see' in (33). It takes the object enclitics $=e^{‘} 3 \mathrm{SG} . \mathrm{OBJ}$ ' and $=r a ‘ 3 \mathrm{PL} . \mathrm{OBJ}$ ', but cannot take $=s$ ' $3 \mathrm{SG} . \mathrm{OBJ}$ ':
a. $\mathrm{E}=\mathrm{lo} \mathrm{p} a=\mathbf{e}$

3SG.S=see=3SG.OBJ
'He saw him.'
b. $\quad E=l o \tilde{a} a=r a$

3SG.S=see=3PL.OBJ
'He saw them.'
c. $\quad * \mathrm{E}=$ lop̃ $\mathrm{a}=\mathbf{s}$
$3 \mathrm{SG} . \mathrm{s}=\mathrm{see}=3 \mathrm{SG} . \mathrm{OBJ}$
'He saw him.'
[elicited]

In contrast, the class 2 transitive sralesko 'believe; trust' in (34) must take $=s$ ' 3 SG . OBJ' to encode a third person singular object, and $-k_{i}$ 'TR' followed by the corresponding object suffix if their object has other person and number values (see 7.4.4.3, 8.5.2). This shows that the split is also sensitive to person:
a. $\mathrm{E}=$ sralesko $=\mathrm{s}$

3SG.S=believe=3SG.OBJ
'He believes him.'
b. $\quad * \mathrm{E}=$ sralesko=ea

3sG.S=believe=3SG.OBJ
'He believes him.'
c. $\mathrm{E}=$ sralesko-ki=ra

3SG.S=believe-TR=3PL.OBJ
'He believes them.'
d. $\quad * \mathrm{E}=$ sralesko $=\mathrm{ra}$

3SG.S=believe-TR=3PL.OBJ
'He believes them.'
[elicited]

Since object NPs and object enclitics cannot co-occur, object enclitics are truly pronominal (see Haspelmath 2012:9, Siewierska 2004:126). In (35), the transitive verb pat'make' occurs in two subsequent clauses, each time followed by an object NP. In contrast, in (36) the object of pat is encoded by the enclitic $=i a^{\prime} 3 \mathrm{SG} . \mathrm{OBJ}$ ':

| Ar=pat | naasu, | ar=pat | nalwaa | nag-na. |
| :--- | :--- | :--- | :--- | :--- |
| 3DU.S=make | bow | 3DU.S=make | arrow | ASS-3SG.POSS |
| 'They made bows, they made their arrows.' | | | | |

| (36) | Ur=mro | pat=ia | pa, mato | pat=ia |
| :--- | :--- | :--- | :--- | :--- |
| | 3pL.S=again | make=3SG.OBJ | GO | pa. |
| | stay.long | make=3SG.OBJ | GO | |

It is ungrammatical for an object enclitic and an object NP to co-occur, as seen in (37):
(37)

```
*Ar=pat=ia naasu, ar=pat=ia nalwaa nag-na.
3DU.S=make=3SG.OBJ bow 3DU.S=make=3SG.OBJ arrow ASS-3SG.POSS
'They made bows, they made their arrows.'
    [elicited]
```

Similarly, with a class 2 transitive such as sralesko 'believe; trust', the object can only be encoded by an NP or the enclitic $=s$ ' $3 \mathrm{SG} . \mathrm{OBJ}$ ' as in (38), but not by both as in (39):

| $\tilde{\text { Pa }} \mathrm{a}=$ sralesko | Iesu. |
| :--- | :--- |
| 2SG.S:IRR=believe | Jesus |

| Kane | ku=ti | sralesko=s | mau, | pa=rog | nakortlag, |
| :--- | :--- | :--- | :--- | :--- | :--- |
| but | 2SG.S=NEG | believe=3SG.OBJ | NEG2 | 2SG.S=feel | sky |

$\mathrm{e}=\mathrm{pi} \quad$ nalia moli.
3SG.S=COP place just
'Believe in Jesus. But you don't believe in him, you will hear that Heaven, it is just a place.'

| *P̃a=sralesko=s | Iesu. |
| :--- | :--- |
| 2SG.S:IRR=believe=3sG.OBJ | Jesus |
| 'Believe in Jesus.' | |
| [elicited] | |

Objects arguments can also be encoded with personal pronouns when their referent is human, regardless of the subclass of the transitive verb, as seen in (40) with the Class 1 transitive verb msug 'carry', and in (41) with the Class 2 transitive verb fatu 'step on'
. Personal pronouns take the place of NPs and do not occur with object enclitics:

| E=msug | konou | ar=kat | pa-ki | Bellevue |
| :--- | :--- | :--- | :--- | :--- |

(41) Konou $a=$ ga fi walak, kutu nae na e=ga fatu konou, 1SG 1SG.S=IRR COP climbing.rope louse 3SG DEM 3SG.S=IRR step.on 1SG
$\mathrm{e}=$ go pag pa-ki lag. 3SG.S=IRR climb go-TR upwards
'I will be the climbing rope, as for Louse he will step on me to climb to the top.'

Object enclitics can only be followed by NPs if those NPs encode a different participant, as shown in (42) to (44). With monotransitive verbs, these NPs are not objects but oblique arguments. They are not required by the verb and bear semantic roles typical of obliques: source in (42)a, location in (43), and respectively instrument and location in (44). Obliques are regarded as arguments because they can be alternatively realised as enclitics on the verb, as in (42)b:

| a. | Ur=pat=ia |
| :--- | :--- |
| | 3PL.S=make=3SG.OBJ |
| | bamboo |
| | 'They made it out of bamboo.' |

b. $\quad \mathrm{Ur}=\mathrm{pat}=\mathrm{ia}=\mathbf{s}$
$3 \mathrm{PL} . \mathrm{S}=\mathrm{make}=3 \mathrm{SG} . \mathrm{OBJ}=3 \mathrm{OBL}$
'They made it with it.'
(43)

| Ar=pan
 3DU.S=go\quadpa-ki
 go-TR | naloana=n
 preparation=POSS:NH | naftourina
 wedding | nge
 DEF |
| :--- | :--- | :--- | :--- |
| na \quad ur=pat=ia | \quad a=siwo. | | |

(44) $\mathrm{Ku}=\tilde{\mathrm{p} a}$ Thompson nkas skei na $\mathrm{ku}=$ pam̃osko=s napua. 2SG.S=hit p.name stick INDEF REL 2SG.S=find=3SG.OBJ road 'You hit Thompson with a stick that you found on the road.' [elicited]

Arguments with the role of recipient (R) occur in trivalent clauses with the three ditransitive verbs tua 'give', pseiki 'tell' and paoseki 'ask'. As shown in table 7.4, P and R arguments share all properties but one: while some P arguments can be encoded by the enclitic $=s$ ' $3 \mathrm{sG} . \mathrm{OBJ}$ ', R arguments cannot.

| Properties | P arguments | R arguments |
| :--- | :---: | :---: |
| Required by the verb | + | + |
| Realised with lexical NP | + | + |
| Realised with personal pronoun | + | + |
| Realised with bound object markers | + | + |
| Realised with $=s$ | + | - |

Table 7.4. Properties of P and R arguments

In (45) the R argument is expressed with the lexical NP fterki 'wife' and in (46) with the personal pronoun konou ' 1 SG ':
(45) $\quad \mathrm{E}_{i}=$ tua
$\mathrm{e}_{j}=\mathrm{munu}=\mathrm{s}_{k}$
3sG.S= give
wife $=3$ OBL
$3 \mathrm{SG} . \mathrm{S}=$ drink $=3 \mathrm{OBL}$
'He gave it to the wife, she drank it.'

| $\mathrm{E}_{i}=$ lag, | "pa ${ }_{j}=$ tua | konou $_{i}$ | memis | kiki $_{k} "$ |
| :--- | :--- | :--- | :--- | :--- |
| 3SG.S=say | 2SG.S:IRR=give | 1SG | knife | small |
| 'He said, "give me the small knife."" | | | | |

Examples (47) to (49) show which object enclitics are used to encode the R and T arguments of the ditransitive verb of transfer tua 'give'. In these examples, the R is encoded with object enclitics. As seen in (48), a third person singular recipient is not encoded with $=s^{\prime} 3 \mathrm{PL} . \mathrm{OBJ}$ '. In contrast, the theme of this verb is encoded with $=s^{\text {' } 3 \text { PL.OBJ' as in (49). Examples (47) to (49) }}$ show that although Rs and Ts of ditransitives are objects, they are treated differently:
(47) Gaio, $\mathrm{a}=\mathrm{ga}_{\mathrm{i}} \quad$ tua $=\mathrm{ko}_{\mathrm{j}} \quad$ nagrun kiki agnou gaskei ${ }_{\mathrm{k}}$. fine 1SG.S=IRR give=2SG.OBJ woman small 1SG.POSS IRR.INDEF 'Fine, I'll give you one of my daughters.'

| $\mathrm{E}_{i}=$ tua $=\mathbf{e}_{j}$ | te $=$ fea $_{k}$ | tkalpa $_{k}$ |
| :--- | :--- | :--- |
| 3SG.S=give=3SG.OBJ | SBST=first | first.born |
| 'He gave him the first one, the first born.' | | |

$\mathrm{A}_{i}=\mathrm{pa} \quad$ tua $=\mathrm{ra}=\mathrm{s}_{k}, \quad \mathrm{a}_{i}=$ npasuk $=\mathrm{ia}_{l}$.
$1 \mathrm{SG} . \mathrm{S}=$ go give $=3 \mathrm{PL} . \mathrm{OBJ}=3 \mathrm{SG} . \mathrm{OBJ} 1 \mathrm{SG} . \mathrm{S}=$ engage $=3 \mathrm{SG} . \mathrm{OBJ}$
'I went and gave it to them, I formally engaged her (with my son).'

7.4.1.3 Realisation of T, L, I arguments: secondary objects and obliques

Arguments bearing the functions of theme, location and instrument are discussed together since they share similarities in their realisation. They also share the following properties with objects:

- Cannot be encoded both by an NP and a clitic;
- Do not receive any overt marking when realised as NPs;
- Occur in postverbal position.

Compare (50) to (53) in which the NPs namiit 'mats' are formally identical but perform different functions: P in (50), T in (51), L in (52), and I in (53):

| Ur=pau ${ }^{4}$ | nam̃it. |
| :--- | :--- |
| 3pL.S=weave | mat |
| 'They wove mats.' | |
| [elicited] | |

| Ur=tua=e | namit. |
| :--- | :--- |
| 3PL.S= give=3sG.OBJ | mat |
| 'They gave him mats.' | |
| [elicited] | |

Ur=maturu namit.
3pl.S=sleep mat
'They slept on mats.'
[elicited]
Ur=kul \quad gor=ea \quad namiit.
3pL.S=cover \quad block=3sG.OBJ mat
'They completely covered him with mats.'
[elicited]

Examples (54) to (57) mirror (50) to (53), with the difference that participants previously encoded with the NP namiz are now encoded with enclitics. The P argument in (54) is encoded with $=i a$ '3sG.OBJ', the T argument in (55) with $=s$ ' $3 \mathrm{SG} . \mathrm{OBJ}$ ', and the location and instruments in (56) and (57) with $=s$ ' 3 OBL'. These examples show that there is a difference in pronominal encoding between three classes of arguments: P and R arguments, T arguments of ditransitive verbs, and L and I arguments. Note also that in (54) and (56), the objects can be singular or plural as seen in the translations, but in terms of marking, singular forms occur. This is because their referents are inanimates and number distinctions are not marked for inanimates. Instead, singular forms occur by default to encode such referents:
(54) Ur=paus=ia.

3PL.S=weave=SG.OBJ
'They wove it/them.'
[elicited]
(55) $\mathrm{Ur}=\mathrm{tua}=\mathrm{e}=\mathrm{s}$.

3 PL. $\mathrm{S}=$ give $=3$ SG.OBJ $=3$ SG.OBJ
'They gave it/them to him.'
[elicited]

[^21](56) Ur=maturu=s.

3PL.S=sleep=3OBL
'They slept on it/them.'
[elicited]
(57) Ur=kul gor=ea=s.

3PL.S=cover block=3sG.OBJ=3OBL
'They covered him with it/those.'
[elicited]

The examples in (58) to (61) are ungrammatical because the postverbal arguments are encoded with enclitics that do not match their grammatical function or the subclass of the verb. Example (58) shows that the P argument of a Class 1 transitive verb cannot be encoded by $=s$, while (59) shows that the T of a ditransitive cannot be encoded by an object enclitic other than $=s$ '3SG.OBJ'. Examples (60) and (61) show that arguments in L and I roles cannot be encoded by object enclitics (the variation in form of the object enclitics is explained by phonological conditioning, see 8.4.3.3):
(58) *Ur=paus=s.

3PL.S=weave=3OBL
'They wove it/them.'
[elicited]
(59) \quad Ur $=t u a=e=a$.

3 PL. $\mathrm{S}=$ give $=3 \mathrm{sG} . \mathrm{OBJ}=3 \mathrm{SG} . \mathrm{OBJ}$
'They gave it to him.'
[elicited]
(60) \quad Ur $=$ maturu $=$ ea.

3PL.S=sleep=3SG.OBJ
'They slept on it.'
[elicited]
*Ur=kul \quad gor=ea=e.

| 3PL.S=cover |
| :--- |\quad block=3sG.OBJ=3sG.OBJ

'They covered him with it.'
[elicited]

7.4.2 Word order

The most basic verbal clause consists of a verb hosting pronominal clitics encoding its arguments, and arguments do not need to be realised by NPs. Subjects are obligatorily realised
by proclitics, while other arguments are realised either with enclitics or NPs. When NPs occur, the order is rigid $\mathrm{Sv} / \mathrm{AvP} / \mathrm{AvRT}$. If NPs do not occur, this order remains unchanged as the clitics encoding the arguments occur in the same order. Word order in the three clause types is represented below (SUBJ is a subject NP, OBJ an object NP, OBL an oblique NP, 'subj=' is a subject proclitic, '=obj' an object enclitic, and ' $=o b l$ ' an oblique enclitic):

Monovalent (intransitive verb): $\quad(\mathrm{SUBJ}) \operatorname{subj}=\mathrm{V}$

Divalent (intransitive verb): $\quad(\mathrm{SUBJ}) \operatorname{subj}=\mathrm{V} \quad\left\{\begin{array}{l}\mathrm{OBL} \\ =\mathrm{obl}\end{array}\right\}$

Divalent (transitive verb):

$$
(\mathrm{SUBJ}) \operatorname{subj}=\mathrm{V} \quad\left\{\begin{array}{l}
\mathrm{OBJ} \tag{see7.4.2.2}\\
=\mathrm{obj}
\end{array}\right\}
$$

Trivalent (transitive verb): $\quad(\mathrm{SUBJ}) \operatorname{subj}=\mathrm{V} \quad\left\{\begin{array}{ll}\mathrm{OBJ} & \mathrm{OBL} \\ =\mathrm{obj} & =\mathrm{obl}\end{array}\right\}$ (see 7.4.2.3)
Trivalent (ditransitive verb): $\quad(\mathrm{SUBJ})$ subj $=\mathrm{V} \quad\left\{\begin{array}{ll}\mathrm{OBJ} & \mathrm{OBJ} \\ =o b j & =o b j\end{array}\right\}$ (see 7.4.2.3)

Fig. 7.1 presented a basic order in which clause constituents are organised around the predicate. In Lelepa, constituent order is rigid, and since the language lacks overt case-marking, order is used for coding arguments. This does not mean that there is no variability in constituent order in the clause, but that the basic, unmarked order is fixed. See 7.6 for a discussion on order variations.

7.4.2.1 Monovalent clauses

Monovalent clauses only have one subject argument. Whether this argument is expressed solely with a subject proclitic as in (62) or with both a subject proclitic and an NP as in (63), the subject is always preverbal:
'You two go down!'
[elicited]
Fterki \quad nag
wife \quad 2sG.POSS
'What's up with your wife?'

| 3sG.S=be.how |
| :--- |
| [elicited] |

Weather and some natural environment situations (rain, hot, cold, night, etc.) are expressed with zero-arguments verbs in many languages. In contrast, in Lelepa this is expressed with a lexical subject, and in this case the subject proclitic cannot be considered as a dummy pronominal, but as a referential item: ${ }^{5}$
(64) Usa e=p̃o.
rain 3PL.S=fall[rain]
'It rains.' (lit. rain is falling)
[elicited]
(65) Nalia $e=$ mlat
place 3sG.s=be.cold
'It's cold.' (lit. the place is cold)
[elicited]
(66) Nalia $e=f t u n u$
place 3sG.s=be.hot
'It's hot.' (lit. the place is hot)
[elicited]
(67) N-malogo e=kat malogo

NMLZ-be.dark 3SG.S=CERT be.dark
'It's night.' (lit. darkness is dark already)
[elicited]

7.4.2.2 Divalent clauses

There are two classes of divalent clauses:

- The two arguments are subject and object, and are both obligatory. The order is SUBJvOBJ.

[^22]- The two arguments are subject and oblique. Oblique arguments can be added to a monovalent clause, giving an SUBJvOBL order.
- SUBJvOBJ

The subject is preverbal and the object postverbal. In (68), both sentences have the same participants associated in the same event predicated by the verb $\tilde{p} a t$ 'hit'. However, the order of the two NP arguments is crucial in determining which argument is in A function and which one is in P function. Example (68) shows that the A is preverbal, while the P is postverbal:

It is possible for an object NP to be preverbal. This is a pragmatically marked order with leftdislocation of an object NP that is a topic (see 5.5.2, 7.6.2.3). This is shown in (69), in which the NP nafsana matua nge 'this old story' is left-dislocated to an extended clause position. Note that this NP is obligatorily referenced in the basic clause with the object enclitic $=i a$ ' $3 \mathrm{SG} . \mathrm{OBJ}$ ', and that the SUBJvOBJ order is preserved in the basic clause:

| (69) | Nafsana language | matua old | nge,
 DEF | te=matua SBST=be,old | agnem
 1PL.INCL.POSS | slafea
 before |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | ur $=$ to | magnem | til=ia. | | | |
| | 3PL.S=IPFV | 1PL.INCL.BEN | tell $=3$ SG.OBJ | | | |
| | 'As for this | d story, our el | fro | ore used to tell | | |

- SUBJvOBL

The other class of divalent clauses consists of a subject and an oblique. Such clauses arise when an argument is added to a monovalent clause without the requirement for the intransitive verb to be transitively derived. The added argument has the role of location, instrument or theme and can be encoded with an NP or the enclitic $=s$ ' 3 Obl'. Compare the
monovalent clause with the intransitive saksake 'sit' in (70) with the divalent clauses with the same verb in (71) and (72), in which saksake takes an added L argument:

| $\mathrm{E}=\mathrm{kat}$ | saksake, | $\mathrm{e}=\mathrm{rkof}=\mathrm{ia}$, | $\mathrm{ar}=\mathrm{kat}$ | mato. |
| :--- | :--- | :--- | :--- | :--- |
| 3SG.S=CERT | sit | 3sG.R=be.beside=3sG.OBJ | 3DU.S=CERT | stay.long |
| 'She sat down, she was beside him, they both stayed.' | | | | |

In (71), the added argument is an NP which seems to be treated identically to a P : it is immediately postverbal, and is not overtly marked.

| (71) | Ur=ga\quad fa | saksake | tasak | naara | warampa. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3PL.S=IRR | go:IRR | sit | stool | 3PL.POSS | there.forward |
| | 'They will sit on their stool there.' | | | | |

However, in (72) the argument is encoded on saksake with the enclitic $=s$ ' 3 OBL':

| (72) | E=saksake=s | se | n-malogo | e=kat |
| :--- | :--- | :--- | :--- | :--- |\quad malogo.

In (73) we see that object enclitics on intransitive verbs are ungrammatical:

| *E=saksake=a | se | n-malogo | e=kat | malogo. |
| :--- | :---: | :--- | :--- | :--- |
| 3SG.S=sit=3SG.OBJ | while | NMLZ-dark | 3sG.S=CERT | dark |
| 'She sat on it while the night fell.' | | | | |
| [elicited] | | | | |

This is further shown in (74), in which the intransitive mato 'stay.long' takes an oblique argument encoded with $=s$ ' 3 OBL'. The enclitic refers to the NP Bellevue, ${ }^{6}$ which occurs in the preceding sentence:

[^23]Divalent clauses with intransitive verbs can also take oblique arguments with the role of theme. In (75), the intransitive susu 'be.dressed' functions intransitively in a monovalent clause, whereas in (76), it takes an oblique argument encoded with $=s$ ‘ 3 OBL', which references the NP nasusuna 'clothes':
(75) Ur=ga susu, ur=ga fat traosis.

3PL.S=IRR be.dressed 3PL.S=IRR make trousers
'They would wear clothes, they would put trousers on.'
(76)

| Nasusuna
 clothes | ur=to | susu=s, |
| :--- | :--- | :--- |
| 3PL.S=IPFV | be.dressed=3OBL | |

$e=$ taos $=$ ia \quad ku=to lop̃a=e tusi tap.
3sG.S=like=3sG.OBJ 2SG.S=IPFV see=3sG.OBJ book be.taboo
'The clothes they wore, they were like what you see in the Bible.'

In (77), kai 'cry' functions intransitively. In (78), kai takes an oblique argument encoded with the enclitic $=s$ ' 3 OBL'. This enclitic is coreferential with natamol nge 'this man', which heads an NP and is modified by a following relative clause (underlined). $=s$ occurs inside the relative clause:

| E=mtouki-nia, | $\mathrm{e}=$ kai, | $\mathrm{e}=$ =kai | tapla | se,[...] |
| :--- | :--- | :--- | :--- | :--- |
| 3SG.S=fear=3sG.OBJ | 3SG.S=cry | 3sG.S=cry | like.this | while |
| 'She feared her, she cried, she cried like this then, $[. .]$. | | | | |

| Natam̃ol | nge | $\underline{\mathrm{ku}}=$ to | kai | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| person | DEF | 2SG.S=IPFV | cry $=$ | Obl | |
| e=to | uta | wara | | kite | $\mathrm{e}=$ pueli? |
| 3SG.s=stay | landw | s here | Stat | or | 3SG.S= not.be.there |

7.4.2.3 Trivalent clauses

Trivalent clauses take three arguments, and while there is always a subject and an object, the third argument varies in its role, depending on whether it is required or not by the verb. These clauses fall into two classes: those with two objects and those with one object and one oblique.

- SUBJVOBJ ${ }_{1} \cdot \mathrm{OBJ}_{2}$

This configuration occurs with ditransitive verbs of transfer (tua 'give', rkei 'tell', and paoseki 'ask'). All arguments are obligatory and regarded as core arguments. The subject is preverbal as expected, the primary object is in R function and precedes the secondary object in T function. This order is valid when the two objects are expressed with NPs as in (79), and when one or both are expressed as enclitics as in (80) and (81). Recipients are in bold and themes are underlined:

| (79) | A $=$ ga
 1SG. $=$ IRR | tua | give | nag |
| :--- | :--- | :--- | :--- | :--- |
| 'I will give you this canoe.' | | | | |

(80) Ur=ti tua=e nalia na $\mathrm{e}=\mathrm{pi}$ nalia wia mau. 3PL.S=NEG give=3SG.OBJ place REL 3sG.S=COP place good NEG2 'They did not give him a place that was a good place.'

| $\mathrm{E}=\mathrm{ga}$ | mas, | $\tilde{p} a=t u a=e=s$ | $\mathrm{e}=\mathrm{ga}$ | paam=ia. |
| :---: | :---: | :---: | :---: | :---: |
| 3SG.S $=$ IRR | be.cooked | $2 \mathrm{SG} . \mathrm{S}: \mathrm{IRR}=$ give $=3 \mathrm{SG} . \mathrm{OBJ}=3 \mathrm{SG} . \mathrm{OBJ}$ | $3 \mathrm{SG} . \mathrm{S}=\mathrm{IRR}$ | eat $=3$ SG.OBJ |
| 'It will be | ked, give it | him he will eat it.' | | |

The order of the two objects is fixed and cannot be changed (there is no dative alternation in Lelepa), as shown by (82) which is not ungrammatical but semantically unacceptable: ${ }^{7}$

| A=ga | tua | rarua | $\mathrm{n}=\mathrm{e}=$ to | nag. |
| :--- | :--- | :--- | :--- | :--- |
| 1SG.S | give | canoe | $\mathrm{REL}=3 \mathrm{SG} . \mathrm{S}=$ stay | 2 SG |
| 'I will give you to this canoe' | | | | |
| *'I will give this canoe to you.' | | | | |
| [elicited] | | | | |

- SUBJvOBJ.OBL

In these clauses, only the subject and object are obligatory. Similarly to SvOBL clauses, the oblique is an optionally added argument. It occurs in final argument position, after the object. In (83), the transitive verb lopa 'see' takes an obligatory object encoded with $=e$ ' 3 sG .OBJ' (in bold), and an optional oblique with the role of location encoded with the NP $\tilde{p} a g$ 'inside' (underlined):

[^24]| A-m̃a-ota | e=to | pag, | $\tilde{p} a=$ fa | lop̃a=e | pag. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| KIN-2SG.POSS -husband | 3SG.S=stay | inside | 2SG.S:IRR=go:IRR | see=3SG.OBJ | inside |
| 'Your husband is inside, go see him inside.' | | | | | |

In (84), the verb pai 'pack' hosts two enclitics encoding an object and an oblique. The object enclitic $=r a$ ' 3 PL.OBJ' is coreferential with natamol 'people' which functions as the subject of the preceding clause. The enclitic $=s$ ' 3 OBL' refers to the location in which corpses of deceased people were laid (that is, the hulls of old canoes which were used as coffins in the past):
(84) Natam̃ol $_{i} \quad \operatorname{ur}_{i}=$ mate, $\quad \mathrm{ur}_{j}=\mathrm{po} \quad$ pai $=\mathrm{ra}_{j}=\mathrm{s}_{\underline{K}}$. person 3PL. $s=$ dead 3 PL. $S=$ SEQ pack $=3$ PL. $O B J=3 \mathrm{OBL}$
'People died, and then they put them in it.'

Trivalent clauses can also have oblique arguments with the role of instrument (objects are in bold, instruments are underlined):
(85) Ur=ga sara=e garau pa $\mathrm{e}=\mathrm{ga}$ salsal sarik. 3PL.S=IRR hollow.out=3SG.OBJ round.adze GO 3SG.=IRR be.light a.little 'They will hollow it out with the round-bladed adze until it is slightly lighter.'
(86) $\mathrm{A}=$ pat paksaki naoko=n luku nag-na srosro, $\mathrm{e}=\mathrm{nou}$. 1SG.S=make clean mouth=POSS:NH hole ASS-3SG.POSS flat.adze 3SG.S=be.finished 'I clean the inside of it with the flat adze until done.'
(87) Nag ku=mas bred memis na $\mathrm{e}=$ enol.

2SG 2SG.s=cut bread knife REL 3sG.S=be.blunt
'You cut the bread with a knife that is not sharp.'
[elicited]

Instruments can be indexed on the verb with $=s$ ' 3 OBL'. This is shown in (88), in which all three arguments of the verb takorog 'feel' are realised with enclitics. The object is encoded with $=e a$ '3SG.OBJ' and the oblique with $=s$ ' 3 OBL ':

| $\tilde{P} a=$ traem | wus | kal | wa-s | tkan=ia, |
| :--- | :--- | :--- | :--- | :--- |
| 2SG.S:IRR=try | hold | digging.stick | DEM-PROX | pierce=3SG.OBJ |

$\tilde{p} a=$ takorog $=e a=s$.
2SG.S:IRR=feel=3SG.OBJ=3OBL
'Please get this digging stick to poke it, you'll feel it with it.'

7.4.3 Argument coding summary

The findings of 7.4.1 and 7.4.2 are summarised in table 7.5. Three different patterns of argument coding can be distinguished, according to the treatment arguments receive regarding realisation and order in the clause.

- S and A arguments are obligatorily encoded with subject proclitics (table 7.1), and can be realised with both an NP and pronominal clitics. ${ }^{8}$ In contrast to all other arguments, they are preverbal. They are regarded as subjects.
- Ps, Rs and Ts of ditransitive verbs of transfer are encoded with object enclitics (table 7.2). Ts of ditransitives of transfer differ from Ps and Rs in that they occur in third position in trivalent clauses. They are regarded as objects: Ps and Rs are primary objects and Ts of ditransitives are secondary objects. This distinction is represented by the dotted line in table 7.5.
- Ls, Is and Ts (of intransitives and transitives) are all indexed with the oblique enclitic $=s$ '3OBL' and occur in final position in trivalent clauses. These arguments are regarded as obliques.

| | Obligatory proclitic | Coreferential NP and clitic | Object enclitic | Oblique enclitic | Preverbal | Postverbal | Second position in trivalent clauses | Final position in trivalent clauses |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S | + | + | - | - | + | - | - | - |
| A | + | + | - | - | $+$ | - | - | - |
| P | - | - | + | - | - | + | + | - |
| R | - | - | + | - | - | + | + | - |
| T | - | - | + | - | - | + | - | + |
| T | - | - | - | $+$ | - | + | - | + |
| L | - | - | - | + | - | + | - | + |
| I | - | - | - | + | - | + | - | + |

Table 7.5. Argument coding

[^25]
7.4.4 Grammatical relations

7.4.4.1 Subject

The robust patterning of S and A arguments is good evidence for positing a grammatical relation for subject. Subjects are:

- Required by all verbs
- Preverbal
- Obligatorily realised by subject proclitics
- Optionally preceded by a co-referential NP in the basic clause

Along with the verb root, subject proclitics are the only obligatory constituent in a well-formed clause. They are thus regarded as the syntactic subject of the clause, and used as evidence for monoclausality, a test which will be useful for the analysis of serial verb constructions (see 10.4).

7.4.4.2 Object

In contrast to Ss and As, other arguments do not pattern together in a single group. The language makes a distinction between two types of non-subject arguments: P, R and T arguments of ditransitives (white area in table 7.5) pattern together but separately from L, I and other T arguments (shaded bottom area in table 7.5). The most important difference between these two groupings is that in the former these arguments are required by the verb, while this is not the case in the latter. Arguments from the first group (white area in table 7.5) are objects. Their properties are as follows:

- Required on transitive and ditransitive verbs
- Postverbal
- Realised by object enclitics or object NPs
- Primary objects precede secondary objects
- Primary objects cannot be encoded by $=s$ ‘ 3 sG.OBJ', secondary objects can be encoded by $=s$ ' 3 sG.OBJ'.

The alignment pattern in ditransitive clauses is secundative: the recipient of the ditransitive is treated similarly to the object of a monotransitive, while the theme receives its own treatment
(Haspelmath 2005:2, Malchukov, Haspelmath and Comrie 2007:4, Dryer 2007b:256). In (89)a, the recipient of the ditransitive tua 'give' is encoded with the same enclitic as the object of the monotransitive lopa 'see' in (89)b. In contrast, the theme is encoded with $=s$ ' 3 sG.OBJ':
a. $\tilde{p} a=t u a=e=s$

2SG.S:IRR=give=3SG.OBJ=3SG.OBJ
'Give it to him.'
b. $\mathrm{ku}=\mathrm{lo} \tilde{p}_{\mathrm{a}}=\mathrm{e}$
$2 \mathrm{SG} . \mathrm{SR}=$ see $=3 \mathrm{SG}$.OBJ
'You saw it/him.'
[elicited]

Recall that T arguments of intransitives and monotransitives (shaded bottom area in table 7.5) are not required by the verb, and cannot be regarded as objects. T arguments are thus not showing a unified behaviour: with ditransitive verbs of transfer, they are core arguments, while they are obliques with all other verbs. They can be optionally added, as seen in (76) and (78) for intransitives, and (83) to (88) for monotransitives.

7.4.4.3 Split object

A split is defined as 'the situation where different verbs use different constructions, while an alternation is the situation where one and the same verb can occur with different constructions with roughly the same meaning' (Malchukov, Haspelmath and Comrie 2007:13). In Lelepa, different transitive verbs occur in different transitive constructions, which show a split in transitivity rather than an alternation. ${ }^{9}$ Objects of monotransitives were shown to pattern in two groups. A third person object may be encoded by $=s^{‘} 3$ SG.OBj’ or by another enclitic such as $=i a$ ‘ $3 \mathrm{SG} . \mathrm{OBj}$ ’, as seen in (90) (repeated from (1)):
a. $\mathrm{E}=\tilde{\mathrm{p}} \mathrm{at}=\mathrm{ia}$

3SG.S=hit=3SG.OBJ
'He hit him.'

[^26]b. $\mathrm{E}=$ plaga $=\mathbf{s}$

3SG.S=look.for=3SG.OBJ
'He looked for it' [elicited]

The split is not phonologically conditioned. While phonological conditioning plays a large part in the distribution of the different forms of third person singular object enclitics in the language (see 9.4.3.3), the conditioning for verbs to take $=s$ or $=i a$ has to do with verb subclass: Class 1 transitives take =ia '3SG.OBJ' (or another phonologically conditioned allomorph of the third singular object enclitic), and Class 2 transitives take $=s$ ' 3 SG.OBJ'. This suggests that this split in transitivity is best explained as an instance of lexical conditioning. The main argument in favour of this view is that transitive subclass membership is not predictable but can be established following the morphosyntactic behaviour of verbs. There are about twenty known indigenous Class 2 transitive verbs, complemented by all borrowed transitive verbs. They take $=s$ '3SG.OBJ' like plaga 'look for' in (91)a when their object is $3^{\text {rd }}$ person singular (see 8.5.2, 9.4.4.1). If their object is not third person singular however, these verbs need to take $-k i i^{\text {'TR' }}$ ' as seen in (91)b. This alternation is unique to this group of verbs:
a. $\mathrm{E}=$ plaga $=\mathbf{s}$

3SG.S=look.for=3SG.OBJ
'He looked for it'
b. E=plag-ki-go.

3SG.S=look.for-TR-2SG.OBJ
'He looked for you.'
[elicited]

In addition, the referents of objects of Class 2 transitives have certain semantic properties in common: they tend to be low in the animacy and person hierarchies (i.e. they generally are inanimate and third person). In contrast, Class 1 transitives take a range of objects reflecting a larger range of the animacy hierarchy, and have no restrictions within the person hierarchy (i.e. they encode objects from all person and number values). This suggests that although the split is lexically conditioned, it stems from a semantic motivation: Class 1 transitives tend to take a prototypical object, while Class 2 transitive do not.

This semantic motivation is also reflected by the fact that $=s$ also occurs to encode oblique arguments, as seen in 6.4.1.3 and 6.4.2.2. Thus, participants with different syntactic functions (i.e. objects and obliques) but similar semantic properties are encoded with $=s$
'3SG.OBJ; 3OBL'. The referents of $=s$ share a number of inherent semantic properties that are independent from morphosyntax. The referents of $=s$ ' $3 \mathrm{SG} . \mathrm{OBJ}$ ' tend to be inanimate and less affected. Similarly, the referents of $=s$ '3OBL' tend to encode locations and instruments, which are also typically inanimate and not affected. It seems then more elegant to analyse $=s^{\prime} 3 \mathrm{SG} . \mathrm{OBJ}$; 3OBL' as a multifunctional morpheme encoding a particular class of objects and all obliques.

For these reasons, Lelepa is regarded as a split-object language. This is typologically uncommon both in the Austronesian family as well as in the world's languages. A known example is Taba, an Austronesian language from South Halmahera, in which the split is between P arguments denoting locations and instruments on the one hand and all other Ps on the other (Bowden 2001). Finally, note that while not well attested in monotransitive constructions, such lexical splits are common in ditransitive constructions (Malchukov, Haspelmath and Comrie 2007:18). ${ }^{10}$

7.4.4.4 Oblique

Oblique arguments need to be distinguished from both core arguments like objects and from adjuncts. Typically, obliques exhibit some properties of both, but do not pattern neatly with either, and as such form a separate class of arguments (Arka 2005, Andrews 2007a:157). In Lelepa, the behaviour of oblique arguments is shown in the bottom shaded area of table 7.5 above, which groups together T, L and I arguments. Recall that those T arguments are not arguments of ditransitive verbs of transfer, but occur with intransitives and transitives. An additional and crucial property of oblique arguments is that they are not syntactically required by the verb. When they occur, they can be encoded with the enclitic $=s^{\prime} 3 \mathrm{OBL}$ ', as in (92) to (94) (repeated from (56), (57) and (72)):
$\mathrm{Ur}=$ maturu $=\mathbf{s}$.
3PL.S=sleep=3OBL
'They slept on it/them.'
[elicited]

[^27]Ur=kul gor=ea=s. 3PL.S=cover block=3SG.OBJ=3OBL
'They covered him with it/those.'
[elicited]

| E=saksake=s | se | n-malogo | e=kat | malogo. |
| :--- | :--- | :--- | :--- | :--- |
| 3sG.s=sit=3OBL | while | NMLZ-be.dark | 3sG.S=CERT | be.dark |
| 'She sat on it while the night fell.' | | | | |

The main properties of oblique arguments compared with those of core arguments and adjuncts are presented in table 7.6:

| | core | oblique | adjuncts |
| :--- | :---: | :---: | :---: |
| Required by verb | + | - | - |
| Encoded by pronominal clitics | + | + | - |
| Can be left-dislocated | + | + | - |
| Denote locations | + | + | - |
| Denote instruments | - | + | - |
| Denote beneficiaries | - | - | + |
| Denote sources | - | - | + |
| Denote temporal information | - | - | + |

Table 7.6. Compared properties of core and oblique arguments, and adjuncts

7.5 Adjuncts

As seen in fig. 7.1, adjuncts (ADJT) occur in three positions, before $A R G_{1}$, after $A R G_{3}$, and before the verb. They are introduced with prepositions in some cases, but most frequently they occur unmarked. They belong to the extended clause (see 7.1.2), a position located at the left and right margins of the basic clause. The exception to this is the benefactive phrase, an unusual constituent which occurs pre-verbally and introduces a beneficiary participant (see 7.5.3). While the initial position of the extended clause is located before $A R G_{1}$, the final position of the extended clause follows the directional and aspectual particles $p a^{\text {' }} \mathrm{GO}$ ', panei 'COME', to 'stat', and pea/fea 'FIRST' (see 10.6).

7.5.1 Temporal adjuncts

Temporal adjuncts locate an event in time, and can be realised as NPs or temporal adverbs (see 4.7.2.1). They occur in the extended clause, in initial and final positions. However, not all temporal adjuncts, and particularly those realised by certain temporal adverbs, have access to both positions. For instance, sral 'often' only occurs in final position as in (103) while nagsange
'at that time' only occurs in initial position. Examples (95) to (98) show temporal adjuncts occurring in initial position, preceding the basic clause. In this position, temporal adjuncts may be in the same intonation contour as the rest of the clause as in (95), or may be followed by a short pause as in (96). When temporal adjuncts are occurring in their own intonation contour as in (96), it is likely that emphasis is put on the time of the event, and that the adjunct is topicalised. However, more work is needed to determine the function of this variation in prosody:

| E=to | pan | pan | pa, |
| :--- | :--- | :--- | :--- |
| 3SG.S=stay | GO | GO | GO |

| matmai | $\mathrm{e}=\mathrm{mro}$ | palse | llu | pan | pa | laka=e. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| tomorrow | 3SG.S=AGAIN | paddle | return | GO | GO | see=3SG.OBJ |

'He stayed for a while, the next day he paddled back there to see it.'

| Malmauna, | p̃a=fa | rki | mamei | nago=s. |
| :--- | :--- | :--- | :--- | :--- |
| now\quad 2SG.S:IRR=go:IRR | tell | father | 2SG.POSS=3OBL | |
| 'Now, go tell your dad about it.' | | | | |

The temporal adverb malange 'then, at that time' is a compound formed with the noun mala 'time' and the determiner nge 'DEF'. In (97) it occurs clause-initially, while it is also attested finally (see 4.7.2.1):
$\begin{array}{llllll}\text { (97) Malange } & \mathrm{e}=\text { to } & \text { plaga=s, } & \mathrm{e}=\mathrm{lopa} & \mathrm{n} \text {-malogo } & \text { malogo. } \\ \text { then } & \text { 3SG.S=IPFV } & \text { look.for=3SG.OBJ } & \text { 3SG.S=see=3SG.OBJ } & \text { NMLZ-be.dark } & \text { be.dark }\end{array}$
'At that time he was looking for it, he saw it was getting dark.'

Similarly to malange, nagsange 'then, at that time' is also a temporal adverb formed by compounding the noun nagsa 'time' and the determiner nge 'DEF'. Although malange and nagsange seem semantically very close to each other, nagsange is only attested clause-initially as in (98):

| E=to | pan | pan | pa, | nagsange |
| :--- | :--- | :--- | :--- | :--- |
| 3SG.S=stay | GO | GO | GO | then |

$e=$ maroa-ki-nia lag $\quad e=$ ga llu.
3SG.S=think-TR=3SG.OBJ COMP 3SG.S=IRR return
'It went on for a while, then he thought that he would return.'

Examples (99) to (103) show temporal adjuncts occurring in final position. In (95), matmai 'tomorrow' occurred initially, and in (99) it occurs finally:

| $\mathrm{E}=\mathrm{pi}$ | wago | wei | tu=ga | paam=ia | matmai |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3sG.S=COP pig | TOP | 1PL.INCL. $\mathrm{C}=$ IRR | eat=3SG.OBJ | tomorrow | DEM-ADD |
| 'This is the pig we'll eat tomorrow.' | | | | | |

Temporal adjuncts may also be expressed as prepositional phrases. In (100), matmai occurs in a prepositional phrase introduced by paki 'to':

| (100)$\mathrm{Tu}=\mathrm{ga}$ atlake mesa, paki matmai, tu=ga | paam=ia. | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1PL.INCL.S=IRR start today to tomorrow | 1PL.INCL.S=IRR | eat=3SG.OBJ |
| 'We will start today, and until tomorrow, we will eat it.' | | |

Adjuncts occur in the extended clause, after aspectual and directional particles. In (101), malange 'then, at that time' follows the aspectual particle to 'STAT':

| (101) | E=to | Rom | to |
| :--- | :--- | :--- | :--- |
| 3sG.S=stay | p.name | STAT | thenge. |
| 'It was in Rome at that time.' | | | |

The time adverb sral 'often' is only attested clause-finally, and can be modified by other adverbs such as the degree adverb mol 'just, only':
(102) Naara ur=msau-na lag ur=ga to malamala to, 3PL 3PL.S=want-3SG.OBJ COMP 3PL.S=IRR stay be.naked STAT

Ur=ga to taakae sral.
3PL.S=IRR IPFV dance often
'They wanted to remain naked, they would dance often.'
(103) Kane usa $\mathrm{e}=$ p̃o, $\mathrm{e}=$ to pa sral $\tilde{\mathrm{m} o l}$.
but rain 3SG.S=rain 3SG.S=IPFV rain often just
'But it rained, it rained all the time.'

7.5.2 Source adjuncts

Source adjuncts are introduced with the preposition pae 'SOURCE' (see 4.8.1.1). Like temporal adjuncts, source adjuncts occur in initial position as in (104) and in final position as in (105).

The preposition pae can be followed by a temporal adverb as in (104). In this case, since malange locates the event in a particular point in time, pae adds a temporal source meaning:

| (104) | Go | pae | malange, | jioj | $\mathrm{e}=$ tika | to | pan | n | pa... |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | and | SOURCE | then | church | 3SG.S=not.have | stay | GO | GO | GO |
| | | | re was no | | | | | | |

More often however, pae is followed by an NP, as in (105). This example also shows that pae not only introduces temporal source meaning as in (104), but also people as sources:

| (105) | A=rogo | nafsan | nag-na | pae |
| :--- | :--- | :--- | :--- | :--- | | te=matua. |
| :--- |
| 1SG.S=hear | language ASS-3sG.POSS \quad SOURCE \quad SBST=be.old

Pae can also combine with the preposition naloni 'about'. In this case, there is a meaning extension and the whole phrase acquires a meaning similar to English 'regarding':

7.5.3 Benefactive phrase

The main function of this constituent is to introduce a beneficiary participant in a clause. All occurrences of benefactive phrases in the corpus denote a participant with the role of beneficiary. Conversely, there are no examples in the corpus in which a beneficiary is expressed with other means. I adopt the label benefactive phrase after Thieberger (2006), who describes a similar constituent in South Efate. ${ }^{11}$

[^28]The benefactive phrase is analysed as an adjunct because it displays the properties of adjuncts, i.e. it is not required by the verb and cannot be encoded with a pronominal clitic (see table 7.6). However, it occurs in an unusual position for an adjunct, that is, not within the extended clause, but within the basic clause, between the subject proclitic and the main verb root, and following auxiliary verbs if they occur (see fig. 7.1). The position of the benefactive phrase is its most interesting feature, as it is radically different from that of all other adjuncts. In (108) and (109), the benefactive phrase consists of the preposition mag 'BEN' followed by an NP which encodes a beneficiary participant. Note that in (108), the benefactive phrase occurs between the auxiliary $p a$ 'go' and the main verb lao 'plant':

| (108) | Nina, ur=kat pa mag puasa
 then 3PL.S=CERT go BEN | peregrine.falcon
 plant |
| :--- | :--- | :--- | :--- | :--- |
| | 'Then, they went to plant for the peregrine falcon.' | |

$\begin{array}{llllll}\text { (109) } & \text { Namuan } & \text { e=mag } & \text { papua } & \text { nae } & \text { ma } \\ \text { p.name } & \text { 3SG.S=BEN } & \text { grandfather } & \text { 3SG.POSS } & \text { grate }\end{array}$
'Namuan grated laplap for his grandfather.' [elicited]

While (108) and (109) show that the participant expressed by the benefactive phrase can be encoded with an NP, this participant can also be encoded pronominally, using a set of benefactive pronouns dedicated to the encoding of beneficiaries (see 4.6.3, table 4.10). In (110) the benefactive pronoun mnag '2SG.BEN' occurs before the verb sraus 'repeat', while in (111) maginta '1PL.INCL.BEN' follows the auxiliary fa 'go:IRR' and precedes the main verb pat suksuk. 'make tight \sim RED':
(110) $A=$ ga mnag sraus nafsan matua skei.

1SG.S=IRR 2SG.BEN repeat language be.old INDEF
'I will repeat an old story for you.'

| E=ga | fa | maginta | pat | suk~suk | nali | tete. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3SG.S=IRR | go:IRR | 1PL.INCL.BEN | make | tight~RED | place | some |
| 'He will go to prepare a place for us.' | | | | | | |

in South Efate which does not have a dedicated benefactive morpheme) and occur in similar syntactic positions (between the subject proclitic and the verb root).

7.6 Variations in the structure of the clause

This section discusses the positions that are accessible to NPs within the basic and extended clause, and the variation that can occur in filling these positions. Recall from 5.5.2 that these variations are pragmatically conditioned. Thus the NPs occurring in these positions fulfill pragmatic functions such as topic, switch topic, contrastive topic, focus and contrastive focus. I mostly follow Lambrecht 1994 for definitions of topic and focus, while noting a range of different and useful definitions and uses for these concepts, in particular those used by Givón (2001a:198, 2001b:253-254) for topic, Givón (2001b:221) for contrastive focus, Givón (2001b:262-264) for contrastive topic, and Andrews (2007a:149) for switch topic. Lambrecht (1994:117-127) relates the notion of topic with that of 'aboutness'. In simple terms, the topic of a sentence is what the sentence is about. In addition, Lambrecht (1994:117) also defines a discourse topic as a topic expression that is salient beyond the limits of a single sentence. For Givón, topicality also has to do with aboutness, and the referents of topical participants are generally NPs with the functions of subject, object and indirect object (Givón 2001b:253-254). Andrews (2007a:149) defines the useful notion of switch topic as the situation in which a previously introduced participant that was not the previous discourse topic becomes the new topic. In English the switch topic is registered by the as for construction, and switch topics in Lelepa are also indicated by this construction in examples' translations. As for the notion of focus, it is defined as 'the new information conveyed about a topic' (Lambrecht 1994:206). This is roughly equivalent to Andrews' (2007a:150) idea that the focus is the missing information which the speaker presupposes the hearer needs to know.

Recall that in Lelepa, there are three NP positions in the basic clause: the preverbal subject NP position, and the object and oblique NP positions which are both postverbal. In addition, there are other NP positions located in the extended clause: the left-dislocated topic and the right-dislocated NP. These extended clause positions have no restrictions regarding the grammatical function and semantic role of the NP filling them. For instance, the left-dislocated topic position can be filled by a subject, an object, and an oblique, and by NPs referring to possessors. In contrast, the basic clause NP positions can only be filled by NPs whose grammatical relations match the position's requirements. That is, the subject NP position can only be filled by subject NPs, the object NP position can only be filled by object NPs, and so on. Fig. 7.2 shows the different NP positions in the basic and extended clause.

Fig. 7.2. NP positions

| NP functions | Leftdislocated topic NP | | Subject
 NP | $\begin{aligned} & 0.0 \\ & >0 \end{aligned}$ | object
 NP | oblique
 NP | | $\begin{aligned} & \text { Right } \\ & \text { dislocated } \\ & \text { NP } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Subject | + | | + | | - | - | | + |
| Object | + | | - | | + | - | | + |
| Oblique | + | | - | | - | + | | + |
| Possessor | + | | - | | - | - | | + |

7.6.1 Subject NP position

The subject NP position is restricted to subject NPs whose referents are either participants mentioned for the first time or re-introduced ones. This position is not obligatory filled, and it is perfectly possible that it remains vacant provided that it was filled once before and no other participant was brought as subject. This position is distinguished from the left-dislocated topic position in that it is located in the basic clause (see fig. 7.2). Another property of the subject NP is that it is part of the intonation phrase of the basic clause. That is, no pause separates the subject NP from the rest of the basic clause. Example (112) is the opening sentence of a text, and features the subject NP kanokiki skei 'a boy'. This NP has all the properties of the subject NP position: it introduces a participant for the first time, the NP and following subject proclitic are co-referential, and the NP is in the same intonation phrase as the following material:

| (112) | Kanokiki | skei | $\mathrm{e}=\mathrm{pan}$ | lag | $\mathrm{e}=\mathrm{ga}$ | tpa | ura. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | boy | INDEF | 3SG.S=go | COMP | 3SG.S=IRR | shoot | prawns |
| | 'A boy went | to shoot | wns.' | | | | |

In (113), two subject NPs are coordinated with naaram 'and' in the first clause. They introduce two participants which are both subjects, topics and introduced for the first time. In the following clause, $\tilde{m} a a t a$ 'snake' is the topic and subject, and the octopus is not mentioned. In the last clause, there is a switch in topic and subject, from the snake to the octopus. The subject NP wita 'octopus' occurs and is in switch topic function, while the snake is not mentioned:
$\begin{array}{lllll}\text { (113) Tuei, } & \text { maata } & \text { naaram } & \text { wita } & \text { ar=to, } \\ \text { long.ago } & \text { snake } & \text { and } & \text { octopus } & \text { 3DU.S=stay }\end{array}$

| maata | nae | $\mathrm{e}=$ to | ntas, |
| :--- | :--- | :--- | :--- |
| snake | 3SG | 3SG.S=stay | sea |

wita e=to uta.
octopus 3SG.S=stay landwards
'Long ago, the snake and the octopus lived, the snake lived in the sea, and the octopus lived on land.'

In (114), the subject NP grunkiki nge 'the girl' is marked as definite with nge 'DEF'. This participant has been introduced previously in discourse, but as an object in the preceding sentence. As it is the first time that this participant is a subject, it needs to occur as an NP, even though it is definite:

| (114) | Grunkiki girl | nge
 DEF | | oseki-nia
 $=$ ask-3SG. | $\mathrm{J}=3 \mathrm{sG} . \mathrm{OBJ}$ | lag, COMP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | "nag | ku=to | | plaga | nsfa?" | |
| | 2SG | 2SG.S= | | look.for | what | |
| | 'The girl | ked him, | "wh | are you lo | ing for?" | |

7.6.2 Left-dislocation

Foley (2007:443) distinguishes left-dislocation from topicalisation by the fact that leftdislocated NPs are co-referential with a pronominal element in the clause, while topicalised NPs are not. In Lelepa, left-dislocated NPs leave a pronominal trace in the basic clause in the form of a clitic matching their grammatical function. The main function of left-dislocation is to contrast a participant against another one, and according to Givón, left-dislocation is used with referents which have been out of the focus of attention for a while and need to be brought back into the discourse (Givón 2001b:265). In Lelepa, left-dislocated topics occur to the left of the verb, like subject NPs. They may thus be ambiguous, especially if the left-dislocated NP and the subject proclitic are co-referential. Evidence to disambiguate both positions is found in the intonation pattern of the clause: a subject NP is in the same intonation contour as the rest of the basic clause, whereas a left-dislocated NP is not. Left-dislocated NPs occur in their own intonation contour, characterised by a rise in intonation at the end of the contour and followed by a pause.

7.6.2.1 Left-dislocated subject

A left-dislocated subject NP refers to a participant that has been previously established in discourse and which is pragmatically contrasted against the other participants. In (115), the subject NP konou '1sG' is left dislocated: its referent has been previously established, first as the lexical NP ras 'p.name', and then included in the reference of the pronoun kinta '1PL.INCL'. The same referent is denoted again with konou '1SG', but this time it is left-dislocated and contrasted with the other participants:
(115) Male Ras $e=r o g o=r a, \quad e=l a g, ~ " k i n t a ~ t u=g a ~ m a u ~ p a n . ~$ when p.name 3SG.S=feel=3PL.OBJ 3SG.S=say 1PL.INCL 1PL.INCL.S all go

| Konou, | a=ga
 1SG | ras | nanu." | | |
|---|---|---|---|---|---|
| 1SG.S=IRR | | | |\quad| gather |
| :--- |

'When Gatherer heard them, he said, "Let's all go. As for me, I'll gather the coconuts.""

7.6.2.2 Left-dislocated arguments of equative clauses

This type of left-dislocation is a subtype of subject left-dislocation, as the left-dislocated NPs are in fact the subjects of equative clauses, as seen in (116):
(116) Kane faatu $\mathrm{n}-\mathrm{e}=\mathrm{to}, \quad \mathrm{e}=\mathrm{pi} \quad$ lesko.
but stone REL-3SG.S=stay 3sG.S=COP real
'But this stone, it is real.'

7.6.2.3 Left-dislocated object

Like left-dislocated subjects, left-dislocated objects occur when the referent of the NP needs to be contrasted with other participants. In (117), Fakna 'p.name' is left-dislocated and leaves a pronominal trace in the basic clause with the object suffix -nia ‘3sG.OBj'. Note that $=s$ ' $3 \mathrm{sG} . \mathrm{OBJ}$ ’ indexes the complement clause introduced by lag 'COMP' (see 12.4.1):
(117) Fakna, mamei nae e=rki-nia=s lag,
p.name father 3sG.POSS 3SG.S=tell-3sG.OBJ=3OBL COMP
"Fakna, namta-ña nar-m̃a, $\tilde{p} a=t o \quad$ lo."
p.name eye-3SG.POSS hand-2SG.POSS 2SG.S:IRR=IPFV look
'As for Fakna, her father told her, "Fakna, your eyes, your hands, keep on looking.'"

7.6.2.4 Left-dislocated oblique

Similarly, left-dislocated oblique NPs occur in their own intonation contour and leave a pronominal trace in the basic clause, with the oblique enclitic $=s$ ' 3 OBL'. In (118) to (120), leftdislocated oblique NPs occur, and their referents are cross-referenced with $=s$ in the basic clause:
(118) Wara, a=to pat tera=s.
here 1SG.s=IPFV make garden=3OBL
'Here, I used to make a garden.'
(119) Lolaapa, patriki $\mathrm{e}=\mathrm{ti}$ laapa $=\mathrm{s}$ mau. p.name mosquito 3sG.s=NEG1 be.many=3OBL NEG 'In Lelepa, there are not many mosquitoes.'
(120) Kapua na ur=pat=ia, nap̃as wago e=to=s. laplap REL 3PL.S=make=3sG.OBJ meat pig 3SG.S=stay=3OBL 'As for the laplap they made, there is pork in it.' [elicited]

7.6.2.5 Left-dislocated Possessor

It is possible for possessors to be left-dislocated, as seen in (121) with the NP mutuama 'the ogre'. While it does not denote an argument in the following clause, it is still part of the subject argument naoko-na 'mouth-3SG.POSs', as it is the possessor of the head of that NP. In addition, it is realised in the basic clause with the direct possession suffix - na '3SG.POSS', which satisfies the condition that left-dislocated NPs should leave a pronominal trace in the basic clause:
$\begin{array}{llll}\text { (121) } \begin{array}{l}\text { Mutuama, } \\ \text { ogre }\end{array} & \text { naoko-na } & \text { e=kat } & \text { sara=s. } \\ & \text { mouth-3SG.POSS } & \text { 3sG.s=CERT } & \text { run=3OBL }\end{array}$
'As for the ogre, his mouth was watering because of it.'

Similarly, in (123) the left dislocated NP is a possessor. In contrast with (122) the leftdislocated NP is a personal pronoun rather than a lexical NP:

| (123) Konou, nagi konou $\quad \mathrm{e}=\mathrm{pi}$ | Eunice. | |
| :--- | :--- | :--- | :--- |
| 1SG \quad name 1SG | 3sG.s=COP | p.name |
| 'As for me, my name is Eunice.' | | |

7.6.3 Right-dislocation

Like left-dislocated NPs, right-dislocated NPs occur in their own intonation contour. They occur to the right of the basic clause, and may or may not leave a pronominal trace in the basic clause. According to Givón (2001b.:267), right-dislocated NPs are used by speakers as an afterthought, when they judge that a referent they initially evaluated as easily accessible to the hearer may not be that accessible, thus they re-code it with a right-dislocated NP. Example (124) shows a right-dislocated subject NP. The pronominal trace left in the basic clause is the subject proclitic $e=$ ' 3 SG. S^{\prime} :
E=kis \quad noas,
3SG.S=press \quad island.cabbage
'She spreads island cabbage, this one.'

In (125), the right-dislocated NP skul nge 'this school' is an oblique argument. It leaves the pronominal trace $=s$ ' 3 OBL' in the basic clause:

| (125) | Konou | a=pa-ki | skulu=s, | skul |
| :--- | :--- | :--- | :--- | :--- |
| 1SG | 1SG.S=go-TR | school=3OBL | school | DEF |
| | 'I went to school there, in this school.' | | | |

In contrast, the right-dislocated NP in (126) does not leave a pronominal in the clause. However, there is an oblique NP in the basic clause (underlined) which shares the same referent. Note that it is possible that (126) illustrates a different type of right-dislocation:

| E=pan | pa | saksake | mato | nakor | nae | to, |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3sG.S=go | GO | sit | stay.long | pen | 3sG.POSS | STAT |
| | | | | | | |
| nakor=n | waago | nae | to. | | | |
| pen=POSS.NH pig 3sG.POSS | STAT | | | | | |
| 'He went and sat down in his pen, in his pig's pen.' | | | | | | |

7.6.4 Topicalisation of adjuncts

In contrast with left-dislocation, topicalisation is defined as the fronting of a constituent which does not leave any pronominal trace in the clause (Foley 2007:443). In Lelepa, adjunct NPs cannot be left-dislocated but are topicalised when they need to be made more prominent. Topicalisation and left-dislocation have some properties in common. For instance, the intonational pattern used in topicalisation is identical to that of left-dislocation: topicalised
adjuncts occur in their own intonation contour, while the basic clause occurs in a different intonation contour. In contrast, topicalised adjuncts do not leave a pronominal trace in the basic clause. In (127), the temporal adjunct malange is topicalised: it is separated from the clause and occurs in its own intonational contour, and leaves no pronominal trace in the basic clause:
(127) Go malange, ar=atlake \quad napua
and then naara.
'And then, they started to go out.' (lit. they started their road)

7.7 Negation

7.7.1 Symmetric negation

In symmetric negation, the structure of the negated clause is identical to that of the nonnegated clause, except for the occurrence of negative morphemes. This is shown in (128):
a. $E=\tilde{p} a t=i a$

3SG.S=hit=3SG.OBJ
'He hit him.'
b. $\mathrm{E}=\mathrm{ti} \quad$ pat=ia mau.

3SG.S=NEG hit=3sG.OBJ NEG2
'He didn't hit him.'
[elicited]

In Lelepa, symmetric negation is the main way of expressing negation. Clauses are negated with the bipartite particle $t i^{\text {' }} \mathrm{NEG}$ '... mau 'NEG2'. The first particle $t i$ occurs in the verb complex, between the subject proclitic and the verb (see fig. 9.1, 9.3.5), while the second particle mau occurs at the end of the simple or complex clause, if a subordinate clause is negated. If several simple clauses in a row are negated, ti must occur in each verb complex whereas mau only needs to occur after the last negated clause. This is seen in (129), in which $t i$ occurs in each of the three negated clauses, while mau occurs only once, after the last negated clause:

Evidence that mau does not occur inside the basic clause is shown by the fact that it follows the aspectual and directional particles occurring at the end of the basic clause, such as to 'STAT' in (130) and pan 'GO' in (131):
$\mathrm{Ar}=\mathrm{ti}$ to nalia skimau to mau. 3DU.S=NEG stay place be.like STAT NEG2 'They didn't stay in the same place.'
(131) Ta=ga rua roa, po ti pa-ki lau pan mau. 1DU.INCL.S=IRR two fall SEQ NEG go-TR seawards go NEG2. 'We will fall, and we won't be able to go down to the coast.'

When adjuncts occur as part of the extended clause, mau follows, showing that it occurs after the extended clause. In (132), mau follows the sentential adverb taplange 'like this':
(132) Tetei $=n$ malmauna
mother=POSS:N

| se | ur=mro | ti | tae | laka | mala | kasua | taplange | mau. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| while | 3pL.s=again | NEG | able | see | time | hard | like.this | NEG2 |

'The women of today go to the market, and they cannot face hard times like this.'

7.7.1.1 Negation of simple clauses

All clause types can be negated. In (133) an intransitive clause is negated:

| (133) | Namuan \quad e=ti | panei | mau. |
| :--- | :--- | :--- | :--- |
| p.name \quad 3SG.S=NEG | come | NEG2 | |
| 'Namuan didn't come.' | | | |
| [elicited] | | | |

When transitive clauses are negated, mau occurs after the object NP as in (134), or after the object enclitic as in (135):

| A=ti | tae | psruk | na-fsa-na=n | Franis | mau. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1SG.S=NEG | know | speak | N.SPEC-speak-NMLZ=POSS:NH | p.name | NEG2 |
| 'I do not speak French.' | | | | | |

| E=ti | lop̃a=e | mau. |
| :--- | :--- | :--- |
| 3SG.S=NEG see=3SG.OBJ | NEG2 | |
| 'He didn't see it.' | | |

In ditransitive clauses, mau occurs after the two objects. In (136), the primary object is the enclitic $=e^{\text {'3SG.OBJ' }}$ and the secondary object (underlined) is an NP with a relative clause:

| (136)Ur=ti tua=e nalia na
 3pl.S=NEG e=pi nalia wia | mau. | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3ive=3SG.OBJ | place | REL | 3SG.S=COP | place | be.good | NEG2 |
| 'They didn't give him a place that was a good place.' | | | | | | |

7.7.1.2 Negation of complex sentences

A complex sentence involves a subordinate clause embedded in a main clause (see chapter 12). Since the condition for a clause to be negated is to have $t i{ }^{\prime}$ NEG' occurring in its verb complex, the scope of negation only applies to the clause in which $t i$ occurs. In subordinate structures, negation can have scope on the main clause only, or on the subordinate clause only, or on both, provided that $t i$ occurs in both clauses. In (137), the main clause is negated with $t i$, but negation does not extend to the complement clause introduced with lag 'COMP'. Note that the final negative particle occurs sentence-finally:

| (137)Kane a=ti msau-na lag
 but 1SG.S=NEG1 want-3SG.OBJ COMP | 3SG.S=IRR | to | stay | prau~rau | mau. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| long \sim RED | | | | | |\quad NEG2

Similarly, in (138) and (139) the main clauses are negated but the following adverbial clauses aren't. The final negative particle expectedly occurs sentence-finally:

| E=ti | tae | lopa | kano | nge | lag | e=ga | fut=ia |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3SG.S=NEG able | see | man | DEF | PURP | 3SG.S:IRR | pull:IRR=3SG.OBJ NEG2 | |
| 'She could not see the man in order to pull him out.' | | | | | | | |

| $\mathrm{E}=\mathrm{ti}$ | tae | takanei | $\mathrm{e}=\mathrm{ga}$ | tuagoto | mau. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3SG.S=NEG | know | how | 3SG.S=IRR | cross | NEG2 |

'He did not know how he would cross.'

In contrast, negation can have scope on the subordinate clause only. In this case $t i$ must only occur in the verb complex of the subordinate clause. The final particle mau does not change position and occurs finally, as in (140):

| Ur=laka=e lag ur=ga mro ti pam̃osko mala kasua nge mau, | | | | | | | | | nge | au, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 PL. $5=$ see $=3$ | 3sG.OBJ | JCOMP | 3PL.S=IRR | AGAIN | NEG | | | | DEF | NEG2 |
| nlakan | trak | | | laapa. | | | | | | |
| because | truck | | S=CERT | many | | | | | | |

7.7.2 Negative verbs

Lelepa has a small set of negative verbs. In table 7.7, these negative verbs are presented alongside their positive verb counterparts. Some pairs are in a straight antonymic relationship, such as malo 'not want' and msau 'want', but not others. Often, the function of one or the other verbs in the pair needs to be changed to have proper antonyms. For instance, kano 'be unable; cannot' is the antonym of tae 'know; can' only when they function as an auxiliary. Similarly, tika 'be lacking' needs to be transitively derived as tika-ki to be the antonym of pitaka 'have'. Note that tika also functions as a sentential negator (see 7.7.3).

| Negative verbs | | Positive verbs | |
| :--- | :--- | :--- | :--- |
| tika | 'be lacking' | pitlaka | 'have' |
| pueli | 'not be there' | to | 'stay' |
| malo | 'not want' | msau | 'want' |
| Kano | 'be unable; cannot' | tae | 'know; can' |

Table 7.7. Negative verbs and positive counterparts

7.7.2.1 tika 'be lacking' - pitlak 'have; exist'

Tika is an intransitive verb denoting the fact that its subject is not available or missing as in (141), and pitlaka is a transitive verb expressing possession, as in (142):
(141) Ur=faam wia, kane nuae, nuae e=tika. 3PL.S=eat:F good but water water 3sG.s=be.lacking 'They ate well, but as for water, there was no water.'
(142) A=pitlaka rarua.

1SG.S=have canoe
'T have a canoe.'
[elicited]

Both pitlaka and tika function as existential verbs; pitlak as a 'positive existential' and tika as a 'negative existential':
(143) Slafea, e=pitlaka natkon skei amawa taafa warampa. before 3sG.s=have village one p.name landwards there.forward 'Before, there was a village in Mawa up there.'
(144) Wan nafnag $\mathrm{e}=$ ga tika, $\tilde{\mathrm{p}}$ a=mro kil narp̃an ke-rua. if food 3SG.S=IRR be.lacking 2SG.S:IRR=again dig side ORD-two 'If there is no food, you will dig the other side.'

When tika is transitively derived with $-k i$ 'TR' as in (145), the derived transitive tika-ki 'be.lacking-TR $>$ lack' is an antonym of pitlaka:
(145) $\mathrm{Te}=$ matua ur=tika-ki mane. SBST=be.old 3PL.S=be.lacking-TR money 'The elders lacked money.'

7.7.2.2 pueli 'not be there' - to 'stay'

Pueli and to are intransitive verbs. As seen in (146), they are antonyms: to expresses the presence of its subject at the location Srar, while pueli expresses the absence of its subject at the same location:
(146) Ur=to Srar, ur $=\mathrm{lo} \sim \mathrm{lo}=\mathrm{s}$ taplange se $\mathrm{e}=$ pueli Srar. 3PL.S=stay p.name 3PL.S=RED~look=3OBL like.this while 3sG.S=not.be.there p.name 'They were in Srar, they looked for him like this but he was not in Srar.'

7.7.2.3 malo 'not want' - msau 'want'

Malo is intransitive and msau is transitive, and similarly to tika and pitlaka, they are not full antonyms. In (147) malo functions intransitively, but has a 'semantic object' understood from the previous clause:
(147)

| Sp.A: | 'P̃a=fa-ki | p̃ag | pa. |
| :--- | :--- | :--- | :--- |
| | 2SG.S:IRR=go:IRR-TR | inside | GO |
| | 'Go inside.' | | |

Sp.B: 'Ee, a=malo.
no 1sG.s=not.want
'No, I don't want to.'
[elicited]

In (148) msau is negated and denotes a similar meaning to malo 'not want', however it takes an object:
$\mathrm{E}=\mathrm{ti} \quad$ msau nkap mau.

NEG2
'He didn't want fire.'

Malo can be a full antonym of msau when it is transitivised with -ki 'TR':
(149) $A=p a n$ se $e=p i$ maata, $a=$ mal-ki-nia.

1SG.S=go while 3sG.S=COP snake 1SG.S=not.want-TR-3SG.OBJ
'I went and it's a snake, I don't want him.'

7.7.2.4 kano 'be unable; cannot' - tae 'know; can'

Both kano 'be unable; cannot' and tae 'know; able' are intransitive verbs which can also function as auxiliaries. When they function as intransitive verbs, they are not antonyms, as seen in (150) and (151):

| E=msau-na | lag | e=ga | to len | kane | e=kat | kano. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3SG.S=want | COMP | 3SG.S=IRR | stay straight | but | 3SG.S=CERT | be.unable |
| 'He wanted to stand up but couldn't.' | | | | | | |

(151) $\mathrm{A}=\mathrm{ti}$ tae mau.

1SG.S=NEG know NEG2
'I don't know.'

However, as auxiliaries they are antonyms, and the events denoted by the clauses they occur in are in an antonymic relationship:
(152)
$\mathrm{e}=\mathrm{kano}$
3SG.S=cannot suara.
'He can't walk'
[elicited]
(153) $\mathrm{e}=$ tae

3SG.S=can
'He can walk'
[elicited]
walk
suara.
walk
電

7.7.3 Constituent negation

It was shown that tika is an intransitive verb with a negative existential meaning (see 7.7.2.1). This form can also function as a morpheme negating constituents. In this use, tika occurs
without verbal marking (i.e. a subject proclitic) and negates NPs. In (154) tika negates the NP Bomase 'p.name'. ${ }^{12}$ In this sentence, the speaker states the fact that a person called Manuwia buys fish from local fishermen to resell it, while the main supermarket in town doesn't do it. Syntactically, tika only has scope on Bomase and not on the preceding clause:

| (154) | Manuwia e=to\quad pagtof | neika, | kane | Bomase | tika. | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| p.name | 3SG.S=stay | buy | fish | but | p.name | not |

Tika can be used in answers to yes-no questions to give a negative answer. In this situation it occurs with ee 'no' and has the function of making the negative statement stronger than by just using ee:
(155) Q: E=pitlaka nmalok, kite?

3sG.S=have kava or
'Is there any kava ?'
A: Ee, nmalok tika.
no kava not
'No, there is no kava.' [elicited]
(156)

| Q: | Ur=kat panei? |
| :--- | :--- |
| | 3pL.S=CERT come |
| | 'Did they arrive yet? |

A: Ee, tika.
no not
'No, not yet.'
[elicited]

[^29]
Chapter 8 - Verb classes and valency changing operations

8.1 Introduction

This chapter presents verb classes and discusses valency changing operations. Verb classes are established according to the following criteria:

1. Valency groups verbs according to the number of core arguments they take.
2. Argument realisation looks at how arguments with different grammatical functions are encoded, and particularly which enclitics encode post-verbal arguments.
3. Transitive derivation with $-k i$ 'TR' allows the establishment of subclasses of intransitives.

After giving an overview of verb classes (8.2), the chapter describes each class in detail in (8.3) to (8.6), illustrating the ways in which verbs can be classified on the basis of a number of productive and non-productive valency changing operations. Valency-based classes of verbs are common in Oceanic languages: see Ross 2004a for a typological overview, and individual languages such as Hoava (Davis 2003), Boumaa Fijian (Dixon 1988), and Manam (Lichtenberk 1983), amongst others. A common typological feature of Oceanic languages is the existence of classes of A- and U-verbs, which were reconstructed for Proto Oceanic (Ross 1998c, 2004a). Both A- and U-verbs have an intransitive and a transitive version. With U-verbs, the subject of the intransitive is an undergoer, while in the transitive version the undergoer participant becomes the object, and an actor subject is added. In contrast, A-verbs have an actor subject in both intransitive and transitive versions, and in the transitive version an undergoer object is added. In Lelepa, A- and U-verbs are found in the ambitransitive class (see 8.4.3), but represent a fairly minor grouping, unlike in other Oceanic languages such as Boumaa Fijian (Dixon 1988:204). ${ }^{1}$ In addition, U-verbs are reflected by some intransitive verbs the derived transitive form of which takes an object corresponding to the subject of the underived version (see 8.7.1.2). The main valency-changing morphological device is the multifunctional

[^30]morpheme $-k i i^{\prime}$ TR'. Chiefly a transitiviser, (see $8.3 .1,8.7 .1$), $-k i$ also has the minor function of re-arranging the valency of a few transitive verbs (see 8.7.2). In addition, function of $-k i$ is to facilitate the affixation of object suffixes on Class 2 transitive verbs (see 7.4.1.2, 7.4.4.3, 8.5.2). This latter function does not affect valency, and indeed it is interesting that -ki has developed such minor functions which have little, if nothing, to do with valency. Reduplication is a minor, non-productive valency changing operation which decreases valency (see 8.7.3). Finally, valency alternations are also found in pairs of etymologically related intransitive/transitive verbs. This phenomenon is lexical and a product of diachronic change (see 8.7.4).

8.2 Overview of verb classes

Lelepa verbs form four valency-based classes: intransitives, ambitransitives, transitives and ditransitives (see 8.1). In (1)a, sfa is an intransitive verb: it does not take an object. In (1)b and c, psruki 'speak' is an ambitransitive verb: it can function underived without an object as in (1)b or with an object as in (1)c. In (1)d, trus 'leave' is a transitive verb since it requires an object, and tua in (1)e is a ditransitive verb which requires two objects. Subjects are realised with the proclitic $e=$ '3SG.OBJ', and objects are in bold:
(1)
a. $E=s f a$.

3SG.S=run
'He ran.'
b. $\quad \mathrm{E}=\mathrm{psruki}$.

3SG.S=speak
'He spoke.'
c. $\quad \mathrm{E}=\mathrm{psruki}=\mathrm{nia}$

3sG.S $=$ speak $=3$ SG.OBJ
'He spoke it.'
d. E=trus=ia

3SG.S=leave=3SG.OBJ
'He left it.'
e. $\mathrm{E}=\mathrm{tua}=\mathrm{e}=\mathrm{s}$.

3 SG. $\mathrm{S}=$ give $=3 \mathrm{SG} . \mathrm{OBJ}=3 \mathrm{SG} . \mathrm{OBJ}$
'He gave it to him.'
[elicited]

Table 8.1 presents verb classes and subclasses and their main defining properties. There are two subclasses of intransitives, distinguished by their ability to derive transitives or not. There
are also two subclasses of transitive verbs which are determined by the split in object marking that is based on classes of transitive verbs (see 7.4.4.3). In addition, ambitransitives, class 1 transitives and ditransitives fall into two morphophonological subclasses, depending on whether or not they end in $k i$ (the latter are considered $k i$-ending either because their root is $k i$-ending, or because they take the transitiviser suffix $-k_{i} i$. Each of these subclasses attracts a particular set of phonologically conditioned allomorphs of object suffixes. For example, in (1)b and c, psruki is a ki-ending ambitransitive verb, while in (1)e tua is a non ki-ending ditransitive verb.

| Intransitives
 Do not take an object | Class 1: Can derive a transitive with $-k i{ }^{\text {© }} \mathrm{TR}$ ’
 Class 2: Cannot derive a transitive with $-k i$ ' ${ }^{\text {TR' }}$ |
| :---: | :---: |
| Ambitransitives
 Function with or without an object | - $k i$-ending
 - non ki-ending |
| Transitives
 Require one object | Class 1:
 - do not take $=s$ ‘ 3 sG.OBj’
 - $k i$-ending
 - non ki-ending
 Class 2:
 - take $=s^{\prime} 3$ sG.OBj’
 - must take $-k i$ ' ${ }^{\text {TR' }}$ ' to take object suffixes other than non- $3^{\text {rd }}$ SG |
| Ditransitives
 Require two objects | - ki-ending
 - non ki-ending |

Table 8.1. Verb classes

Intransitive verbs (two-hundred and thirty-three verbs) and transitive verbs (two hundred and thirteen verbs) are the largest classes. ${ }^{2}$ Ambitransitives (thirty verbs) form a smaller but sizeable class. Finally, the class of ditransitives has only three members.

Recall from 3.3.5 that the roots of some ambitransitive and transitive verbs vary between a full and reduced form. In their full form, these verbs are consonant-final and host object enclitics. In contrast, in their reduced form they drop their final consonant and take an object NP. This reflects historical word-final consonant loss with verbs and has been referred to as the 'thematic consonant problem' (see Hale 1973, Lichtenberk 1983 and 2001, Pawley 2001, Blevins 2004).

[^31]Another alternation is found with a small group of ambitransitive and transitive verbs such that their initial consonant switches from f to p according to both mood and transitivity. This is a well-known feature of central Vanuatu languages and often referred to as 'stem-initial mutation' (Lynch 1975, Tryon 1986, Walsh 1982, Crowley 1991, Thieberger 2012, Lynch, Ross and Crowley 2002:44). Since this phenomenon has more to do with mood and transitivity rather than with verb classes and valency, it is discussed elsewhere (see 11.2.2).

8.3 Intransitive verbs

Intransitive verbs do not take an object. They form two subclasses according to their ability to derive transitive verbs with the suffix $-k i i^{\prime} T R$ ' (Class 1) or not (Class 2). Another way of classifying intransitives is whether, like adjectives, they can modify nouns inside the NP. Such verbs form the class of adjectival verbs (Ross 1998a:91), which consists of some Class 1 and Class 2 intransitives.

8.3.1 Class 1 and Class 2 intransitives

These verbs are exemplified in table 8.2 below. The first column presents Class 1 intransitives, showing the intransitive base forms and their corresponding transitivised form. The second column exemplifies Class 2, from which transitives cannot be derived. An important observation is that Class 1 intransitive verbs tend to be dynamic, while Class 2 tend to be stative. Thus, dynamic verbs tend to be able to derive transitives while statives do not. Note, however, that stative verbs such as palaka 'be afraid' and wia 'be good' derive the transitives palakaki' 'be afraid of' and wiaki 'be good to/for'. Equally, there are intransitive activity verbs such as pias 'call out' and loso 'wash' which do not derive transitives. Regarding semantic classes, motion verbs are scattered between both Class 1 and Class 2: pa 'go' derives the transitive paki 'go to' while pan 'go', panei 'come' and llu 'return' do not. In sum, we can consider that while some semantic generalisations are possible, no accurate prediction can be made as to which intransitives belong to Class 1 and Class 2. Finally, Both A- and U-verbs are found in Class 1: lao 'plant' is an A-verb which derives the transitive laoki 'erect', while the Uverb $\tilde{p} a k a$ 'be wedged' derives the transitive $\tilde{p} a k a k i$ 'wedge s.t.'.

| Class 1 intransitives | | | | Class 2 intransitives | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Intransitive form | | Derived transitive form | | | |
| $f a / p a$ | 'go' | faki/paki | 'go to' | pan | 'go' |
| lua | 'vomit' | luaki | 'vomit s.t' | makoto | 'be.broken' |
| false/palse | 'paddle' | falseki/palseki | 'paddle s.t' | aleati | 'be.day' |
| palaka | 'be.afraid' | palakaki | 'be afraid of s.t' | laapa | 'be.plenty' |
| regreg | 'hum' | regregki | 'hum s.t' | llu | 'return' |
| salea | 'float' | saleaki | 'make s.t float' | ftaur/ptaur | 'be.married' |
| tortora | 'sweat' | tortoraki | 'hurry for s.t' | taare | 'be.white' |
| muru | 'laugh' | muruki | 'laugh at s.o/s.t' | los | 'wash' |
| lao | 'stand' | laoki | 'erect' | fag | 'be.on.fire' |
| pil | 'blink' | pilkei | 'close (eyes)' | fanei/panei | 'come' |
| palka | 'be.wedged' | pakaki | 'wedge s.t' | marmaro | 'rest' |
| wia | 'be.good' | wiaki | 'be good to s.o/for s.t' | pias | 'call.out' |
| sa | 'be.bad' | saki | 'be bad to s.o/for s.t' | tiar | 'be.open' |
| pea | 'be.first' | peaki | 'precede s.o/s.t' | waafe | 'swim' |

Table 8.2. Class 1 and Class 2 intransitives

While it is not possible to accurately predict which intransitives derive transitives, it is important to mention that intransitives that have lexically distinct causative counterparts do not derive transitives. This is shown with the pairs of verbs in table 8.3. The first member of the pair is a Class 2 intransitive, and the other is a transitive that is not derived from an intransitive, but a lexically distinct causative:

| Class 2 intransitives | | Lexical causatives | |
| :--- | :--- | :--- | :--- |
| pula | 'wake up' | pugon | 'wake s.o up' |
| makoto | 'broken' | prae | 'break s.t' |
| ftaur/ptaur | 'get married' | lgakei | 'marry s.o' |
| los | 'wash' | pre | 'wash s.o' |
| tpar | 'open' | $\tilde{\text { palgat }}$ | 'open s.t' |

Table 8.3. Class 2 intransitives and their lexical causative counterparts

Class 1 intransitives are exemplified below, first as intransitives then as derived transitives. In (2), wia functions intransitively while in (3) it occurs as a derived transitive:

$\begin{array}{llll}\tilde{p} a=\text { to } & \tilde{p} a=\text { lega } & \text { nalegana } & \text { wei." } \\ 2 \text { SG.S:IRR=stay } & 2 S G . S \cdot I R R=\operatorname{sing} & \text { song } & \text { TOP }\end{array}$
2SG.S:IRR=stay 2SG.S:IRR=sing song TOP
'The wife told him, "Fine, that's good, but wait and sing this song.""

| Pan | pa, | e=pat | wia-ki-nia, | go | e=tumalua. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| GO | GO | 3sG.S=make | good-TR-3SG.OBJ | and | 3SG.S=leave |
| 'On and on, he made it properly, and he left.' | | | | | |

In (4), muru 'laugh' functions intransitively while in (5) it occurs as the derived transitive murukinia 'laugh at him':
(4) Ur=to muru go Aboriginis ur=to nali skimau,
1PL.EXCL.S = IPFV laugh and Aborigines 3PL.S=stay place same

| ur=pat | na-muru-na, | $\mathrm{e}=\mathrm{pi}$ | n-laelae-na | wia. |
| :--- | :--- | :--- | :--- | :--- |
| 1PL.EXCL.S=make | N.SPEC-laugh-NMLZ | 3sG.S=COP | N.SPEC-happy-NMLZ | good | 'We used to laugh and the Aborigines stayed at the same place, we had lots of laughs, these were happy times.'

(5) Kusue $e=$ to lagse $e=$ to muru-ki-nia.
rat 3sG.S=stay upwards while 3SG.S=IPFV laugh-TR-3SG.OBJ
'The rat was on top and was laughing at him.'

Class 2 intransitives are exemplified below, along with some corresponding lexical causatives. In (6) pula 'wake up' occurs, while its lexical causative counterpart pugon 'wake s/o up' is exemplified in (7):
(6) Tenge, a=maturu pan pa, pulp̃og $a=$ pula taplange,
SBST.DEF 1SG.S=sleep GO GO morning 1SG.S=wake.up like.this
a=lo pa-ki katam.
1SG.S=look go-TR outside
'Thus, I slept for a while, in the morning I woke up like this, I looked outside.'
(7) $\mathrm{E}=\mathrm{pan}, \quad \mathrm{e}=$ pugon=ia,

3SG.S=go 3SG.S=wake.up=3SG.OBJ
$\begin{array}{llllll}\text { e=lag, } & \text { "Moa! } & \text { Nate } & \text { wa-n } & \text { ku=msau-na } & \text { nisa." } \\ \text { 3SG.S=say } & \text { INTERJ } & \text { thing } & \text { DEM-DIST } & \text { 2sG.S=want-3SG.OBJ } & \text { FOC }\end{array}$
'He went, he woke her up, and he said, "Here! That thing you wanted.""

In (8), the intransitive mour 'blow' occurs while in (9) we see its transitive counterpart si. Note that the subject of both verbs is the wind:
(8) Sufate $\mathrm{e}=$ mour, ur=mas palse tpa=e pa-ki Fate. south.wind 3sG.S=blow 3PL.s=must paddle face=3sG.OBJ go-TR p.name 'The South Wind blew, and they had to paddle into it going to Efate.'
(9) Nlag e=to $\boldsymbol{s i}=\mathrm{a} \quad \mathrm{a}=$ lau taplange,
wind 3 SG.S=IPFV blow=3SG.OBJ LOC=seawards like.this
'The wind was blowing on it by the shore,'

8.3.2 Intransitives and oblique arguments

While intransitive verbs are defined by the fact that they do not take an object, they have the ability to take an oblique argument. Oblique arguments are not required by the verb and realised either with an NP or with the enclitic $=s$ '3OBL' (see 7.4.1.3, 7.4.4.4). They are typically non-human and third person. In (10), the Class 1 intransitive verb sakmousa 'stare' has a single argument, a subject. In contrast, in (11) sakmousa has two arguments, a subject encoded with the proclitic $e=$ '3SG.S', and an oblique realised with $=s$ ' 3 OBL ' and referring to a non-human participant:

| E=to \quad sakmousa | tapla | pan | pan | pa, |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3SG.S=IPFV stare | like.this | GO | GO | GO |
| 'He was staring like this,' | | | | |

(11) $\mathrm{E}=\mathrm{to}=$ sakmousa $=\mathrm{s}$.

3 SG.S $=$ IPFV $=$ stare $=3$ OBL
'He is staring at it.'
[elicited]

When the referent of the non-subject argument is human, intransitives generally need to be derived with the transitiviser $-k i i^{\prime} T R$ ', as there is a tendency for the oblique enclitic $=s^{\prime} 3 \mathrm{OBL}$ ' to encode non-human referents (see 9.4.4). When this happens, verbs become $k i$-ending and take the relevant set of object suffixes, as seen in (12). In contrast with (11), the referent of the object is human and encoded with $=g_{0}$ ' 2 SG.OBJ':

| (12) | Nate thing | tete
 some | $\begin{aligned} & \mathrm{e}=\mathrm{ga} \\ & 3 \mathrm{sG} . \mathrm{S}=\mathrm{IRR} \end{aligned}$ | $\begin{aligned} & \text { to } \\ & \text { IPFV } \end{aligned}$ | sakmousa-ki=go,
 stare-TR=2SG.OBJ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | pa $=$ ti | | msau-na | lag | pa=tua=e=s mau. |
| | 2SG.S:IR | =NEG | want-3SG.OBJ | COMP | 2SG.S:IRR $=$ give=3SG.OBJ=3SG.OBJNEG2 |
| | 'Someone will stare at you, you don't want to give it to them.' | | | | |

The same behaviour is shown with the Class 1 intransitive seisei 'meet'. ${ }^{3}$ In (13), seisei functions with a single argument, its subject, while in (14) it takes an oblique argument encoded with $=s$:

(13) | Sara | ntau, | tu=to | seisei | nalia | skimau. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| each year | 1PL.INCL.S=IPFV | meet | | | |
| 'Each year, we used to | meet at the same place, | | | | |

(14) Ur=ga seisei $=\mathrm{s}$ matmai.

3PL.S=IRR meet=3OBL tomorrow
'They will meet about it tomorrow.' [elicited]

In (15) and (16), seisei 'meet' functions transitively and takes an object with a human referent. The derived transitive takes $-k i$ and hosts the object enclitic $=$ nia ' $3 \mathrm{SG} . \mathrm{OBJ}$ ' as in (15) or can be followed by an object NP as in (16):
(15) Ur=seisei-ki=nia.
$3 \mathrm{PL} . \mathrm{S}=$ meet $=\mathrm{TR}=3 \mathrm{sG} . \mathrm{OBJ}$
'They met about him.'
[elicited]
(16) Ur=seisei-ki Naomi.

3PL. $s=$ meet $=$ TR p.name
'They met about Naomi.'
[elicited]

Class 1 intransitives may subcategorise for an oblique argument which is generally non-human. When these verbs take an object, they must be derived with $-k i$ 'TR'. In contrast, Class 2 intransitives cannot derive transitives, but can take an oblique. In (17), the Class 2 intransitive munu only takes a subject, whereas in the following two examples it has a subject and an oblique. In (18), the oblique is encoded with the NP ntas 'sea water' and in (19) with $=s$ ‘ 3 OBL’:
(17) Ur=panei lag ur=ga munu.

3pL.S=come PURP 3PL.S=IRR drink
'They came in order to drink.'
(18) Ofa $e=m u n u$ ntas, $e=k a t$ mat.
heron 3sG.S=drink sea 3sG.S=CERT dead
'The heron drank sea water, and he died.'

[^32](19) Fterki $\mathrm{e}=\mathrm{munu}=\mathrm{s}$, munu=s pan pa, wife $3 \mathrm{SG} . \mathrm{S}=\mathrm{drink}=3 \mathrm{OBL}$ drink=3OBL GO GO 'The wife drank it, drank it on and on,'

In (20), the Class 2 intransitive tuagoto 'cross' has a single argument, while in (21) and (22), it has an additional oblique argument, encoded with the NP ntas 'sea' in (21), and with the enclitic $=s$ ' 3 OBL' in (22):

| $\mathrm{E}=\mathrm{ti}=$ tae | takanei | lag | $\mathrm{e}=\mathrm{ga}$ | tuagoto | mau. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3SG.S=NEG=know | how | COMP | 3SG.S=IRR | cross | NEG2 |

'He didn't know how he would cross.'
(21) A=tuagoto ntas pa-ki Artoka.

1sG.s=cross sea go-TR p.name
'I crossed the sea to Artoka.'
[elicited]
$A=$ tuagoto $=s$ rarua agnou.
1SG.S=cross=3OBL canoe 1SG.POSS
'I crossed it on my canoe.' [elicited]

A similar alternation is shown with tagau 'fish', which functions with a single subject argument in (23) and an added oblique in (24):
(23) $A=m r o$ msau magmu til=ia naleti skei a=pa tagau.

1SG.S=AGAIN want 2PL.BEN say=3sG.OBJ day INDEF 1SG.S=go fish 'I want to tell you again about one day I went fishing.'
(24) Neika na ur=tagau=s, e=kiki sa mol.
fish REL 3pl.S=fish=3OBL 3PL.s=be.small very just
'As for the fish they caught, there is just very little of it.'
[elicited]

8.3.3 Adjectival verbs

Another way of distinguishing between groups of intransitive verbs is their ability to behave as adjectives or not. Distinguishing verbs along their adjectival properties simply provides another way of looking at the class of intransitives. Adjectival verbs (Ross 1998a) modify nouns and occur in the ADJ slot of the NP (see 5.4.2), together with Lelepa 'real' adjectives (see 4.5), and may be either Class 1 or Class 2 intransitives. In (25) the Class 1 intransitive palaka 'be afraid' derives a transitive with $-k i$, and in (26) it occurs as a noun modifier:
(25) $A=$ palaka-ki koria. 1SG.S=be.afraid-TR dog 'I'm afraid of dogs.' [elicited]

| T. $\quad \mathrm{e}=\mathrm{pi}$ | kano | palaka | skei. |
| :--- | :--- | :--- | :--- |
| T. $3 \mathrm{sG} . \mathrm{S}=\mathrm{cop}$ | man | be.afraid | INDEF |
| 'T. is a coward.' | | | |
| [elicited] | | | |

Similarly, in (27) the intransitive matietie 'be smooth' functions as a verb, and in (28) as an adjective:
(27) Konou $a=g a$ to uta nlakan konou, $a=$ matietie.
1SG 1SG.S=IRR stay landwards because 1SG 1SG.S=be.smooth 'I will stay on the shore because me, I am smooth.'
(28) Napuka $\mathrm{e}=\mathrm{pi}$ nkas matietie.

Gyrocarpus.sp 3sG.s=cop tree be.smooth 'Gyrocarpuses are smooth trees.' [elicited]

In (29), prau 'be long' occurs twice as a verb:
(29) Ten nalia na, $e=s a i \quad e=p r a u \quad e=p r a u \quad$ pa-ki mae! SBST.POSS:NH place DEM 3SG.S=crawl 3sG.S=be.long 3sG.S=be.long go-TR far 'As for the one from this place, it crawled, it is very long and goes far away!'

In contrast, in (30) frau 'be long' modifies the noun napua 'road'. Note that the form of the verb is different in both examples: it is p-initial when functioning as a main verb in (29), and f initial when occurring as a noun modifier in (30). This is due to the process of stem-initial mutation, under which some verbs switch their initial consonant from p to f in certain circumstances, such as occurring in adjective position (see 11.2.2):
(30) Ae, kinta ta=suara napua frau panei, ta=marou. hey 1PL.INCL 1DU.INCL.S=walk road be.long COME 1DU.INCL.S=thirsty 'Hey, we walked a long way here, we're thirsty.'

8.4 Ambitransitive verbs

Ambitransitive verbs function with or without an object. In contrast with intransitives, they do not need to be derived with $-k i$ 'TR' to function transitively; and in contrast with transitives they do not require an object. For these reasons they are analysed as a separate class of verbs. They fall into two morphophonemic subclasses according to whether or not their root end in $k i$ (note that k_{i}-ending ambitransitives do not take the transitiviser $-k i$, but that their root is $k_{i} i$ ending). When their object is encoded with an NP, no particular marking distinguishes them from transitive verbs and intransitives taking an oblique. ${ }^{4}$ Some ambitransitive verbs are given in table 8.4:

| ki-ending | | non ki-ending | |
| :--- | :--- | :--- | :--- |
| fsapseiki/psapseiki | 'teach:IRR/R' | faam/paam | 'eat:F/P' |
| fsruki/psruki | 'speak:IRR/R' | faus/paus | 'weave:IRR/R' |
| rmaki | 'bark' | fnak/pnak | 'steal:IRR/R' |
| raki | 'follow' | fsatra/psatra | 'answer:IRR/R' |
| | | si | 'blow' |
| | | tae | 'know' |
| | | takorog | 'listen' |
| | | tor | 'collect |
| | | | (liquid)' |

Table 8.4. Ambitransitive verbs

8.4.1 Ki-ending ambitransitives

These verbs always end in $k i$ and attract a particular set of allomorphs of the object enclitic paradigm (see 9.4.3.1, table 9.2). They represent the minority of ambitransitive verbs. In (32) psruki 'speak' functions intransitively, and in (31) it functions transitively:
(31) Marka ur=mato psruki, kenem ur=to takorog. old.man 3PL.S=IPFV speak 1PL.EXCL 1PL.EXCL.S=IPFV listen 'The old men were speaking, we were listening.'
(32) Kan konou, $\mathrm{a}=\mathrm{ga}$ to psruki Franis.
but 1SG 1SG.S=IRR IPFV speak French
'But as for me, I will speak French.'

[^33]The verb psapseiki 'teach' is a compound formed with the intransitive psa 'speak' and the transitive pseiki 'show'. In (33) it functions intransitively while in (34) it takes the object enclitic =nia '3SG.OBJ':
(33) $A=m r o$ to psapseiki ntau rua.
1SG.S=AGAIN IPFV teach year two
'I taught again for two years.'
(34)

| E=to \quad se | e=psapseiki-nia | nalegana | nge. |
| :--- | :--- | :--- | :--- | :--- |
| 3sG.s=stay while | 3sG.S=teach-3sG.OBJ | song | DEF |
| 'He stayed and taught him the song.' | | | |

In (35) the first occurrence of ranaki 'bark' is intransitive, while its second occurrence is transitive and takes the object argument wago nge 'the pig':
(35) Mala koria e=rm̃aki, tu=tae lage=rmaki wago nge.
when dog 3sG.S=bark 1PL.INCL.S=know COMP 3 SG.S=bark pig DEF 'When the dogs bark, we know that they bark at the pig.'

8.4.2 Non ki-ending ambitransitives

These verbs form the largest subclass of ambitransitives. They do not end in ki and so take a different set of object enclitics (see 9.4.3.1, table 9.2). In (36) the ambitransitive faam/paam 'eat:F/P' functions intransitively first, then transitively with an object NP in (37), and finally transitively with the object enclitics $=i a^{\prime} 3 \mathrm{SG}: \mathrm{OBJ}$ ' and $=k_{0}$ ' $2 \mathrm{SG}: \mathrm{OBJ}$ ' in (38):
(36) $\mathrm{Tu}=\mathrm{faam}$, $\mathrm{tu}=\mathrm{rog}=\mathrm{ea}$ wia, tu=pitlak srago mauna.

1PL.INCL.S=eat:F 1PL.SINCL.S=feel=3SG.OBJ good 1PL.SINCL.S=have thing all 'We ate, we felt good, we had everything.'

| E=msau-na | lag | e=ga | faam | neika. |
| :--- | :--- | :--- | :--- | :--- |
| 3sG.S=want-3SG.OBJ | COMP | 3SG.S=IRR | eat:F | fish |

'He wanted to eat fish.'
(38) $\mathrm{P} a=\mathrm{ti}$ paam=ia mau, a=ga faam=ko.

2SG.S:IRR=NEG eat:P=3SG.OBJ NEG2 1SG.S=IRR eat:F=2SG.OBJ
'(If) you don't eat it, I will eat you.'

Some ambitransitive verbs display a shift in meaning between their intransitive and transitive uses. In (39), the patkea 'be.enough; be similar to' functions intransitively with the meaning 'be sufficient', whereas when it functions transitively as in (40), it means 'be similar to':

(40) $\mathrm{E}=$ patka=ra.

3SG.S=be.similar.to $=3$ PL.. OBJ
'He is similar to them.'
[elicited]

Some ambitransitives reflect the morphophonemic alternation whereby the final consonant of the root surfaces when it hosts an object enclitic (see 3.3.5). For instance, paus 'weave' occurs in its reduced form functions in (41) and (42), because in both examples the root is uninflected, and the final consonant does not surface:
(41) Naw̃it nge a=to til=ia,
mat DEF 1SG.S=IPFV tell=3SG.OBJ

| taos=ia | naa | fterki | naara | ur=pau | slafea | taplange. |
| :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| like=3sG.OBJ | HESIT | wife | 3PL | 3PL.S=weave | before | like.this |

(42) Tu=go mro pau narp̃an ke-rua e=ga fa nou, 1PL.INCL=IRR AGAIN weave side ORD-two 3 SG.S=IRR go:IRR be.finished 'We weave the other side until done,'

In contrast, in (43) paus hosts an object enclitic and occurs in its full form, because its final consonant is in word-internal position:

| Ur $=$ mro | atlake | paus=ia. |
| :--- | :--- | :--- |
| 3PL.S=AGAIN | start | weave=3SG.OBJ |

'They started to weave it again.'

8.4.3 A-verbs and U-verbs

Like Class 1 intransitives, ambitransitive verbs can be distinguished on the basis of the macrorole of their subject when they function intransitively: their subject argument can either be an Actor or an Undergoer. This distinguishes two groups of verbs, A-verbs which have an Actor subject and U-verbs which have an Undergoer subject. With A-verbs, the subject argument is always an Actor, whether they function transitively or intransitively. In contrast, U-verbs have an Undergoer subject when they are intransitive, but an Actor subject and an Undergoer object when they function transitively. In other words, the subject of an ambitransitive U-verb becomes the object of the same verb when it functions intransitively. This distinction is often present in modern Oceanic languages (Ross 2004), and reconstructed for Proto Oceanic, with A and U-verbs being the two major classes of verbs in Proto Oceanic (Lynch, Ross and Crowley 2002:81). ${ }^{5}$ Although Lelepa reflects this distinction, U-verbs are uncommon in the data, in contrast with Oceanic languages such as Boumaa Fijian in which U-verbs represent just under half of these verbs (Dixon 1988:204). The distinction between ambitransitive A- and U-verbs is shown below with paus 'weave' and kor 'close'. The A-verbs pau functions intransitively in (44) and transitively in (45). In both examples the subject is an Actor:
(44) Ur=pau pan pa, e=pi taem, ur=faam. 3PL.S=weave GO GO 3sG.S=cop time 3pl.S=eat:F 'They weaved on and on, it was time, they ate.'

$$
\begin{array}{llllll}
\text { A=ga } & \text { traus } & \text { takanei } & \text { tu=pau } & \text { aginta } & \text { nam̃it. } \tag{45}\\
\text { 1SG.S=IRR } & \text { recount } & \text { how } & \text { 1PL.INCL.S=weave } & \text { 1PL.INCL.POSS } & \text { mat } \\
\text { 'I will talk about how we weave our mats.' } & &
\end{array}
$$

In contrast, kor 'be closed; close' is a U-verb. It functions intransitively in (46) with an Undergoer subject:

| (46) | Nagi, | namta | nae |
| :--- | :--- | :--- | :--- |
| p.name door | 3sG.POSS | e=kor. | |
| 'As for Nagi, his door is closed.' | | | |
| [elicited] | | | |

[^34]In (47), kor functions transitively and takes an added Actor subject, while its object is an Undergoer which corresponds to the subject of the intransitive version seen in (46):

(47) | $\tilde{\mathrm{Pa} a=\text { kor }}$ | namta! | |
| :--- | :--- | :--- |
| | 2SG.S:IRR=close | door |
| | 'Close the door!' | |
| [elicited] | | |

8.5 Transitive verbs

In contrast with ambitransitives, transitives cannot function without an object. They fall into Class 1 and Class 2 based on the lexical split occurring with objects (see 7.4.4.3). Recall from 7.4.1.2 that when objects are encoded with NPs, there is no formal clue to distinguish both subclasses of transitives. However, when object are realised with enclitics, the split in transitivity is apparent: Class 1 transitives cannot encode their third person singular object with $=s$ '3sG.OBJ', while Class 2 transitives can only encode this argument with $=s$. The objects of Class 1 and Class 2 transitives also differ from each other as their referents have different semantic properties. Class 1 transitives have no restrictions as to the type of object they take. The referents of their objects can be animate, inanimate, highly affected, not highly affected, and have any of the person and number values marked by object enclitics. In contrast, the objects of Class 2 transitives are typically inanimate, not highly affected, and third person singular (see 7.4.4.3). However, some Class 2 transitives such as fafatu 'trust' and sralesko 'believe' can take a human object, but this human object has the semantic role of stimulus, and is consequently not highly affected. Compare the Class 1 transitive mas 'cut' with the Class 2 transitive fafatu 'believe'. In (48) and (49), both verbs take an object NP (underlined) which seems to receive the same treatment: it follows the verb and no particular marking occurs:

| (48) | Te=na,
 SBST=DEM\quade=to
 SSG.S=IPFV
 'As for this one, she is cutting meat.' |
| :--- | :--- |

(49) $A=$ fafatu naota.

1SG.S=trust chief
'I trust the chief.' [elicited]

In contrast, their object is treated differently when realised as an object enclitic. In (50), the object of mas is encoded with $=i a^{`} 3$ SG.OBJ', while fafatu hosts $=s{ }^{`} 3$ SG.OBJ':

'Then, he cut her up, he was cutting her up, then he removed her guts.'
(51) P̃a=sralesko Iesu, $\tilde{p} a=f a f a t u=s$!

2SG.S:IRR=believe Jesus 2SG.S:IRR=trust=3SG.OBJ
'You will believe in Jesus, you will trust him!'

In (52) and (53), fafatu and mas take a second person singular object encoded with a bound object marker. While mas directly hosts the appropriate enclitic $=k_{0}$ ' 2 SG . OBJ', fafatu must take $-k i i^{\prime T R}$ ' to be able to take the object suffix $-g_{0}$ '2SG.OBJ':
(52) $A=$ mas $=$ ko.

1SG.S=cut=2SG.OBJ
'I cut you.'
[elicited]
(53) A=fafat-ki-go.

1SG.S=trust-TR-2SG.OBJ
'I trust you.'
[elicited]

8.5.1 Class 1 transitives

8.5.1.1 Ki-ending transitives

This class includes underived transitives as well as transitives derived with $-k i{ }^{\text {' }}{ }^{\text {TR }},{ }^{6}$ as shown in table 8.5:

[^35]| Underived ki-ending transitives | | Transitives derived with -ki'TR' | |
| :---: | :---: | :---: | :---: |
| fseiki/pseiki | 'show' | faki/paki | 'go to:IRR/R' |
| lgaki | 'marry' | falseki/palseki | 'paddle: IRR/R' |
| marki | 'put down' | feaki/peaki | 'precede: IRR/R' |
| mraki | 'lead' | fsaki/psaki | 'speak: IRR/R' |
| mtouki | 'fear' | kasuaki | 'insist' |
| nmauloki | 'spread' | maetoki | 'be angry at' |
| npaki | 'lay' | malki | 'not want' |
| oufaki | 'bury' | maroaki | 'think about' |
| psaptuki | 'argue about' | muruki | 'laugh at' |
| pulki | 'turn' | mlatigki | 'close to' |
| puluki | 'argue about/tell off' | napokei | 'smell of s.t' |
| polki | 'fold' | puraki | 'fill' |
| sapruki | 'throw' (powder-like object) | pákaki | 'wedge' |
| seiki | 'light' | palakaki | 'be afraid of |
| surki | 'hide' | pillei | 'close' (eyes) |
| tagiaki | 'rig' (canoe) | saleaki | 'put to float' |
| takaki | 'cook' (in coconut milk) | seseiki | 'meet about' |
| taki | 'lie sideways' | tagki | 'sing' (sad song) |
| talaki | 'avoid' | saki | 'bad for' |

Table 8.5. Class 1 transitive verbs; $k i$-ending

Recall from 3.3.2.1 that the final i of $k i$-ending verbs is realised as [i] when stressed, but deleted or reduced otherwise. ${ }^{7}$ The examples below are in the orthographic form of the verbs, whether or not final i is deleted on the surface. In (54), lgaki 'marry' occurs with an object NP while in (55) its object is realised with the object suffix -nia:

| E=msaun-na | lag | nan-na | nanoai | nge |
| :--- | :--- | :--- | :--- | :--- |
| 3sG.S=want-3SG.POSS | COMP | offspring-3sG.POSS | male | DEF |

e=ga \quad lgaki \quad nagrun.
3SG.S=IRR marry woman
'He wanted his son to marry a woman.'
(55) E=msau-na nina, e=lgaki-nia.

3SG.S=want-3SG.OBJ then 3SG.S=marry-3SG.OBJ
'He wanted her, then he married her.'

Similarly, mtouki 'fear' occurs with an object NP in (56) and with the object suffix -nia in (57):

[^36]| Naota | Milae=lage=ga | ne=a | pan | se, |
| :--- | :--- | :--- | :--- | :--- |
| chief | p.name | 3SG. $=$ =say | 3SG.S=IRR | be.with=3SG.OBJ GO | while

$\mathrm{e}=$ mtouki mamei nae.
3sG.S=fear father 3sG.POSS
'Chief Mila thought he would go with her, but he feared her father.'
(57)

| Nina | e=lag | e=ga | p̃at=ia | se | $e=$ mtouki-nia, |
| :--- | :--- | :--- | :--- | :--- | :--- |
| then | 3sG.S=say | 3SG.S=IRR | hit=3SG.OBJ | while | 3sG.S=fear-3SG.OBJ |

$e=p i \quad$ maata got got, $e=t a o s \quad$ namalfar.
3SG.S=COP snake black black 3sG.S=like charcoal
'Then he thought he would hit it but he feared it, it was a black snake, it was black as charcoal.'

The derived transitive pa-ki 'go-TR' occurs with the object NP skulu 'school' in (58) and with the suffix -ra '3PL.OBJ' in (59):
(58) Ur=lao-ki-nia pan pan pa, e=to, ur=pa-kiskulu=s. 3PL.S=stand-TR-3SG.OBJ GO GO GO 3SG.S=stay 3PL.S=go-TR school=3OBL
'They built it on and on, it was done, they went to school in it.'

| Na-fsa-na | e=pa-ki-ra | pa, |
| :--- | :--- | :--- |
| N.SPEC-talk-NMLZ | 3SG.S=go-TR-3PL.OBJ | GO |

$\operatorname{ar}=s f a \quad$ pan lagar=lop̃a tenge, $\mathrm{e}=\tilde{\mathrm{p} a}$ punu=ea to. 3DU.S=run GO PURP 3DU.S=see SBST.DEF 3SG.S=kill dead=3sG.OBJ GO 'Word went to them, they ran to see this, he had killed him.'

The derived transitive mal-ki 'not.want-TR' occurs with an object NP in (60) and takes the suffix -nia in (61):
$\begin{array}{lllll}\text { (60) } & \begin{array}{ll}\text { Nlakan } & \text { nae } \\ \text { because } & \text { 3SG }\end{array} & \begin{array}{l}\text { e=mal-ki } \\ \text { 3sG.S=not.want-TR }\end{array} & \begin{array}{l}\text { nasokina=n } \\ \text { smoke=POSS:NH }\end{array} & \text { nkap, } \\ \text { fire }\end{array}$
$\begin{array}{llll}\mathrm{e}=\mathrm{mal} & \text { rogo } & \text { nap̃o }=\mathrm{n} & \text { nkap. } \\ \text { 3SG.S=not.want } & \text { feel } & \text { smell=POSS:NH } & \text { fire }\end{array}$
'Because he didn't want smoke, he didn't want to smell the smell of fire.'

| Ur=til | Moso, | te=na | Moso | ur=mal-ki-nia, |
| :--- | :--- | :--- | :--- | :--- |
| 3PL.S=say | p.name | SBST=DEM | p.name | 3PL.S=not.want-TR-3SG.OBJ |

| ur=ti | msau-na | lag | ur=ga | puilt=gam mau. |
| :--- | :--- | :--- | :--- | :--- |
| 3PL.S=NEG | want-3SG.OBJ | COMP | 3SG.S=IRR | join=1PL.EXCL.OBJ NEG |

'We told Moso, those from Moso didn't want this, they didn't want to join us.'

8.5.1.2 Non ki-ending transitives

In terms of valency, these verbs function in the same way as $k i$-ending transitives. However, they take a different set of allomorphs of object enclitics (see 9.4.3.1, table 9.2). Some of these verbs also participate in final-consonant alternation (see 3.3.5). Table 8.6 presents some of these verbs and distinguishes those participating in final-consonant alternation from those that do not.

| No final-consonant alternation | Final-consonant alternation | | |
| :--- | :--- | :--- | :--- |
| fagan/pagan | 'feed:IRR/R' | ftagf/ptagf | 'ask: IRR/R' |
| fagtof/pagtof | 'buy:IRR/R' | fut/put | 'pull: IRR/R' |
| fai/pai | 'pack:IRR/R' | man | 'grate' |
| flkas/pkas | 'chase:IRR/R' | mun | 'take out' |
| kar | 'scratch' | pat | 'hit' |
| kat | 'bite' | rkat | 'pick' (with tongues) |
| kil | 'dig.w.stick:IRR/R' | saof | 'spoon out' |
| kint | 'pinch:IRR/R' | slat | 'carry' |
| msug | 'carry' | sun | 'wear' |
| $\tilde{\text { mul }}$ | 'squeeze' | tof | 'push' |
| $\tilde{\text { palgat }}$ | 'open' | kult | 'cover' |
| $\tilde{\text { prae }}$ | 'split' | sket | 'pick' |
| rogo | 'feel, hear' | man | 'grate' |
| rpag | 'slap' | sun | 'wear' |

Table 8.6. Class 1 transitive verbs; non ki-ending

Class 1 transitives which do not undergo final-consonant alternation are exemplified in (62) to (66):
(62)

| E= palgat | falea | nge | nae, |
| :--- | :--- | :--- | :--- |
| 3sG.S=open | cave | DEF | 3sG.POSS |

| namta | nag-na, | tu =ti | tae lag | e=pi | nsfa | mau. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| eye | ASS-3sG.POSS | 1PL.INCL.S=NEG | know COMP | 3sG.S=COP | what | NEG2 |
| 'He opened his cave, as for its entrance we don't know what it was.' | | | | | | |

(63) Go ur= $\tilde{p} a l g a t=i a$ namba terti wan oktoba 2008. and 3PL.S=open=3SG.OBJ number thirty one October 2008 'And they opened it, on thirty-first October 2008.'

| $\mathrm{Tu}=\mathrm{sa}$ | to, |
| :--- | :--- |
| 1PL.INCL.S $=$ bad | STAT |

| ur=to | pagan | kinta, | to=lo | parkat | kinta | pan | pa, |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3PL.S=IPFV feed | 1PL.INCL | IPFV=look | catch | 1PL.INCL | GO | GO | |
| 'We were little, they fed us, looked after us on and on,' | | | | | | | |

 \(\mathrm{E}=\) raus \(=\mathrm{ra}, \quad \mathrm{e}=\) pkas=ra panei.
 3SG.S=follow=3PL.OBJ 3SG.S=chase=3PL.OBJ COME
 'He followed them, he chased them.'
 (66) Wan lagur=ga fat punu=ea, if maybe 3PL.S=IRR make dead=3SG.OBJ
ur=ga kar=ea \quad nuwai ftunu
3pl.S=IRR \quad scorch=3sG.OBJ water
'If they kill it, they will skin it in hot water.'

In (67) to (69) transitive verbs which undergo final-consonant alternation are exemplified with $p u t / p u$ 'pull'. In (67), this verb occurs as part of a post-verb construction with the post-verb liva 'remove'. In this context, the reduced form $p u$ occurs:
(67) Fterki lag $\quad \mathrm{e}=\mathrm{pu}$ lwa fefe taplange, wife maybe 3sG.S=pull remove oven.cover like.this 'The wife pulled and removed the oven cover like this.'

Similarly, in (68), the reduced form $p u$ occurs as it is followed by an object NP:
(68) Ur=pan pan pa, ur=pu rarua naara pa-ki uta pan se, 3PL.S=go GO GO 3pl.S=pull canoe 3PL.POSS go-TR landwards GO while 'They went on and on, pulled their canoe to the shore,'

In contrast, in (69) the full form put occurs as the verb hosts the object enclitic =ia '3sG.OBj':
(69) $\mathrm{A}=$ put=ia, $\quad \mathrm{a}=$ put=ia panei panei, panei panei pa-ki uta. 1SG.S=pull=3SG.OBJ 1SG.S=pull=3SG.OBJ COME COME COME COME go-TR landwards 'I pulled it, I pulled it on and on, on and on to the shore.'

8.5.2 Class 2 transitives

The main property of Class 2 transitive verbs (table 8.7) is that they take $=s$ ' $3 \mathrm{sG} . \mathrm{OBJ}$ ' to encode their third person singular object. When their object is not third person singular, they must take the suffix $-k i$ 'TR' followed by an object suffix encoding their object. The main
functions of $-k i$ are valency increase (see 8.3, 8.7.1) and valency re-arrangement (see 8.7.2). In addition, $-k i$ is also used to facilitate Class 2 transitives to take object markers other than $=s$ '3SG.OBJ'. Given that these verbs are transitives already, -ki does not function as a transitiviser in this case. The objects of these verbs tend to be low in the animacy hierarchy: they are often non-human or inanimate, and while some of these verbs are perfectly able to take an object with a human referent (e.g. fafatu 'trust', srapori 'be surprised at'), the semantic roles of these objects are not those of typical patients: they can be stimuli (fafatu 'trust', logoro 'look after', sralesko 'believe in', srapori 'be surprised at'), locations (talferi 'go around', tuaturu 'go through', muru 'pass on water', wuru 'pass on land'), and themes (kau 'raise', upanakono 'cut stern and prow'). All transitive verbs borrrowed from Bislama are also part of this subclass (see table 8.7, last seven rows of second column):

| Class 2 transitive verbs | | | |
| :--- | :--- | :--- | :--- |
| fafatu | 'trust' | tuaturu | 'go through' |
| fatu/patu | 'step on:IRR/R' | ufanakono | 'cut stern and prow' |
| kau | 'raise' | wuru | 'pass (on land)' |
| logoro | 'look after' | suasua | 'agree with' |
| maga | 'be surprised at' | maroa $\tilde{\text { masko }}$ | 'be sure of' |
| srapori | 'be surprised at' | liko | 'hang on to' |
| muru | 'pass (in water)' | kasem | 'reach; get' |
| pañosko | 'find' | oganaesem | 'organise' |
| kona | 'bump into' | stretem | 'straighten' |
| plaga | 'look for' | makem | 'measure' |
| sralesko | 'believe in' | komplitim | 'complete' |
| lomasko | 'be proud of | diklerem | 'declare' |
| talferi | 'go around' | statem | 'start' |

Table 8.7. Class 2 transitive verbs

As seen in (70), the Class 2 transitive verb pamosko 'find' has a third singular object encoded with $=s$:

| $\mathrm{E}=\mathrm{lo} \sim \mathrm{lo}=\mathrm{s}$ | pan | se | $\mathrm{e}=\mathrm{ti}$ | pañosko=s | mau. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3sG.S=look \sim look=3OBL | GO | while | 3sG.S=NEG | find=3sG.OBJ | NEG2 |
| 'He looked for it on and on and he couldn't find it.' | | | | | |

In contrast, in (71) the object of pamosko is third person plural, and the verb needs to be suffixed with $-k i$ to take the appropriate object enclitic:
(71) Marka sa se
old.man be.bad 3SG. $5=$ see= $=3$ SG.OBJ COMP
e=kat ti tae pam̃osko-ki-ra mau.
3SG.S=CERT NEG able find-TR-3PL.OBJ NEG2
'The bad old man saw that he couldn't find them.'
(72) shows that Class 2 transitives cannot take -nia '3SG.OBJ' after $-k i$, as a third person singular object is encoded with $=s^{\prime} 3 \mathrm{SG} . \mathrm{OBj}$ ' as already seen in (70):
(72) $\quad * \mathrm{E}=$ pam̃osko-ki-nia.

3SG.S=find-TR-3SG.OBJ
'He found it/him.'
[elicited]

Examples (73) to (75) show the Class 2 transitive kona 'bump into' taking different type of objects. In (73), it takes the object NP nakor 'fence', while in (74) the object is encoded with $=s$. In these examples, the objects have the semantic role of theme:
(73) Koria e=kona nakor.
dog 3SG.S=bump.into fence
'The dog bumped into the fence.'
[elicited]

Koria $\quad \mathrm{e}=\mathrm{kona}=\mathbf{s}$.
dog 3SG.s=bump.into=3OBL
'The dog bumped into it/him.'
[elicited]

In (75) kona takes the suffix $-k i{ }^{\text {' }}$ TR', as the object is second person singular and cannot be encoded with $=s$:

| Taos=ia wan | e=ga | trabol | nmatunagaskei, |
| :--- | :--- | :--- | :--- |
| Like=3SG.OBJ if | 3SG.S=IRR | be.in.trouble | something |

| se | e=panei | kon-ki-go. |
| :--- | :--- | :--- |
| while | 3sG.Scome | bump.into-TR-2SG.OBJ |

'Thus if he is in trouble with something, at the same time he comes to you for help (lit. be bumps into you).'

When they take an object NP, Class 2 transitives do not take $-k i$, as seen in (76) with fatu 'step on'. They only take $-k i$ when their object is encoded with a bound pronominal that is not third person singular. In (77), fatu takes $=s$ to encode a third person singular object:
(76) Konou a=ga fi walak, kutu nae na e=ga fatu konou, 1SG 1SG.S=IRR COP climbing.rope louse 3SG DEM 3SG.S=IRR step.on 1SG

| $\mathrm{e}=$ go | pag | pa-ki | lag. |
| :--- | :--- | :--- | :--- |
| 3SG.S=IRR | climb | go-TR | upwards |

'I will be the climbing rope, as for Louse he will step on me to climb to the top.'
(77) Kutu na $\mathrm{e}=\mathrm{ga}$ fatu=s, $\mathrm{e}=\mathrm{go}$ pag.
louse DEM 3SG.S=IRR step.on=3SG.OBJ 3SG.S=IRR climb 'Louse will step on it, he will climb.'

Another Class 2 verb is srapori 'be surprised at'. In (78), its object is encoded with $=s$, while in (79) it takes $-k i$ to be able to host a second person object enclitic:
(78) Male sou e=kai tapla nina,
when honeyeater 3sG.S=cry like.this then
$\begin{array}{lllll}\text { ur=srapori=s, } & \text { ur=lag } & \mathrm{e}=\mathrm{go} & \text { aliat } & \text { nina, } \\ \text { 3PL.S=surprised=3SG.OBJ } & \text { 3PL.S=say } & \text { 3PL.S=IRR } & \text { day } & \text { then }\end{array}$
ur $=$ tarpaki $=$ nia se ur=sfa.
3PL.S=throw=3SG.OBJ while 3PL.S=run
'When the honeyeater tweeted like this, they were surprised at it, they thought it would be dawn, so they threw him away and ran.'
(79) Nae, e=srapor-ki-go.

3SG 3SG.S=surprised-TR-2SG.OBJ
'As for him, he is surprised at you.' [elicited]

Borrowed transitive verbs function exactly like Class 2 transitives, which lead to their analysis as Class 2 transitives: their third person singular object is encoded with an NP or with $=s$, and if their object is encoded with enclitics expressing other person and number values, they need

In (80), kasem takes an object NP, while in (81), its object is encoded with $=s$.
(80) $\mathrm{E}=\mathrm{pi}$ mala wei nge ku=tae kasem neika pela nge. 3SG.S=COP time TOP DEF 2SG.S=can get fish big DEF 'This is the time when you can get the big fish.'
(81) Wan neika ur= $\mathrm{p} o \mathrm{~g}$ panei, ku=lao=ea, ku=kano kasemi=s.
if fish 3sG.S=school COME 2SG.S=spear=3sG.OBJ 2SG.S=cannot get=3sG.OBJ
'When the fish are in a school, you spear them, you can't get them.'

In (82), kasem takes an object that is not third person singular, and needs to take $-k i i^{\prime}$ TR' to be able to take object suffixes with other person and number values:

| (82) | Naara \quad ur=mato | Tahiti | to, | a=panei | kasem-ki-ra. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3PL | 3PL.S=stay.long | p.name | STAT | 1SG.S=come | reach-TR-3PL.OBJ |
| | 'They lived in Tahiti, I reached them.' | | | | |

Examples of other borrowed transitive verbs follow:
(83) Namba fo jioj, ur=statemi=s namba 31 Maj 1993. number four church 3PL.S=start=3sG.OBJ number 31 March 1993 'As for the fourth church, they started it on the 31st March 1993.'
(84) Kane $\mathrm{a}=$ samoa $\mathrm{e}=\mathrm{pi}$ wara $\mathrm{ur}=\mathrm{pesi}=\mathrm{s}$, Samoa Poin. but LOC=p.name 3sG.S=COP place 3PL.S=base=3sG.OBJ p.name point 'But Samoa was the place they were based at, Samoa Point.'
(85) $\mathrm{E}=\mathrm{pi}$ festivol, festivol na Ostrelia ur=to oganaesemi=s, 3SG.S=COP festival festival REL Australia 3PL.S=IPFV organise=3SG.OBJ
$\mathrm{e}=\mathrm{pi}$ teg Indijenes Ostrelian.
3SG.S=COP SBST.POSS:H Indigenous Australian
'It was a festival, a festival that Australian people organised, it was for Australian Indigenous Peoples.'

8.6 Ditransitive verbs

Ditransitive verbs require two objects, a primary and a secondary object. As shown in 7.4.4.2, the alignment in ditransitive clauses is secundative, which means that the recipient of the ditransitive is treated similarly to the object of a monotransitive, while the theme of the ditransitive receives a different treatment. That is, the recipient is encoded with the same enclitics as Class 1 transitives and occurs in the same position, following the verb. In contrast, the theme is encoded with $=s$ ' 3 SG.OBJ' and follows the recipient. In a secundative alignment pattern, the recipient is the primary object and the theme the secondary object (Haspelmath 2005:2, Malchukov, Haspelmath and Comrie 2007:4, Dryer 2007b:256).

In Lelepa, there are three known ditransitive verbs: tua 'give', rki 'tell' and paoseki 'ask'. Ditransitives are similar to other verbs in that their objects can be expressed by NPs or
pronominal clitics. In (86), the object arguments of tua 'give' are realised with NPs. The primary object NP (in bold) is the recipient and is realised with the personal pronoun konou '1SG' while the secondary object (underlined) is the theme and is realised with the NP memis kiki 'the small knife':

| Pra=tua | konou \quad memis | kiki. | |
| :--- | :--- | :--- | :--- |
| 2SG.S $=$ give | 1SG | knife | small |
| 'Give me the small knife.' | | | |
| [elicited] | | | |

In (87), tua occurs twice. The primary object is realised with =gam '1PL.EXCL.OBJ' in both occurrences, while the secondary objects are encoded with the NPs loli 'lollies' and swingam 'chewing-gum':

```
(87) Kane soldie ur=panei, ur=tua=gam loli,
but soldier 3pL.S=come 3pL.S=give=1PL.EXCL.OBJ lolly
ur=tua=gam swingam.
3PL.S=give=1PL.EXCL.OBJ chewing-gum
'But the soldiers came, they gave us lollies, they gave us chewing-gum.'
```

The primary object can also be realised by an NP while the secondary object is realised by an enclitic attaching to that NP, as in (88):
(88) Neika na ku=tua Tomseni=s, nae $e=s o r=i a \quad$ paki Tafmanu. fish REL 2SG.S=give p.name=3SG.OBJ 3SG 3SG.S=sell=3SG.OBJ to p.name 'As for the fish that you gave to Thompson, he sold it to Tafmanu.' [elicited]

It is also possible for both objects to be realised by enclitics, as in (89) and (90):
$\mathrm{A}=$ ga malua tua $=\mathrm{ko}=\mathrm{s}$
1SG.S=IRR later give=2SG.OBJ=3SG.OBJ
'I will give it to you later.'
[elicited]

1SG.S=CERT give=3sG.OBJ=3SG.OBJ while 3SG.S=CERT carry=3SG.OBJ GO
'I gave it to him and he carried it away.' [elicited]

Ditransitives form the same morphophonological subclasses as transitives and ambitransitives, with $k i$-ending and non $k i$-ending verbs: $r k i i^{\text {'tell' }}$ and paoseki 'ask' are $k i$-ending, while tua is the only non ki-ending verb. In (90), tua takes the enclitic $=e$ ' 3 SG.OBJ', while in (91) $r k i$ takes an enclitic from the other set of object enclitics to encode its primary object with the same person and number values:
(91) $A=r k i=n i a=s$.

3SG.S=tell=3SG.OBJ=3SG.OBJ
'I told it to him.'
[elicited]

In (92), rki has its primary object realised with the enclitic $=r a$ ' 3 PL.OBj' and its secondary object with the NP naparea nae 'his dream':

| E=to \quad rki=ra | naparea | nae. |
| :--- | :--- | :--- | :--- |
| 3SG.S=IPFV \quad tell=3SG.OBJ | dream | 3sG.POSS |
| 'He was telling them about his dream.' | | |

Note that the realisation of the secondary object of $r k i$ with an NP as in (92) is fairly rare in the textual data. In most occurrences of $r k i$, the secondary object is realised with $=s$, as in (93):
(93) $\mathrm{E}=\mathrm{rki}$ masta $=\mathrm{n}$ LASMETI=s.

3sG.S=tell boss=POSS:NH p.name=3SG.OBJ
'He told LA SMET's boss about it.'

Semantically, both rki and paoseki are verbs of speech, and can be followed by a subordinate clause which denotes the contents of reported speech. Such subordinate clauses are introduced by the complementiser lag (see 12.4.1.1). When lag follows the secondary object of these verbs, it acts as a quotative introducing direct or indirect reported speech. In such constructions, the secondary object is encoded with $=s$ ' $3 \mathrm{sG} . \mathrm{OBJ}$ ' and indexes the reported speech occurring in the subordinate clause (see 12.4.3.1). This is seen in (94):

| Go | Mista | Robert | $\mathrm{e}=\mathrm{rki}=$ nia=s | lag, |
| :--- | :--- | :--- | :--- | :--- |
| and | mister | p.name | 3sG. $\mathrm{S}=$ tell=3SG.OBJ=3sG.OBJ | COMP |

"Konou $a=$ tae \quad slae $=m u$."
1SG 1SG.S=know help=2PL
'And Mister Robert told him, "I can help you.""

Lag can also introduce indirect reported speech, as in (95):

| Nmalogo | malogotapla, |
| :--- | :--- |
| darkness | be.dark like.this |

$\begin{array}{lllll}\mathrm{e}=\mathrm{rki}=\mathrm{ra}=\mathrm{s} & \text { lag } & \text { ur=sua } & \text { pa-ki } & \text { lau. } \\ \text { 3sG. }=\text { tell=3PL.OBJ=3SG.OBJ } & \text { COMP } & \text { 3PL.s=go.down } & \text { go-TR } & \text { seawards }\end{array}$
'It was night, and he told them to go down to the beach.'

Like rki, paoseki 'ask' can be the main verb of a matrix clause followed by a subordinate clause used to report direct speech as in (96), or indirect speech as in (97):
(96) Grunkiki nge e=paoseki-nia=s lag,
girl DEF 3sG.S=ask-3SG.OBJ=3SG.OBJ COMP
"ae, nag \quad ku=to \quad plaga nsfa?"
hey 2SG 2SG.S=IPFV look.for what
'The girl asked him, "Hey, what are you looking for?""

| E=paoseki-go=s | lagp̃a=fanei. |
| :--- | :--- |
| 3SG.S=ask-2SG.OBJ=3SG.OBJ COMP
 [elicited] | 2SG.S:IRR=come:IRR |

Also like rki'tell', paoseki does not need to introduce direct or reported speech, as seen in (98):

| $\mathrm{E}=$ mro | paoseki-nia=s, | mamei | nae | e=lag, |
| :--- | :--- | :--- | :--- | :--- |
| 3SG=AGAIN | ask-3SG.OBJ=3SG.OBJ | father | 3sG.POSS | 3SG.S=say |

"konou a=ti tae mau, e=pa-ki sei pa na-e?"

1SG 1SG.S=NEG know NEG2 3SG.S=go-TR where GO DEM-ADD
'She asked him again, and her father said, "I don't know, where did she go?""

8.7 Valency-changing operations

8.7.1 Valency increasing: transitivisation with -ki 'TR'

Valency increase by suffixation of $-k i$ ' TR ' is the main valency-changing operation in the language. It is a derivational process applying to intransitive verbs and deriving transitive verbs. It is very productive and applies to a large portion of intransitive verbs, classified as Class 1 intransitives (see 8.3.1 and table 8.2). This process does not, however, extend to intransitive verbs borrowed from Bislama or English. As seen in table 8.8, the derivation has two broad functions, and can be either applicative or causative. With applicatives, a new participant is
introduced as the object of the verb. On the other hand, with causative derivation, an intransitive subject becomes the object of a derived transitive. Causative derivations are much less common than applicative derivations.

| Applicative derivation | | Causative derivation | |
| :---: | :---: | :---: | :---: |
| lua 'vomit' fsa/psa 'speak:IRR/R' talofa 'shake hands' parea 'dream' palaka be afraid' | lua-ki 'vomit something' fsa-ki/psa-ki 'speak:IRR/R'
 (a language)
 talofa-ki
 'shake hands with'
 parea-ki 'dream about'
 palaka-ki be afraid of | lao 'stand' salea 'drift, float' $\tilde{p a k a}$ 'be wedged’ tanuma 'be stuck' matua 'be old' | lao-ki 'stand something up' salea-ki 'make something float, let something drift' paka-ki 'wedge'
 tanumáa-ki 'stuff’
 matua-ki 'cause to be mature' |

Table 8.8. Types of $-k i$ 'TR’ derivation

8.7.1.1 Applicative derivation

Most transitive derivations are applicative. In this process, an intransitive verb, most often active, is transitivised and takes an object which can have a range of semantic roles (e.g. theme, stimulus, experiencer and location). Applicative derivations tend to not introduce patients. Table 8.9 presents the object roles according to the semantic type of certain verbs. The semantic categories in the table only represent a limited number of semantic categories and some examples of corresponding verbs.

| Semantic type of
 intransitive verb | Intransitive root | Transitive form | Role of applied
 object |
| :--- | :--- | :--- | :--- |
| Bodily activity
 verbs | sura 'defecate' | sura-ki 'defecate s.t' | Product of the
 excretion |
| Speech verbs | tagi 'weep' | tag-ki 'sing a lament' | Product of the talking |
| Greetings verbs | talofa
 hands' 'shake | talofa-ki 'shake hands w.
 s.o.' | Recipient of the
 greetings |
| cognition/emotion
 verbs | maroa' 'think' | maroa-ki 'think about s.t' | Stimulus |
| Value verbs | wia 'be good' | wia-ki 'be good for' | Experiencer |
| Activity verbs | palse 'paddle' | palse-ki 'paddle s.t' | Theme |
| Motion verbs | pa'go' | pa-ki 'go to' | Location/goal |

Table 8.9. Applicative derivation and semantic role of the applied object

Verbs of bodily activity include sura 'defecate', me 'urinate', nãpo 'be smelly'. Some of these verbs show distinct transitive alternations subcategorising for objects referring to the location
of the activity (e.g. defecate on) on the one hand and the product of the activity (e.g. defecate something) on the other (see 3.3.4). When transitivised with $-k i$, the role of the applied object refers to the product of the activity. This is shown in (99) and (100):

A=sura-ki nra.
1SG.S=defecate-TR blood
'I shat blood.'
[elicited]

| Kano | $\mathrm{n}=\mathrm{e}=$ to, | $\mathrm{e}=$ napa | -ki |
| :--- | :--- | :--- | :--- |
| man | REL-3SG.S=stay | 3SG.S=smell-TR | sweat |

'As for this man, he smells of sweat.'
[elicited]

Verbs of speech include psa 'speak', tagi 'weep', regreg 'hum', and lega 'sing'. As an intransitive, $p s a$ is not attested with human subjects, but with non-humans such as the honeyeater bird as in (101) or inanimates such as paiga 'conch shell'. Both are regarded as sending calls to humans, the latter being traditionally used to call for the attention of villagers before a village meeting, while the former signals that dawn is near:

| (101)Sou $\mathrm{e}=$ to | psa, | trak | $\mathrm{e}=\mathrm{po}$ | msug=ra | pa. | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| honeyeater | 3SG.S=IPFV | speak | truck | 3SG.S=SEQ | carry=3PL.OBJ | GO |
| 'The honeyeater called, then the truck took them away.' | | | | | | |

In contrast, in (102) the applied object of psa-ki refers to the language spoken by the human subject:
(102) Te=fnau naara ur=to psa-ki nafsana naara, nafsana=n Erakor SBST=preach 3PL.POSS 3PL.S=IPFV speak-TR language 3PL.POSS language=POSS:NH p.name 'Their preachers were speaking their language, the language of Erakor.'

In (103), tagi 'weep' functions intransitively. In (104), the transitive form tag-ki 'cry-TR' takes an object which refers to the product of the crying, a traditional lament:

$$
\begin{array}{llllllll}
\mathrm{E}=\text { to } & \text { sal } & \text { wur lau } & \text { panmei } & \text { se, } \quad \mathrm{e}=\text { to } & \text { tagi panmei. } \tag{103}\\
\text { 3SG.S=IPFV drift pass } & \text { seawards come } & \text { while } 3 \text { 3SG. } S=I P F V & \text { weep } & \text { COME } \\
\text { 'She was drifting along the shore while she was weeping.' }
\end{array}
$$

(104)

| E=pitlaka | nae | natagina | na | ur=to | tag-ki-nia |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3SG.S=have | 3SG | lament | REL | 3SG.S=IPFV | |
| weep-TR-3SG.OBJ but | | | | | |

marka skei $n-e=g a \quad$ to $e=g a \quad$ to=tag-ki-nia.
old.man INDEF REL-3SG.S=IRR stay 3SG.S=IRR IPFV=weep-TR-3SG.OBJ
'There is a lament that they sing, but I didn't sing it, an old man here will sing it.'

Greetings verbs include talofa 'shake hands; get married'. This verb can be used intransitively with two meanings: in (105) it means 'shake hands', while in (106) it has the meaning 'get married'. Semantically, this verb expresses reciprocality. However, this is not overtly expressed with the intransitive form, which only has a single core argument:

| Go | ur=panmei | pa-ki | wara=s, |
| :--- | :--- | :--- | :--- |
| and | 3PL.s=come | go-TR | here=PROX |

| Dokie, | Mantae, | ur=to | talof | panmei. |
| :--- | :--- | :--- | :--- | :--- |
| p.name | p.name | 3PL.S=IPFV | shake.hands | COME |

'And they came here, as for Dokie and Mantae, they are shaking hands (coming towards speaker).'

Ar=talof \quad\begin{tabular}{l}
namba

\quad

seventin

\quad

tsanuari
\end{tabular}$\quad 1955$

When transitivised, talofa can express both meanings but its reciprocality is overtly marked, as the subject and object are co-referential. In (107), both the subject and the object of talofaki 'get married' share the same referent, that is, the couple that is about to be married by the church elder Elda Masia:

| (107) | Elda
 elder | Masia
 p.name | $\begin{aligned} & \mathrm{e}=\mathrm{rki}=\mathrm{ra}=\mathrm{s} \\ & 3 \mathrm{sG} . \mathrm{S}=\text { tell }=3 \mathrm{PL} . \mathrm{OBJ}=3 \mathrm{SG} . \mathrm{OBJ} \end{aligned}$ | $\begin{aligned} & \text { lag } \\ & \text { COMP } \end{aligned}$ | $\begin{aligned} & \mathrm{ur}=\mathrm{ga} \\ & \text { 3PL.S=IRR } \end{aligned}$ | lao
 stand | tapla
 like.this | to, STAT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | ar=ga | | ofa-ki-ra. | | | | | |
| | 3DU.S= | IRR | .married-TR-3PL.OBJ | | | | | |
| | ${ }^{\text {'Elder }}$ | asia told | hem to stand up like this, they | ill get | married (to | ch | | |

When transitivised, cognition and emotion verbs take an object which has the role of stimulus. Cognition verbs which can be transitivised with $-k i$ include the intransitive verbs maroa 'think' and parea 'dream':
(108) Malange, e=pan pan pa,e=maroa-ki kano taare skei. then 3SG.S=go GO GO 3SG.S=think-TR man white INDEF 'At that time, it went on and on, he thought about a white man.'

Verbs of emotion include \tilde{p} alaka 'be afraid', maeto 'be angry' and muru 'laugh'. Like cognition verbs, the referent of the object is the stimulus of the emotion:
(109) A=p̃alaka-ki koria.

1SG.S=be.afraid-TR dog
'I am afraid of dogs.'
[elicited]
(110) $\mathrm{E}=$ maeto-ki-nia pan pan $\mathrm{e}=$ to se $\mathrm{e}=$ pa punu=ea. 3SG.S=be.angry-TR-3SG.OBJ GO GO GO 3sG.S=stay while 3sG.S=hit dead=3sG.OBJ 'He was angry at her for a while, then he killed her.'
(111) $\mathrm{E}=$ to muru-ki-nia se $\mathrm{e}=$ to faam taplange. 3SG.S=IPFV laugh-TR-3SG.OBJ while 3SG.S=IPFV eat like.this 'He was laughing at him while he was eating like this.'

Verbs of value include wia 'be good' and sa 'be bad'. As intransitives they encode a judgment on the value of the subject, and when transitivised they take an experiencer affected by the positive or negative value expressed by the verb.
$\begin{array}{llllll}\text { (112) } & \text { Mista } & \text { Murray } & \text { e=lopa=e } & \text { lag } & \text { a=llaapa }\end{array} \quad \begin{aligned} & \text { e=wia. } \\ & \text { mister } \\ & \text { p.name 3SG.S=see=3SG.OBJ } \\ & \text { 'Mr. Murray realised that Lelepa was good.' }\end{aligned}$ 'Mr. Murray realised that Lelepa was good.'
(113) Nsfa na a=pat=ia, e=go wia-ki-go mala skei what REL 1SG.S=make=3SG.OBJ 3SG.S=IRR be.good-TR-2SG.OBJ time INDEF 'What I did, it'll be good for you one day.'

In (114), wia is transitivised but functions as a complement-taking predicate, and in this case the object enclitic indexes the complement clause rather than an experiencer participant (see 12.4.1):

| A=pleplaa, | e=wia-ki-nia | lag | a=ga | fa-ki | ntas |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1SG.S=dirty | 3SG.S=be.good-TR-3SG.OBJ | COMP | 1SG.S=IRR | go:IRR-TR | sea |
| 'I am dirty, it's good that I go in the sea.' | | | | | |

Note that these verbs can be transitivised in a single verb construction as seen above, or as part of a serial verb construction as in (115). In this latter case, the verb of value functions as a manner verb modifying the main verb:

| (115) | Nlag \quad e=ti | pat | sa-ki-nia | mau. |
| :--- | :--- | :--- | :--- | :--- |
| wind | 3SG.S=NEG make | bad-TR-3SG.OBJ | NEG2 | |
| | 'The wind didn't destroy it.' | | | |

Pa 'go' is a verb of motion that can be transitivised with $-k i$. Underived, $p a$ expresses motion away from the deictic centre, and no destination is encoded, ${ }^{8}$ as seen in (116). In contrast, when transitivised with $-k i, p a$ takes an object denoting the destination of the motion. This is shown in (117):
(116) $\mathrm{E}=\mathrm{rri}$ e $\quad \mathrm{e}=\mathrm{pan}, \quad \mathrm{e}=$ kat \quad pa. 3SG.S=fly 3sG.S=go 3SG.S=CERT go 'He flew, he went, he went away.'
(117) $\mathrm{E}=$ kat mraki lwa=e, ar=kat pa-ki sum̃a pa. 3SG.S =CERT lead remove=3SG.OBJ 3DU.S=CERT go-TR house GO 'He took her away, they both went to the house.'

There a few activity verbs such as palse 'paddle' which take an object with the role of theme when transitivised, as in (118):
$\begin{array}{lllllll}\text { (118) } & \text { A=kat } & \text { seiki } & \text { rarua, } & \text { a=kat } & \text { palse-ki-nia } & \text { pa-ki } \\ \text { 1SG.S=CERT } & \text { push canoe } & \text { 1SG.S=CERT } & \text { naure. } \\ \text { 'I launched the canoe, I paddled it to the island.' }\end{array}$

In addition to the verbs in table 8.9, there are many verbs which can be transitivised and take an applied object but cannot be neatly classified in semantic fields. For example, pura 'be full' is a stative verb which takes an object referring to the content filling the subject:

[^37]```
(119) Oo, ur=panei tau,
oh 3PL.S=come stay
A=fate nae na e=pura-ki soldie.
LOC=p.name 3SG DEM 3sG.S=be.full-TR soldiers
'Oh, they came to stay, Efate was full of soldiers.'
```


### 8.7.1.2 Causative derivation

The other function of transitive derivation with $-k i$ is a causative one. In this process, the subject of an intransitive verb becomes the object of the corresponding derived transitive verb. The new predicate denotes a causative relationship between the subject and object participants, as the subject is the causer while the object is the undergoer. This function is much less common than the applicative function discussed above. In (120), the subject of the intransitive verb lao 'stand' is a house. It takes the oblique argument ntan 'ground' which denotes the location on which the house is standing:

(120)	U=pat=ia,	te=na,	nlakan		
3PL.S=make=3SG.OBJ	SBST=DEM	because	3sG.S=stand	$\quad$	ntan.
:---					
ground					
'They made it, with this					
one, because it stands on the ground.'					

In contrast, in (121) the derived transitive lao-ki 'stand-TR' takes a causer subject and an undergoer object, which refers to a house to be built:

(121)	Kane   but	$\begin{aligned} & \mathrm{te}=\mathrm{na}, \\ & \mathrm{SBST}=\mathrm{DEM} \end{aligned}$		$\begin{aligned} & \text { au-na } \\ & \text { want-3SG.OBJ } \end{aligned}$	$\begin{aligned} & \text { lag } \\ & \text { COMP } \end{aligned}$	$\begin{aligned} & \tilde{p} a=\text { suasua=s, } \\ & \text { 2SG.S:IRR=agree=3sG.OBJ } \end{aligned}$
	$\mathrm{a}=\mathrm{ga}$	tae	lao-ki	nasum̃a $=\mathrm{g}$	tija	
	1SG.S=IRR	able	stand-TR	house= POSS: H		
	'But with this	his one, I wa	ant you to	ee with it, and	will be	build the teacher's house.'

### 8.7.2 Valency re-arrangement operations

Valency re-arrangement is an additional minor function of - $k i i^{\text {'TR'. It does not involve valency }}$ increase, but is about manipulating the semantic roles of the participants and promoting participants to higher functions. It is much less productive than valency increase: it has a minor scope with a few Class 1 transitive verbs and its semantics are not predictable. When these verbs take $-k i$, an oblique participant is promoted to object. This is shown with the transitive verb nat 'throw (something)'. Unsuffixed, nat typically takes a patient (i.e. the target) with the role of goal, as seen in (122):

It is possible to add an oblique argument with the role of instrument to nat. In this case the instrument can be encoded with $=s^{\prime} 3 \mathrm{OBL}$ '
$\tilde{\text { Pa }}=$ ti nat=ia=s mau.
2SG.S:IRR=NEG throw.something=3sG.OBJ=3OBL NEG2
'Do not stone him with this.'
[elicited]

In (124), nat is suffixed with $-k i$ and the object has the role of the instrument of the throwing (i.e. the projectile) rather than the target, or goal:

| (124)Lasa nanuu <br> shell coconut | nae <br> 3SG.POSS | e=mro <br> 3SG.S=AGAIN | roa <br> fall | tapla, <br> like.this |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |
| e=wus=ia | tapla, |  |  |  |

e=mro nat-kinapurlasa nuwai nae, e=maora.
3SG.S=AGAIN throw.something-TR coconut.shell water 3SG.POSS 3SG.S=break
'His coconut shell fell down again like this, he got it, he threw his coconut shell again, it broke.'

In (125), an oblique is added and has the role of goal. That is, it the original goal seen in (122) is now demoted to oblique:
(125) $\mathrm{E}=$ nat-ki-nia=s.

3SG.S=throw-TR-3SG.OBJ $=3 \mathrm{OBL}$
'He threw it at him/it.'
[elicited]

Similarly, valency re-arrangement with the transitive verb legat 'sing' also promotes an oblique participant to object position. When not suffixed with -ki, legat takes an object which refers to the song that is sung. The object is the product of the singing, as seen in (126):
$\mathrm{E}=\mathrm{mro} \quad$ legat=ia taplange, fterki $\mathrm{e}=\mathrm{kat}$ panei pa-ki wara gara. 3sG.S=AGAIN sing=3SG.OBJ like.this wife 3SG.S=CERT come go-TR place be.dry 'He sang it again like this, the wife came onto dry land.'

In contrast, when suffixed with $-k i$, the recipient of the song is brought in as the object, as in (127). Note that legat has dropped its final /t/ due to final-consonant alternation (see 3.3.5). Also noteworthy is the fact that the root is reduplicated: ${ }^{9}$

(127)	Ur=slat=ia,	ur=kat mato	lega~lega-ki-nia pa.	
	3PL.S=carry=3sG.OBJ	3SG.S=CERT	IPFV	sing $\sim$ RED-TR-3SG.OBJ

In addition to promoting oblique participants to object position, there are cases in which the valency of the transitive verb suffixed with $-k i$ is not re-arranged, but the verb undergoes a semantic change. In (128), walof 'wave', takes an object with the role of addressee:
$\mathrm{E}=$ kat to walof konou.
3SG.S=CERT IPFV wave 1SG
'He was waving at me.'

```

However in (129), walof is suffixed with \(-k i\) and the object is still an addressee, but the semantics of the verb have now changed to 'wave to come':
\begin{tabular}{llll}
P̃a=walof-ki-nia & lag & e=ga & fanei. \\
2SG.S:IRR=wave-TR-3SG.OBJ & PURP & 3SG.S=IRR & come:IRR \\
'Wave at him to come so that he'll come.' & & \\
[elicited] & &
\end{tabular}

\subsection*{8.7.3 Reduplication as a valency changing operation}

Reduplication has several functions and applies to a number of word classes (see 3.4.5). With transitive verbs, reduplication can be both a relic de-transitivising and valency re-arrangement device. It is attested for a few verbs only and is not productive, and there is no way of predicting whether reduplication will be detransitivising or re-arranging. Some transitive verb roots and their reduplicated intransitives are given in table 8.10:

\footnotetext{
\({ }^{9}\) Reduplication (see 3.4.5) is a minor, non-productive process which has a number of different functions. For this reason, the function of reduplication in this example is not well understood.
}
\begin{tabular}{|ll|ll|}
\hline \multicolumn{2}{|c|}{ Transitive root } & \multicolumn{2}{c|}{\begin{tabular}{c}
Reduplicated \\
intransitive
\end{tabular}} \\
\hline sun & 'wear' & susu & 'be dressed' \\
sel & 'sew' & selsel & 'sew' \\
mraki & 'lead' & mramra & 'rule' \\
\hline
\end{tabular}

Table 8.10. De-transitivising reduplication

This process is shown with sun 'wear' and its reduplicated intransitive counterpart susu 'be dressed':
(130) Malange, slafea nge, tee-shirt tika, then before DEF tee-shirt not.be.there
\(\mathrm{e}=\mathrm{pi}\) nlakan ten Amerika kenem ur=to sun=ia.
3SG.S=COPbecause SBST.POSS:NH p.name 1PL.EXCL 1PL.EXCL.S=IPFV wear=3SG.OBJ 'Then, before, there were no tee-shirts, it is because of the Americans that we are wearing them.'
\begin{tabular}{llllll}
Ar=kat & susu & taafa, & ar=kat & mato & warampa, \\
3DU.S=CERT & be.dressed & inlandwards & 3DU.S=CERT & stay.long & there.forward
\end{tabular}
ar=ga fa-ki nasuma tap. 3DU.S=IRR go-TR house be.taboo 'They got dressed up there, they stay there, and they will go to the church.'

Reduplication can also re-arrange valency, as illustrated with the verbs msug 'transport' and its reduplicated counterpart msumsu 'load'. Both verbs are transitive, so reduplication does not increase or decrease their valency. The transitive msug 'transport' denotes the transportation of an object with a transporting device (e.g. a canoe, a truck), while its reduplicated counterpart msumsu 'load' expresses the loading of an object used as a transportation device. Thus, with msug reduplication promotes an oblique participant to object position. In (132) and (133), the object of msug is respectively encoded with =ia '3sG.OBJ' and koria 'dog' and refers to the transported item:
(132)
\(\mathrm{Ku}=\mathrm{msug}=\mathrm{ia} \quad\) rarua.
2SG.S=transport=3SG.OBJ canoe
'You carried him on a canoe.'
[elicited]
\begin{tabular}{lccll}
Mala & a=tumalua & naure, & \(a=\) msug & koria. \\
when \(\quad\) 1SG.S=leave & island & 1SG.s=carry & dog \\
'When I leave the Island, I carry dogs.' & &
\end{tabular}

In contrast, in (134) the object of the reduplicated msumsu refers to the transportation device (a canoe) loaded before transport:
\begin{tabular}{|c|c|c|c|c|}
\hline (134) & \[
\begin{aligned}
& \mathrm{ku}=\mathrm{kat} \\
& \text { 2sG.S=CERT }
\end{aligned}
\] & msumsu load & rarua canoe & \[
\begin{aligned}
& \text { nag, } \\
& \text { 2SG.POSS }
\end{aligned}
\] \\
\hline & ku=msau-na & lag & fa-ki & \\
\hline & 2SG.S=want-3s & G.OBJ CO & 2SG & \(=\mathrm{GO}:\) IRR-TR \\
\hline & 'You loaded yo & canoe, & u wan & back to the \\
\hline
\end{tabular}

\subsection*{8.7.4 Fixed transitivity alternations}

This section discusses formally fixed pairs of verbs with an intransitive and a transitive member (see table 8.11). The behaviour of these pairs is similar and probably related to those Class 1 transitive verbs which participate in final-consonant alternation (see 3.3.5). However, these verbs differ from transitive verbs partaking in final-consonant alternation in that they form pairs with an intransitive and a transitive root. Members of each pair are etymologically related but not derivable from each other following synchronic morphological processes. Yet it is clear that these verbs share a single etymon, as they only differ on whether or not they have a final consonant. In most cases, the intransitive forms have lost their final consonant while the transitive ones have retained it. An exception to this is the last pair of the table, fef/fe 'read/read s.t.', which shows the opposite pattern, as the intransitive form retained the final consonant while the transitive one lost it:
\begin{tabular}{|ll|ll|}
\hline \multicolumn{2}{|c|}{ Intransitive roots } & \multicolumn{2}{c|}{ Transitive roots } \\
\hline rusu & 'shift' & rusug & 'shift s.t' \\
tagi & 'weep' & tags & 'cry for s.t' \\
tao & 'bake (laplap)' & taon & 'bake s.t' \\
pukee & 'unwrap (laplap)' & pukes & 'unwrap s.t' \\
fef & 'read' & fe & 'read s.t.' \\
\hline
\end{tabular}

Table 8.11. Fixed transitivity alternations

Comparative research shows that similar phenomena are attested in other Oceanic languages. See, for example, Lynch, Ross and Crowley (2002:44-45) who explain that original final consonants in many Oceanic languages have been reanalysed as part of the initial consonant of
transitive suffixes in some modern languages. These languages have developed series of allomorphs of their transitive suffix which differ on the shape of their initial consonant, such as the Fijian suffixes \(-\partial a\), -ta, -ka, -va, -na. As seen in (135), Proto Oceanic *tagis 'weep' is consonant-final while Fijian tagi 'weep' has lost the final consonant, and the Fijian transitive suffix is consonant initial, with a consonant reflecting Proto Oceanic *s:
(135) Proto Oceanic

Fijian
\begin{tabular}{lll}
\begin{tabular}{l}
*tanis \\
weep
\end{tabular} & \begin{tabular}{l}
*tanis-i-a \\
weep-TR-3SG.OBJ
\end{tabular} & \begin{tabular}{l}
*tanis-aki-a \\
weep-TR-3SG.OBJ
\end{tabular} \\
taŋi & tani-ða & tani-ðaka \\
weep & \begin{tabular}{l}
weep-TR-3SG.OBJ \\
weep
\end{tabular} & \begin{tabular}{l}
weep-TR-3SG.OBJ
\end{tabular} \\
'cry for' & 'cry because of
\end{tabular}

In contrast to Fijian, Lelepa has taken a different path: the final consonant of certain transitive verbs such as those in table 8.11 was not analysed as part of a transitive suffix but remained the final consonant of these verbs, while the language developed a series of intransitive counterparts by dropping the final consonant of the transitive forms. This is shown in (136) with the pair tagi 'weep'/tags 'cry for'. In (136)a the intransitive tag has lost final \(s\) while in (136)a and \(b\) it is retained. These examples also show that this phenomenon is different from that of final-consonant loss (see 3.3.5), since final \(s\) occurs both in word-final and wordinternal position, as seen in (136)b and c, while in the process of final-consonant loss the final consonant is only retained word-internally:
\begin{tabular}{lllll}
a. \(\quad\) E=to kai, kite \(\quad \mathrm{e}=\) to & tagi. \\
& 3SG.S =IPFV cry or 3 SG.S=IPFV & weep \\
& 'She was crying, or she was weeping.'
\end{tabular}
b. Kano neto, e=to tags fterki
nae.
3SG.POSS
man this 3SG.S=IPFV cry.for wife
wife
'As for this man, he's crying for his wife.' [elicited]
c. \(\quad \mathrm{Ur}=\mathrm{kut}\)
tags \(=\) ko
3PL.S=CERT cry.for-2SG.OBJ
'They cry for you.' [elicited]

The pair tao 'bake'/taon 'bake s.t.' is shown in the same environments as tagi 'weep' and tags 'cry.for'. In (137), the intransitive tao 'bake' has lost final \(n\) while its transitive counterpart taon has retained it word-finally as in (138) and word-internally as in (139):
\begin{tabular}{llll}
(137) & E=kat & to & tao. \\
& 3SG.S=CERT IPFV & bake
\end{tabular}
(138) Ta=ga fa lop̃a=e

1DU.INCL.S=IRR go:IRR see=3SG.OBJ
takanei ur=kut pea taon kapua=n gotfan tu. how 3pl.S=CERT first bake laplap=POSS:NH afternoon STAT 'Let's go see how they baked this afternoon's laplap.'
\begin{tabular}{llllll}
(139) & \begin{tabular}{l}
Kapua \(=\mathrm{n}\)
\end{tabular} & gotfan, & ku=laka=e & ur=kut & taon=ia \\
laplap=poss:NH & afternoon & 2SG.S \(=\) see \(=3 S G . O B J\) & 3PL.S=CERT & bake=3SG.OBJ & STAT \\
'As for this afternoon's laplap, you see that they baked it.' &
\end{tabular}

Another example of this process is shown with the pair puke 'unwrap (laplap)'/pukes 'unwrap s.t.' in (140) and (141). The intransitive puke in (140) has lost its final consonant while its transitive counterpart pukes has retained it as shown in (141):
(140) Gotfan nina, ur=puke.
afternoon then 3PL.S=unwrap.laplap
'Then in the afternoon, they unwrapped the laplap.'
\(\begin{array}{lll}\text { (141) } \begin{array}{ll}\text { Ur=ga } & \text { lag } \\ \text { 3pL.S=IRR } & \text { MAYBE }\end{array} & \begin{array}{l}\text { pukes=ia. } \\ \text { unwrap=3SG.OBJ }\end{array} \\ \text { 'Maybe they will unwrap it.' }\end{array}\)

\section*{Chapter 9 - The Verb Complex}

\subsection*{9.1 Introduction}

The verb complex is the label used for a discontinuous structure incorporating the verb and accompanying grammatical elements, as well as the object and oblique. \({ }^{1}\) Oceanic languages typically have verb phrases with preposed morphemes (Lynch, Ross and Crowley 2002:45), and this has been shown in individual languages such as South Efate (Thieberger 2006:243), Abma (Schneider 2010:156), Kokota (Palmer 2009:272), Lewo (Early 1994:236) and Tamambo (Jauncey 2011:261), amongst others. This is also true of Lelepa in which the burden of complexity of the verb complex is located pre-verbally, with modal, aspectual and negative markers, numerals, auxiliaries and the reflexive/reciprocal particle all occurring between the subject proclitic and the verb root (see 9.3). Post-verbal elements (see 9.4) include object and oblique arguments, morphemes modifying the verb (post-verbs and adverbs), the perfect particle, and directional and aspectual particles marking the right boundary of this structure. The verb complex is regarded as discontinuous because the benefactive phrase, an adjunct which introduces a participant with the role of beneficiary, separates the main verb root from preposed morphemes (see 7.5.3). \({ }^{2}\)

\subsection*{9.2 The verb complex: structure and unity}

\subsection*{9.2.1 Defining the verb complex}

The term 'verb complex' has been in use for some time in linguistic descriptions from a number of language families. For an early reference see Hockett (1948) for a use of this label in the description of the Algonquian language Potawatomi, in which the verb complex is made up of a number of pre-verbal elements which can be separated by 'inserted phrases' not part of the verb complex. The term is also used in descriptions of Australian languages. See Dixon (1972, 1977a) for Dyirbal and Yidij, and more recently Evans (1995) for Kayardild. In those

\footnotetext{
\({ }^{1}\) The term 'verb complex' in this grammar does not equate with the notion of VP developed in transformational grammar.
\({ }_{2}\) A reviewer has proposed to regard the benefactive construction as a prepositional verb construction. This analysis is not chosen in the case of the benefactive because it does not behave like other prepositional verbs, in particular it is not morphologically analysable as a preposition + object suffix in contrast to prepositional verbs in the language (see 4.8.2)
}
three languages, the verb complex is formed by several verbal morphemes all agreeing in case. In the description of Oceanic languages, this term has been used fairly commonly (Lichtenberk 1983, Thieberger 2006, Næss and Boerger 2008, Palmer 2009), and so has been the term 'verb phrase' (Crowley 1982, Lynch 2000, Hyslop 2001, François 2005, Jauncey 2011, amongst others). However, justifications for such constituents are not always given, which leaves some uncertainty as to whether the 'verb complex' or 'verb phrase' is a syntactic constituent in some languages. In Lelepa, the verb complex is delimited to the left by the subject proclitic, and to the right by the aspectual and directional particles which also delimit the right-edge of the basic clause (sees 7.1.2, 10.6). The verb complex does not include the subject NP occurring in the basic clause, but does include the object and oblique arguments, whether they occur as a bound person marker (suffix or enclitic) or an NP. It follows a template (see fig. 9.1) which means that there is no freedom as to how the elements of this template are organised: most are optional, but their order is fixed. Well-known constituency tests such as movement and substitution are not applicable to define the verb complex. \({ }^{3}\) However, it can be established as a discrete structural unit because (i) its elements occur in a fixed order and (ii) nothing can intervene between them, apart from the benefactive phrase. The occurrence of the benefactive phrase in a fixed position is the reason why the verb complex is regarded as discontinuous, which is also the case of South Efate (Thieberger 2006:243). The discontinuity of this constituent is also the reason why the term 'verb complex' is chosen over the term 'verb phrase', which traditionally include the verb and its object and excludes adjunct constituents. To the left, the verb complex (underlined) in (1) is immediately preceded by a subject noun phrase which is preceded by a left-dislocated NP:
(1) Te=rua nge, nagi-ra \(\quad\) e=pi laua naaram ofa.

SBST=two DEF name-3PL.POSS 3SG.S=COP cardinal.fish and heron 'As for these two, their names were Cardinal Fish and Heron.'

Alternatively, the verb complex can be preceded by a sentential adverb, as in (2):
(2) Malmauna tu=to til "Lelepa", now 1PL.INCL.S=IPFV say p.name 'Nowadays we say "Lelepa,""

\footnotetext{
\({ }^{3}\) This may explain why the constituent status of the 'verb phrase' or 'verb complex' may be difficult to establish in other Oceanic languages.
}

To the right, the verb complex can be followed by adjuncts, which can be prepositional phrases as in (3), or sentential adverbs as in (4):
\(\begin{array}{lllll}\text { (3) } & \begin{array}{l}\text { Na-mu-na }=\text { put }=\text { ia }\end{array} & \text { pa } & \text { raki } & \text { Artok. } \\ \begin{array}{ll}\text { N.SPEC-go.in-NMLZ }\end{array} & \text { 3sG.S=pull=3sG.OBJ } & \text { GO } & \text { towards } & \text { p.name } \\ \text { 'The low tide's current pulls it towards Artok.' } & & & \end{array}\)
(4) \(\mathrm{E}=\mathrm{pi}\) naure kiki nae, \(\mathrm{e}=\mathrm{to}=\mathrm{s}\) to sral.

3SG \(=\) COP island small 3SG.POSS 3SG.S=stay=3OBL STAT often
'It was his own little island, he stayed there often.'

\subsection*{9.2.2 Structural overview}

The structure of the verb complex is given in fig. 9.1. Obligatory elements are the subject proclitic \((\mathrm{SUBJ}=)\) and the verb \((\mathrm{V})\) in intransitive clauses, and the subject proclitic (SUBJ=), the verb (\(V\)) and the object (OBJ) in transitive clauses. ' V *' indicates that verb roots can be serialised. Order in the verb complex is fixed for all pre-verbal elements and for most postverbal ones. \({ }^{4}\)

Fig. 9.1 The verb complex
\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \left.\begin{array}{l}
\text { SUBJ }=(\mathrm{IRR})(\mathrm{AM})(\mathrm{NUM})(\mathrm{NEG})(\mathrm{AUX})(\mathrm{ADV})(\mathrm{RR}) \\
\mathrm{V}^{*} \\
\left\{\left(\mathrm{PV}^{*}\right)(\mathrm{PRF})(\mathrm{ADV})(\mathrm{OBL})(\mathrm{PART})\right. \\
\left(\mathrm{PV}^{*}\right)(\mathrm{PRF})(\mathrm{ADV}) \mathrm{OBJ}(\mathrm{OBL})(\mathrm{PART})
\end{array}\right\}
\end{aligned}
\]} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
- \(\mathbf{S U B J}=\) The subject proclitic is obligatory and forms a phonological word with whatever follows (see 3.3.1, 7.4.1.1).
- (IRR) The particle \(g a\) 'IRR' marks irrealis mood (see 9.3.2, 11.2.1.2).
- (AM) Pre-verbal aspect and modality particles occur in this slot. Some aspect particles co-occur, but the modality particles are mutually exclusive (see 9.3.3, 11.2.3, 11.3.1).
- (NUM) This slot is mostly filled with the numeral rua 'two' which must occur with a dual subject proclitic (see 9.3.4).

\footnotetext{
\({ }^{4}\) The exception to this is the perfect marker (PRF) sua, which has the ability to occur either before or after the object (see 8.4.2, 10.5).
}
- (NEG) \(t{ }^{\text {' }}\) 'NEG' is the first part of the bipartite negation particle (ti...mauu). The second particle, mau 'NEG2', occurs sentence-finally and is not an element of the verb complex (see 7.7.1).
- (AUX) Auxiliary verbs mark aspect, modality and motion (see 9.3.6, 10.3.3).
- (ADV) Pre-verbal adverbs express manner, temporality, value and degree (see 4.7.1.1, 4.7.1.3).
- (RR) the particle tuma- 'RR' encodes both reflexivity and reciprocality (see 9.3.8)

After the verb root(s) (\(\mathrm{V}^{*}\)), the structure of verb complex differs according to whether the clause is intransitive or transitive.
- (PV) post-verbs follow the verb root(s) to form a construction resembling a serial verb construction, but since post-verbs are not verbs, their combination with a verb is not regarded as a serial verb construction (see 9.4.1 and 10.5).
- (PRF) The perfect particle sua contributes to the marking of aspect in the verb complex, along with the irrealis and AM markers located pre-verbally. The perfect marker can occur either before or after the object (see 9.4.2, 11.3.3).
- OBJ Objects are obligatory in transitive clauses and realised as an NP or as a bound pronominal. Ditransitive clauses require two contiguous objects.
- (OBL) Like objects, obliques are realised as NPs or bound pronominals. In intransitive clauses they follow the adverb, and in transitive clauses they follow the object.
- (ADV) Post-verbal adverbs have scope over the verb complex and express manner, value and temporality (see 4.7.1.2 and 4.7.1.3).
- (PART) These clause-final particles express aspect and direction and mark the right boundary of the verb complex and of the basic clause (see 7.1.2, 10.6).

The simplest realisation of a verb complex is equivalent to the simplest basic clause: the only obligatory elements of a clause and of a verb complex are the subject proclitic and the verb, as shown in (5) by the first underlined verb complex. The second one is more complex as it contains two clause-final particles:
\[
\begin{array}{llccc}
\frac{E=\text { mato }}{}, & \text { ar=to } & \text { to } & \text { pan } & \text { pa... } \\
\begin{array}{l}
\text { 3SG.S=stay }
\end{array} & \text { 3DU.S=stay stay } & \text { GO } & \text { GO } \\
\text { 'He stayed, they both stayed on and on...' }
\end{array}
\]

The slot of VERB \(\left(\mathrm{V}^{*}\right)\) can be filled by a single verb, as seen in (6), or by two verbs forming a serial verb construction as in (7):
\begin{tabular}{lllll}
Ae, & pa \(=\mathrm{ti}\) & paam=ia & mau, & e=kat \\
hey 2 2SG.S:IRR=NEG eat=3SG.OBJ & NEG2 & 3sG.S=CERT & smell \\
'Hey, don't eat it, it is rotten.' & & &
\end{tabular}

It is rare for three verbs to be serialised. Example (8) shows three serialised verbs: rog 'feel', tortor 'sweat', and kil 'dig' (see chapter 9):
(8) Ee, e=ga lag wia, no 3SG.S=IRR MAYBE be.good
kane tu=lag rog tortor kil=ia.
but 1PL.INCL.S=MAYBE feel sweat dig=3sG.OBJ
'No, it may be fine, but maybe we dug it in a hurry.'

\subsection*{9.3 Pre-verbal elements}

\subsection*{9.3.1 Subject proclitic}

The subject proclitic (see 7.4.1.1) is, along with the verb root, the only obligatory element of the verb complex. As seen in fig. 9.1, it is the first morpheme of the verb complex and attaches directly to the verb root, or to any other element that can occur between the verb root and the subject proclitic (see 3.3.1). This is shown in (9) to (13), with subject proclitics and verb roots in bold letters. In (9) the subject proclitic attaches directly to the verb, while it attaches to a modality marker in (10), to the negator \(t i\) ' \(N E G\) ' in (11), to an auxiliary verb in (12), and to a benefactive phrase in (13):
(9) \(\mathrm{E}=\) sok!

3sG.S=jump
'It jumped!'
(10) ...go ur=kat tae and 3PL.S=CERT can '... and they can paddle it.'
palse-ki-nia
paddle-TR-3SG.OBJ
(11) \(\tilde{\mathrm{P}} \mathrm{a}=\mathrm{ti}\) to taakae mau!
2SG.S:IRR=NEG IPFV dance NEG2
'Stop dancing!'
(12) \(\quad \mathrm{Ku}=\) tae \(\quad\) slae \(=\) gam?

2SG.S=can help=1PL.EXCL.OBJ
'Can you help us?'
(13) \(\mathrm{E}=\) magnou pat paspot agnou. 3SG.S=1SG.BEN make passport 1SG.POSS
'He organised my passport for me.'

\subsection*{9.3.2 Irrealis particle}

The irrealis particle ga hosts the subject proclitic to give the clause it occurs in an irrealis reading (see 11.2.1.2). It combines with any subject proclitic except for \(k \cdot u=\) ' \(2 \mathrm{sG} . \mathrm{s}\) ', since irrealis marking of a clause with a second person singular subject is done with the suppletive \(\tilde{p} a=\) ‘2SG.S:IRR' (see 7.4.1.1). Combinations of subject proclitics with ga are shown in (14) to (16):
(14) Konou \(a=\) maroa-ki-nia lag \(a=\) ga fa 1SG 1SG.s=think-TR-3SG.OBJ COMP 1SG.S=IRR go:IRR
'I thought I would go.'
(15) A=msau-na a=ga mro til=ia stori kiki skei.

1SG.S=want-3SG.OBJ 1SG.S=IRR AGAIN tell=3SG.OBJ story be.small INDEF
'I want to tell a short story again.'
(16)
\begin{tabular}{lllllllll}
A=kat & msau-na & lag & a=ga & ti & to & sum̃a & to & mau. \\
1SG.S=CERT & want-3SG.OBJ & COMP & 1SG.S=IRR & NEG & stay & house & STAT & NEG2 \\
'I didn't want to stay at home.' & & & & & &
\end{tabular}

\subsection*{9.3.3 Aspect and modality particles}

Pre-verbal aspect and modality particles immediately follow the irrealis particle if it is present, or else they host the subject proclitic. Their occurrence is completely optional as they occur whenever they are deemed semantically necessary by the speaker. There are three aspect and two modality particles (see table 9.1, 11.2.3, 11.3.1). Note that Aspect and modality are not
exclusively marked in this slot: the distinction between realis/irrealis mood is done by subject proclitics and \(g a\) 'IRR', and the perfect is marked post-verbally with sua 'PRF' (see 11.3.3).
\begin{tabular}{|ll|ll|}
\hline \multicolumn{2}{|c|}{ Aspect } & \multicolumn{2}{c|}{ Modality } \\
\hline mro & 'AGAIN' & Kat & 'CERT' \\
po & 'SEQ' \\
plo & 'STILL' & lag & 'MAYBE' \\
\hline
\end{tabular}

Table 9.1. Aspect and modality particles

Aspect and modality particles precede numerals, as seen in (17) to (20):
(17) \(\mathrm{Ar}=\) kat rua faam.

3DU.S=CERT two eat:F
'They both ate.'
[elicited]
(18) \(\mathrm{Ar}=\) po rua faam.

3DU.S=SEQ two eat:F
'And then they both ate.'
[elicited]
(19) \(\mathrm{Ar}=\mathrm{mro}\) rua faam.

3DU.S=AGAIN two eat:F
'They both ate again.'
[elicited]
(20) Ar=lag rua panmei.

3DU.S=MAYBE two come
'Maybe they both came.'
[elicited]

Certain aspect and modality particles co-occur, as seen in (21) and (22). There are no examples of all particles co-occurring, as expected from their meanings (see 11.2.1, 11.3.1). Two particles can co-occur at most, with po before mro and plo, and mro occurring before lag:
(21) Okay, ur=to warange, ur=po mro sfa raki Tahiti.
okay 1PL.INCL.S=stay there 1PL.INCL.S=SEQ AGAIN run towards p.name
'Okay, we stayed there, and then we sailed again towards Tahiti.'
(22) \(\mathrm{E}=\mathrm{mro}\) lag faam.

3SG.S=AGAIN MAYBE eat:F
'Maybe he ate again'.
[elicited]

In (23), kat occurs with the verb lag 'say'. This verb is homophonous with the particle lag, but they shouldn't be confused with each other. Lag 'say' functions as a verb in complement-taking predicate constructions, \({ }^{5}\) as in (23):
(23) So... \(e=k a t\) lag \(e=p i \quad\) natrausina mau wei nge.

So 3SG.S=CERT say 3SG.S=COP story all TOP DEF
'So... it means that it is the whole story.'

\subsection*{9.3.4 Numeral}

Marking number of the subject is done with a subject proclitic, but it can also be done with a numeral occurring pre-verbally, as in (24). In the textual data, only the numeral rua 'two' occurs in this slot, but elicitation shows that tolu 'three' can also occur, as in (25):
'Ae, ta=ga rua pa-ki
hey suma
1DU.INCL.S=IRR two go-TR
'Hey, shall we (two) go to the house?'
(25)
Ur=ga tolu panmei.
3PL.S=IRR three come
'They (three) will come.'
[elicited]

Example (26) shows that the numeral slot is located between the aspect and negative particles' slots:
Ar=mro \(\quad\) rua
ti panei \(\quad\) mau..

It is noteworthy that the language allows for the co-occurrence of a dual subject proclitic and a numeral meaning 'two' to encode a dual subject, as it appears this makes the marking of number redundant. A possible functional explanation for this redundancy is that it emphasises the number of the subject. For instance, in (27) the speaker is the main character of a traditional story who tells his father that he went to the bush, found a girl and came back with her. The finding of the girl is an unexpected event for the speaker and his father, so the

\footnotetext{
\({ }^{5}\) In addition, it has grammaticalised and occurs as a complementiser (see 11.4.2).
}
speaker emphasises the fact that he came to his father with the girl by marking the number of the subject twice:
\[
\begin{array}{lllllll}
\text { (27) } & \begin{array}{llll}
\text { A=pan } & \text { se, } & \text { grunkiki } & \text { skei } \\
\text { 1sG.S=go } & \text { while } & \text { girl } & \text { INDEF }
\end{array} & \text { 3sG.S=stay } & \text { ware-n } & \text { there.sideways-DIST } & \text { to, } \\
\text { STAT }
\end{array}
\]

Redundant number marking is also common in propositions or commands, when a speaker asks the hearer that they do something together. Emphasis is put on the sharing of the command by marking the number of the subject twice, with a subject proclitic and a numeral, so that the hearer may be more inclined to proceed. This is seen in (24) above, and in (28):

> (28) Ale, narei skei nae e=to se e=lag,
> then people INDEF 3sG.POSS 3sG.S=stay while 3sG.S=say
> "ae, kinta ta=ga rua pan."
> hey 1PL.INCL 1DU.INCL.S=IRR two GO
> 'Then, one of his people said, "hey, let the two of us go.""

\subsection*{9.3.5 Negation particle}

As shown in 6.7.1, clauses are negated with the bipartite particle ti...man 'NEG...NEG2'. Ti occurs in a fixed slot, between the numeral and the auxiliary verb (fig. 9.1). While (26) showed that \(t i\) follows the numeral, in (29) ti occurs between the modality particle kat and the verb. In (30) it occurs between the aspect marker mro and the auxiliary verb tae 'can':
\begin{tabular}{llll}
E=kat & ti & kasua & mau. \\
3sG.S=CERT & NEG & be.strong & NEG2 \\
'She wasn't strong.' & &
\end{tabular}
\begin{tabular}{llllllll}
...ur=mro ti tae laka mala kasua tapla & nge & mau. \\
3pL.S=AGAIN NEG can see time strong like.this & DEF & NEG2
\end{tabular}
'... they can't be confronted with such hard times again.'

\subsection*{9.3.6 Auxiliaries}

Verbs occurring pre-verbally, that is, before the V slot, are analysed as auxiliaries. They are separated from the main verb by the benefactive phrase, which allows an auxiliary verb + main verb construction to be distinguished from serial verb constructions (SVCs). In SVCs, several
verb stems co-occur contiguously, whereas in an auxiliary construction, the benefactive phrase separates the auxiliary from the main verb. Evidence for the auxiliary position is given in (31) and (32). In these examples, a benefactive phrase occurs between the auxiliary verb and the main verb. In (31), pa 'go' is an auxiliary followed by the benefactive phrase mag Puas 'BEN Puas', while lao 'plant' is the main verb:
(31) Nina, ur=pa mag puasa lao.
then 3PL.S=go BEN peregrine.falcon plant
'Then, they went to plant for the peregrine falcon.'

In (32) the benefactive pronoun maginta '1PL.INC:BEN' occurs between the auxiliary verb msau 'want' and the main verb til 'tell':
\begin{tabular}{lllll}
(32) & A=mro & msau \(\quad\) maginta & til & natusina. \\
& 1SG.S=AGAIN want & 1PL.EXCL.BEN & tell & story
\end{tabular}

In addition to syntactic position, some auxiliaries may be recognised on semantic grounds as their meaning is altered in comparison to when they occur as main verbs. For instance, compare the examples below showing pea 'be first; first' functioning as a main verb in (33) and as an auxiliary in (34). In (33), pea functions as the main verb, with the meaning 'be first, precede':
\begin{tabular}{lllll}
(33) & \begin{tabular}{l}
Masogo naaram
\end{tabular}\(\quad\) fterki & nae & ar=pea, \\
p.name and & wife & 3sG.POSS & 3DU.S=be.first
\end{tabular}

In (34), pea occurs with the verb lotu 'worship'. A semantic difference is apparent between the main verb and the auxiliary forms: the main verb in (33) denotes that the subject is first, while the auxiliary in (34) means that the event denoted by the clause happened first, or before another event:
\(\begin{array}{lllll}\text { (34) Naara ur=kat pea lotu, ur=kat } & \text { marma. } \\ \text { 3pl } & \text { 3pL.S=CERT first worship 3pL.S=CERT } & \text { be.lit } \\ \text { 'They worshipped first, they were enlightened.' }\end{array}\)

\subsection*{9.3.7 Pre-verbal adverbs}

A few pre-verbal adverbs (see 4.7) occur between the auxiliary and the main verb. In (35), malua 'later' occurs between the auxiliary to 'IPFV' and the verb lo parkat 'look after':
\begin{tabular}{llll}
E=kat & to malua & lo parkat=ia \\
3SG.S=CERT & IPFV & later & see \\
catch=3SG.OBJ
\end{tabular}
lag natlaka ur=go plaga nalwaa nge.

COMP owner 3pL.S=IRR look.for arrow DEF
'Later, he was waiting for the owners to look for the arrow.'

\subsection*{9.3.8 Reflexive/reciprocal particle}

The particle tuma- ' \(R R\) ' is used to express both reflexive and reciprocal meanings. In a reflexive/reciprocal construction, there is co-referentiality between the actor and the undergoer of the reflexive/reciprocal event. The particle occurs between the auxiliary and the main verb \({ }^{6}\) and takes a possessor-indexing suffix indexing the same participant as the subject proclitic. It is interesting that this suffix is a nominal possessor suffix rather than a verbal object suffix, and shows a nominal origin for this particle. Other Vanuatu languages such as Lolovoli (Hyslop 2001:266) and South Efate (Thieberger 2006:262) have a reflexive/reciprocal morpheme taking possessor-indexing suffixes. Note that synchronically, tuma- does not have any other function or position and needs to be analysed as a particle on its own. The verb following tuma- can be intransitive or transitive. In (36), the construction with tuma- is reciprocal. The verb rãaki 'bark' functions transitively and the three pronominal indexes (subject, reciprocal and object) are co-referential:
(36) Koria \(u_{i}=\) tum̃a- \(\mathrm{ra}_{\mathrm{i}} \quad\) rmaki-ra \({ }_{i}\).
dog 3DU.S=RR-3PL.POSS bark-3PL.OBJ
'The dogs bark at each other.'
[elicited]

\footnotetext{
\({ }^{6}\) In the textual data, there are no examples of the benefactive phrase and the reflexive/reciprocal co-occurring, and attempts at elicitation were not conclusive, thus whether the reflexive and benefactive can co-occur or are in complementary distribution is a matter for further research. Thieberger (2006:264) notes that for South Efate, textual data with co-occurrences of benefactive and reflexive/reciprocal are unavailable. On the basis of an ungrammatical constructed sentence, he suggests that both constructions may be in complementary distribution in this language.
}

Like (36), in (37) \({ }^{7}\) and (38), the verbs are transitives and all bound person markers are coreferential:
(37) \(\quad \operatorname{Ar}_{\mathrm{i}}=\) tumana-ra \(_{\mathrm{i}}\) pa-ki-ra \({ }_{\mathrm{i}}\).

3DU=RR-3PL.POSS go-TR-3PL.OBJ
'They had a fight with each other.' (lit. they went at each other)
(38) \(\quad \mathrm{Ar}_{\mathrm{i}}=\mathrm{ti}\) tuma \(\mathrm{ra}_{\mathrm{i}}\) put= \(\mathrm{ra}_{\mathrm{i}}\) to mau.

3sG.S=NEG RR-3PL.POSS pull=3SG.OBJ STAT NEG2
'They don't go out with each other.' (lit. they don't pull each other)

However, it is not always the case that the object enclitic is co-referential with the subject and the reflexive/reciprocal indexes. In (39), only the subject and the reflexive are co-referential, while the object of the main verb pat has a different referent. In this example, the subject is a magic snake making himself swell up and becoming bigger and bigger. The object enclitic \(=i a\) '3SG.OBJ' on pat 'do' refers to the event of swelling up which was explained earlier in the narrative:
\[
\begin{array}{llllll}
\mathrm{E}_{\mathbf{i}}=\text { to } & \text { tuma-na } \tag{39}\\
\text { 3SG.S=IPFV } & \text { RR-3SG.POSS do=3SG.OBJ } & \text { pat }{ }_{\mathbf{j}}, & \text { e=mro } & \text { 3SG.S=AGAIN COP big GO } & \text { GO } \\
\text { 'He was doing it to himself, he got bigger and bigger,' }
\end{array}
\]

Intransitive verbs can also occur in this construction, as in (40). In this example, tuma \({ }^{2}\) - encodes reflexivity: the speaker, describing his own experience in preparing and organising the wedding of his son, warns the addressee that such preparations are the responsibility of the father only. The verb mursuksuk 'prepare' is intransitive but takes a complement clause (underlined), and the subject proclitic and suffix of the reflexive are co-referential:

Finally, note that tuma- is ambiguous between reflexivity and reciprocality when there is a plurality of referents:

\footnotetext{
\({ }^{7}\) Note that the referent encoded by all bound person forms in (37) is dual, but since the possessor-indexing suffixes and object enclitics do not distinguish dual number, all number distinctions other than singular are collapsed in the plural for these paradigms.
}
(41) Ur=tum̃a-ra 3PL.S=RR-3PL.POSS 'They hit each other.' 'They hit themselves.' [elicited]
(licted)
pat \(=\) ra.
hit=3PL.OBJ

\subsection*{9.4 Post-verbal elements}

\subsection*{9.4.1 Post-verbs}

Post-verbs form a separate class from verbs and adverbs (see 4.4). Post-verbs occur in intransitive and transitive predicates. In (42), the post-verb pkout 'complete' follows the intransitive verb nou 'finish':
\begin{tabular}{llllll}
(42) & E=pat & srago mauna pa \(\quad\) e=nou & pkout, \\
& 3sG.S=make & things & every & GO & 3SG.S=be.finished
\end{tabular}\(\quad\)\begin{tabular}{l}
completely
\end{tabular}

In the case of a transitive predicate, post-verbs follow the verb and precede the object. This distinguishes them from post-verbal adverbs which follow the object (see 4.7.1). If the object is an NP, it follows the post-verb as in (43); and if it is realised as an object enclitic, it cliticises to the post-verb as in (44):
\begin{tabular}{llll}
Ur=pu nanit; \(\quad\) ur=kul & gor & nkasu=s. \\
3pL.s=pull mat & 3pl.s=cover & block & wood=3OBL
\end{tabular}
(44) \(\mathrm{Ur}=\mathrm{ga}\) tap gor=ra raki na=ftouri-na naara, 3PL.S=IRR be.sacred block=3PL.OBJ towards ART=marry-NMLZ 3PL.POSS 'They will bless them for their wedding,'

\subsection*{9.4.2 Perfect sua}

The basic function of sua is to mark a situation as completed, and relevant in one way or another to the situation occurring at the time of reference. In most cases the perfect precedes the object, as in (45):
\begin{tabular}{llll}
E=kat & fe & sua & tena \\
3sG.S=CERT & read & PRF & SBST.DEM \\
'He already read this & one.' \\
[elicited] & & &
\end{tabular}

However, in some realis clauses the perfect is found following the object, showing that there is some variation in the position of this particle (See 11.3.3).

\subsection*{9.4.3 Object}

As seen in 6.4.1.2, object arguments can be realised as a lexical NP, a pronominal NP or an object enclitic, all of which occur within the verb complex. This contrasts with subject arguments which are encoded with obligatory subject proclitics and can occur with a coreferential NP. Object enclitics occur in the absence of a lexical or pronominal NP and encode the object in person and number. They distinguish singular and plural number, but do not encode dual. Further, while NPs and personal pronouns can occur as subjects, objects and obliques, object enclitics are restricted to the object function. In (46), the NP nasma nagna 'its outrigger' is the object of pat psaki 'make clean'. In the following clause, -nia '3sG.OBJ' encodes the object of mas psaki 'chop clean' and is co-referential with nasma nagna:
(46) \(A=\) po mro pat psaki nasma nag-na,
1SG.S=SEQ again make clean outrigger ASS-3SG.POSS
\(\begin{array}{llll}a=\text { mas } & \text { psaki-nia } & \text { pa } & e=\text { nou, } \\ \text { 1SG.S=chop } & \text { clean-3sG.OBJ } & \text { GO } & \text { 3sG.S=be.finished } \\ \text { 'Then I clean its outrigger again, I chop it clean until it's done,' }\end{array}\)

In (47), there are two occurrences of the personal pronoun kinta '1PL.INCL' functioning as objects of the transitive verbs pagan 'feed' and lo parkat 'look after'. Note that they are coreferential:
\begin{tabular}{lllll}
Tu=sa & to, & ur=to & pagan & kinta, \\
1PL.INCL.S=be.bad & stay & 3PL.S=IPFV & feed & 1PL.INCL
\end{tabular}
to \(=\) lo parkat kinta pan pa,
IPFV=look catch 1PL.INCL GO GO
'We were little, they fed us, they looked after us on and on,'

\subsection*{9.4.3.1 The paradigm of bound object markers}

Bound object markers in table 9.2 mark person, number, and clusivity, as expected for an Oceanic language (Lynch, Ross and Crowley 2002:35). The paradigm shows no gap and no syncretism, with each combination of person and number values expressed by a different form. The table also shows that there are two sets of allomorphs: prefixes attaching to ki-
ending verbs and enclitics attaching to non ki-ending verbs. This first level of allomorphy applies across verb classes (with the obvious exception of intransitives), while a second level of allomorphy is found with first and third person singular:
\begin{tabular}{|c|c|c|c|}
\hline & & ki-ending verbs & non ki-ending verbs \\
\hline \multirow{3}{*}{ SG } & \(\mathbf{1}\) & \(-o u \sim-w o u\) & \(=i o u \sim=o u \sim=w o u\) \\
\cline { 2 - 4 } & \(\mathbf{2}\) & \(-g o\) & \(=k o\) \\
\cline { 2 - 4 } & \(\mathbf{3}\) & \(-n i a\) & \(=i a \sim=a \sim=e \sim=e a \sim-n a \sim=s\) \\
\hline \multirow{4}{*}{ PL } & \(\mathbf{1}\) EXCL & \(-g t a\) & \(=g t a\) \\
\cline { 2 - 4 } & \(\mathbf{1}\) INCL & \(-g a m\) & \(=g a m\) \\
\cline { 2 - 4 } & \(\mathbf{2}\) & \(-m u\) & \(=m u\) \\
\cline { 2 - 4 } & \(\mathbf{3}\) & \(-r a\) & \(=r a\) \\
\hline
\end{tabular}

Table 9.2. Bound object markers

\subsection*{9.4.3.2 Object enclitics vs. object suffixes}

A peculiarity of bound object markers is that those occurring on ki-ending verbs are suffixes, while those occurring on non ki-ending verbs are enclitics. The enclitics attach to verbs, post verbs or to the perfect particle sua. This is shown with =ia '3SG.OBJ' which attaches to a single verb in (48), a serial verb construction in (49), a post-verb in (50), and with \(=r a^{\prime} 3 \mathrm{PL} . \mathrm{OBJ}\) ' which attaches to perfect particle in (51):
(48) Go a=lag nag-na, ur=pat=ia, \(\quad \mathrm{e}=\mathrm{pi} \quad\) nasuma nous. and LOC=upwards ASS-3SG.POSS 3PL.S=make=3SG.OBJ 3SG.S=COP house wild.cane 'And as for its roof, they made it, it was a wild cane house.'
(49) \(\mathrm{E}=\mathrm{lag}, \quad\) "ku=ga lo parkat=ia".

3SG.S=say 2PL.S=IRR look catch=3SG.OBJ
'It means, "you guys be careful."" (lit. you guys look, after it)
(50) \(\mathrm{E}=\mathrm{pes}=\mathrm{ia}\)
pan pa, e=pes
pkout=ia.
3sG.S=dig.w.hands=SG.OBJ GO GO 3sG.s=dig.w.hands completely=3sG.OBJ
'She dug it on and on, she dug it completely.'
(51) \(\mathrm{E}=\mathrm{k}\) at kor sua=ra.

3SG.S=CERT lock PRF=3PL.OBJ
'He locked them up already.'
[elicited]

In contrast, allomorphs attaching to ki-ending verbs are suffixes. They only attach to ki-ending verbs and post-verbs. In a serial verb construction such as in (52), these suffixes attach to the final verb if it is ki-ending:
\begin{tabular}{llllll}
(52) & Wan & \(\mathrm{e}=\mathrm{sfa}\) & panei & pa-ki & uta, \\
if & 3sG.s=run & come & go-TR & landwards
\end{tabular}
\begin{tabular}{lllllll}
\(\tilde{\text { Pa }}=\) mas & lo & parkat & wia-ki-nia & lag & e=ga fanei. \\
2SG.S:IRR=must & look & catch & be.good-TR-3SG.OBJ & COMP & 3SG.S=IRR & come:IRR
\end{tabular} 'If it swims back to shore, you'll have to watch that it'll come.'

In (53) and (54), the contrast between object enclitics and suffixes is shown with the ditransitive verb \(r k i{ }^{\prime}\) 'tell'. As a kei-ending verb, rki takes object suffixes:
\[
\begin{array}{lll}
\mathrm{A}=\text { rki }-\mathrm{go}=\mathrm{s} & \text { taplange } & \mathrm{ku}=\text { tae } ? \tag{53}\\
\text { 1SG. }=\text { tell-2SG.OBJ=3SG.OBJ like.this } & 2 \mathrm{SG} . \mathrm{S}=\text { know } \\
\text { 'I told it to you like this you know?' } &
\end{array}
\]

However, when rki is followed by another verb complex element such as the perfect particle sua 'PRF', the object is encoded with an enclitic attaching to the perfect particle, as in (54):
```

A=kat rki sua=ko=s.
1SG.S=CERT tell PRF=2SG.OBJ=3SG.OBJ
'I told it to you already'

```

\subsection*{9.4.3.3 Allomorphy in object marking}

As shown in table 9.2 there is a lot of allomorphy in object marking. While the distribution of suffixes vs. enclitics is phonologically conditioned, that of allomorphs of the first and third person singular is partly phonologically and partly lexically conditioned. This section discusses the distribution of each set, dealing first with the phonological conditioning of allomorphs between \(k, i\)-ending and non \(k i\)-ending verbs (9.4.3.3.1), then with the third person singular (9.4.3.3.2, 9.4.3.3.3), and finally with the first person singular allomorphs (9.4.3.3.4).

\subsection*{9.4.3.3.1 Phonological conditioning on ki-ending and non ki-ending verbs}

This is regarded as phonological conditioning because allomorphs are distributed according to the shape of the final syllable of the verb. If the verb ends in \(k i\), it takes the suffixes in the first column of table 9.2, whereas if its final syllable is of any other shape, the verb takes the other set of allomorphs, which are enclitics. \(k_{i} i\)-ending and non \(k i\)-ending verbs are found across all verb classes. Examples (55) and (56) show the distribution of the second person singular allomorphs: the suffix \(\left\{-g_{0}\right\}\) occurs on the ki-ending pseiki 'show' while \(\left\{=k_{0}\right\}\) attaches to the non ki-ending slae 'help':
\begin{tabular}{lllll}
\(\tilde{\text { Pa }}\) = to & tuma=na & pseiki-go, & kane & pa=lo
\end{tabular}\(\quad\) parkat=ia..
(56) \(A=\) tae \(\quad\) slae \(=k o\), takanei?

1SG.S=can help=2SG.OBJ how
'I can help you, how?'

Object suffixes also occur on derived transitives taking the suffix \(-k i i^{\prime} \mathrm{TR}\) '. In (57), \(-g_{0}\) ' \(2 \mathrm{SG} . \mathrm{OBJ}\) ' attaches to wia-ki 'good-TR':
\begin{tabular}{llllll}
Nsfa & na & a=pat=ia, & e=go & wia-ki-go & mala \\
skei. \\
what REL & 1SG.S=do=3SG.OBJ & 3SG.S=IRR & be.good-TR-2SG.OBJ time & INDEF \\
'What I did, it will be good for you one day.' & &
\end{tabular}

Examples (58) and (59) show the distribution of the third person singular allomorphs \(\{-n i a\}\) and \(\{=i a\}\) with the ambitransitives \(p s r u k i\) 'speak' and legat 'sing':
(58) Malmauna,
now
tu=go stat psruki-nia takanei na-ftauri-na e=pa.
1PL.INCL.S=IRR start speak-3SG.OBJ how N.SPEC-get.married-NMLZ 3SG.S=go 'Now, let's start to talk about how weddings go.'

E=lag, "p̃a=legat=ia taplei."
3SG.S=say 2SG.S:IRR=sing=3SG.OBJ like.this
'She said, "sing it like this.""

Out of the three ditransitive verbs, rki 'tell' and paoseki 'ask' are ki-ending, while tua 'give' isn't.
In (60) and (61), rki and paoseki host \{-nia\} '3sG.OBJ' while in (62) tua takes \{=e\} '3sG.OBJ':
\begin{tabular}{lll}
E=rki-nia=s lag, & "a=to & lop̃a=ko". \\
3SG.S=tell-3SG.OBJ=3SG.OBJ COMP & 1SG.S =IPFV & see=2SG.OBJ \\
'He said, "I see you."' & &
\end{tabular}
(61) Grunkik nge \(e=\) paoseki-nia=s lag, girl DEF 3sG.S=ask-3sG.OBJ=3SG.OBJ COMP
"nag ku=to plag nsfa?"
2SG 2SG.S=IPFV look.for what
'The girl asked him, "what are you looking for?""
(62) P̃a=mnae pat=ia e=ga mas,

2SG.S:IRR=3SG.BENmake=3SG.OBJ 3SG.S=IRR be.cooked
pa \(2=\) tua \(=e=s \quad e=\) ga faam=ia.
2SG.S:IRR=give=3SG.OBJ=3SG.OBJ 3SG.S=IRR eat:F=3SG.OBJ
'You will do it for him it'll be cooked, you will give it to him he will eat it.'

\subsection*{9.4.3.3.2 Phonological conditioning of 3SG.OBJ allomorphs}

The distribution of these allomorphs is phonologically conditioned for the most part, according to the rule in (63):
(63) Phonological conditioning of 3SG.OBJ allomorphs attaching to non ki-ending verbs:
- Stems ending in a consonant take \(\{=i a\}\)
- Stems ending in front vowels \(i, e\) take \(\{=a\}\)
- Stems ending in back vowels \(0, u\) take \(\{=e a\}\)
- Stems ending in the central vowel \(a\) take \(\{=e\}\)

This rule is seen operating in (64) to (70). In (64), two consonant-final verb stems, suke 'tighten' and pat 'do' take the allomorph \(\{=i a\}\) '3sG.OBJ':
(64)
\begin{tabular}{llll}
Ur=lo & suk=ia & takanei & \(\mathrm{e}=\) to
\end{tabular}\(\quad\) pat=ia.

In (65) and (66), the stems ending in front vowels pai 'pack' and ne 'be.with' take the allomorph \(\{=a\}\) '3SG.OBJ':
\begin{tabular}{lllll}
... e=to & pai=a & paki & naala & nae. \\
3SG.S=IPFV & pack=3SG.OBJ to & basket & 3SG.POSS \\
'... she was packing it in her basket'. & &
\end{tabular}

\section*{(66)}
\begin{tabular}{llllll}
Naota & Mila & \(\mathrm{e}=\mathrm{lag}\) & \(\mathrm{e}=\mathrm{ga}\) & \(\mathrm{ne=}=\mathrm{a}\) & pan \\
chief & p.name & 3sG. \(=\) say & 3SG.S=IRR & be.with=3SG.OBJ & GO \\
while \\
'The chief & Mila thought he would go with her, & while...' & & &
\end{tabular}

The stems ending in back vowels lao 'spear' in (67) and sursuru 'seduce; comfort' in (68) take the allomorph \(\{=e a\}\) '3sG.OBJ':
(67) \(\tilde{\mathrm{P}} \mathrm{a}=\mathrm{ti}\)

2SG.S:IRR=NEG
'Do not spear it.'
lao=ea mau.
spear=3SG.OBJ NEG2
\begin{tabular}{llllll}
E=to & psa & sursuru=ea=s: & "pa=ti & kai & mau." \\
3SG.S=IPFV & speak & comfort=3sG.OBJ=3SG.OBJ & 2SG.S:IRR=NEG cry & NEG2 \\
'She was comforting her: "don't cry.""
\end{tabular}

Finally, (69) and (70) show that loza 'see' and tua 'give' ending in the central vowel \(a\) take the allomorph \(=e^{\text {' } 3 \mathrm{SG} . \mathrm{OBJ} \text { ': }}\)
(69) \(\mathrm{Ku}=\) panei \(\quad\) lop̃a=e, \(\quad \mathrm{e}=\) to sar \(\sim\) sara wur lau pa.

2SG.S=come see=3SG.OBJ 3SG.S=IPFV RED~run pass seawards GO
'You came to see it, it is running by the shore.'
\(E=\) tua \(=\) e te=fea, tkalpa.
3SG.S=give=3SG.OBJ SBST=first first.born
'He gave him the first one, the first born.'

\subsection*{9.4.3.3.3 Lexical conditioning of 3sG.OBJ allomorphs}

The rule stated in (63) does not apply on verbs and post-verbs given in table 9.3. For these forms, the distribution of the third person singular object allomorphs is lexically conditioned. While the rule predicts that consonant-final verbs take \(\{=i a\}\) and \(u\)-final verbs take \(\{=e a\}\), the forms in table 9.3 behave differently: those in the first column take \(\{=e a\}\), while msau 'want' and pitlak.a 'have' take \(\{-n a\}\) :
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Forms taking =ea } & \multicolumn{2}{l|}{ Forms taking -na } \\
\hline psak & 'put s.t up' & msau & 'want' \\
\hline kor & 'lock' & pitlaka & 'have' \\
\hline pistaf & 'speak to' & & \\
\hline pkal & 'raise' & & \\
\hline gor & 'cover, block' & & \\
\hline
\end{tabular}

Table 9.3. Lexical conditioning of \(\{=e a\} /\{-n a\}\) '3sG.OBJ’

In (71) to (73), psak 'put up', pistaf'speak to' and fleal 'raise:IRR' take \(\{=e a\}\) ' 3 sG.OBJ':
(71) \(\mathrm{E}=\mathrm{psak}=\mathrm{ea}\) to np̃ou faatu nge to. 3sG.s=put.up=3sG.OBJ STAT head stone DEF STAT 'He put it up on top of the stone.'
(72) Go e=mro pias pa-ki P̃afunu,
and 3SG.S=again call.out go-TR p.name

P̃afunu \(e=t i \quad\) pistaf=ea mau.
p.name 3SG.S=NEG speak.to=3SG.OBJ NEG2
'And he called out to Pafunu again, Pafunu didn't speak to him.'
(73) Ur=ga fkal=ea e=ga to, \(e=g a\) to ne=ra to. 3PL.S=IRR raise:IRR=3SG.OBJ 3SG.S=IRR stay 3SG.S=IRR stay be.with=3PL.OBJ STAT 'They would raise him so he would stay, he would stay with them.'

In (74), msau 'want' takes \(\{-n a\}\) '3SG.OBJ', and in (75) it takes the enclitic \(=k_{0}\) ' 2 SG.OBJ':
\begin{tabular}{llll}
Marka & naota & ten & Tuktuk \\
old.man & chief & SBST.POSS:NH & p.name
\end{tabular}
\(\begin{array}{llllll}\mathrm{e}=\mathrm{lo} & \text { wia-ki } & \text { grun } & \text { nge } & \mathrm{e}=\text { to } & \text { taakae, } \\ \text { 3SG.S=look } & \text { be.good-TR } & \text { woman } & \text { DEF } & \text { 3SG.S=IPFV } & \text { dance }\end{array}\)
e=kat msau-na.
3SG.S=CERT want-3SG.OBJ
'The chief of Tuktuk was interested in the woman who was dancing, he wanted her.'
(75) Grun \(n-e=t o, \quad e=m s a u=k o\).
woman REL-3sG.S=stay 3sG.S=want=2SG.OBJ
'As for this woman, she wants you.'
[elicited]

Lexical conditioning of the third person singular object allomorph also affects the post-verb gor 'cover, block', as shown in (76):
\(\mathrm{E}=\mathrm{mro} \quad \mathrm{pu}\) gor=ea.
3SG.S=AGAIN pull cover=3sG.OBJ
'He covered it again (by pulling something over).'
9.4.3.3.4 Residual alternation of the 1SG.OBJ allomorphs

This alternation is uncommon and considered fairly minor. However, it is difficult to predict. First, consider that in all textual occurrences, =iou occurs on consonant-final hosts and =ou on vowel ending hosts, as shown in (77) and (78):
\begin{tabular}{lclll}
E=lag, & "pa \(=\) msug=iou & paki & uta & pa." \\
3SG.S=say & 2SG.S:IRR=carry=3SG.OBJ & to & landwards & GO \\
'He said, "take me to the shore "" & & &
\end{tabular}
(78) \(\mathrm{E}=\) panmei nina, \(\mathrm{e}=\mathrm{rki}-\mathrm{nia}=\mathrm{s}\) lag,
3SG.S=come then 3SG.S=tell-3sG.OBJ=3SG.OBJ COMP
"wokmag, ku=tae slae=ou?"
grouper 2SG.S=can help=1SG.OBJ
'He came, then he said to him, "grouper, can you help me?""

However, this analysis is problematic when the distribution of =wou '1SG.OBJ' is taken into acccount. It occurs with vowel-final hosts in (79) to (81) and with consonant-final ones in (82) and (83). Note that when \(=\) wou occurs on ki-ending verbs, the final \(i\) of the root is deleted at the morpheme boundary, due to pretonic vowel deletion (see 2.5.1.2, 3.3.2.1). Importantly, while \(=w o u\) is not attested in textual data, it is well attested in elicited data:
\begin{tabular}{ll}
\(\mathrm{E}=\) to & matpai=wou \\
3SG.S=IPFV & watch=1SG.OBJ
\end{tabular}
'He is watching me.'
[elicited]
(80) \(\mathrm{Ku}=\) tpe=wou.

2SG.S=shoot=1SG.OBJ
'You shot me.'
[elicited]
(81) \(\mathrm{E}=\) patu=wou.

3SG.S=step.on=1SG.OBJ
'He stepped on me.'
[elicited]
(82) \(\mathrm{e}=\mathrm{l}\) pagor=wou.
\(3 \mathrm{SG} . \mathrm{S}=\) enclose \(=1 \mathrm{sG} . \mathrm{OBJ}\)
'He enclosed me.'
[elicited]
\begin{tabular}{lll}
\begin{tabular}{l}
E=kat
\end{tabular} rog & maeto-k=wou. \\
3sG.S=CERT & feel & be.angry-TR=1SG.OBJ \\
'He was angry at me.' \\
[elicited]
\end{tabular}

Further, there is some variation in the distribution of \(=\) ou and \(=\) wou, to the point that they seem to be in free variation, as shown in (84) and (85). These two examples were elicited from the same speaker one after the other, and there is no difference in meaning to be reported:
(84) \(\tilde{\mathrm{p} a=m a r k=w o u . ~}\)

2SG.S:IRR=put.down=1SG.OBJ
'Put me down.'
[elicited]
(85) \(\tilde{p} a=m a r k i=o u\).

2SG.S:IRR=put.down=1sG.OBJ
'Put me down.'
[elicited]

Thieberger (2006:115) describes two distinct object paradigms in South Efate, for direct and oblique objects. In both paradigms, the first person singular suffix is -wou. In this language, it appears that the distribution of suffixes from both paradigms is conditioned partly by the role of the object and partly by verb class membership (with Class 1 and Class 2 transitives selecting different object enclitics). However, the data above shows that this analysis cannot be applied to Lelepa, since the three allomorphs seem to encode participants that are not locations, and their distribution cannot be predicted either on phonological or verb subclass grounds. In addition, analyzing the distribution of the first person singular allomorphs is made difficult by the fact that there are very few occurrences of this enclitic in the textual data, and that some allomorphs only occur in elicitation. It is also worth mentioning that most Lelepa speakers are fluent in South Efate, as this language was chosen as a language of Christianization and is currently maintained in the community, due to women from this language group who married into Lelepa. The occurrence of =wou could then be viewed as a borrowing from South Efate.

\subsection*{9.4.4 Bi-functional \(=s\) '3sG.OBJ; 3OBL'}

The \(=s\) enclitic has two functions: it encodes third person singular objects (with Class 2 transitives and ditransitive verbs) and oblique arguments. The fact that \(=s\) encodes objects reveals a lexical split in object marking between the two subclasses of transitive verbs, Class 1
and Class 2 (see 7.4.4.3, 7.5.2). \(=s\) is regarded as a bi-functional morpheme rather than two distinct homophonous morphemes because the referents of \(=s\) ‘ 3 SG.OBJ' and \(=s\) ‘ 3 OBL’ share a number of properties. As seen in table 9.4, this morpheme presents a case of syncretism: it encodes objects and obliques that are third person, but does not encode singular and plural objects. In addition, it collapses number for obliques. The reason for this is that obliques tend to be inanimates, and Lelepa does not distinguish number with inanimate referents.
\begin{tabular}{|c|c|c|}
\cline { 2 - 3 } \multicolumn{1}{l|}{} & \multicolumn{2}{c|}{\({ }^{\text {rd }}\) person } \\
\cline { 2 - 3 } & ObJ & OBL \\
\hline OG & \(=s\) & \(=s\) \\
\hline PL & \(=r a\) & \(=s\) \\
\hline
\end{tabular}

Table 9.4. Syncretism of \(=s\)

As seen in (86) and (87), \(=s\) encodes third person object and oblique participants:
(86) \(\tilde{\sim} a=\) sralesko Iesu, \(\tilde{p} a=f a f a t u=s\) !

2SG.S=believe p.name 2SG.S=trust=3SG.OBJ
'Believe in Jesus, trust him!'
(87) A-fate p̃ela na, \(\mathrm{e}=\) =pitlak wara ur=tunalua=s tapla, LOC=p.namebig DEM 3SG.S=have place 3SG=leave=3OBL like.this pan pan pa kasem a=saone warampa. GO GO GO to LOC=p.name there.forward 'All over Efate, there were places they left like this, on and on and all the way to Saone there.'

Recall that it encodes objects that are less affected and generally lower in the animacy hierarchy than typical patients (see 7.4.4.3, 8.5.2). Likewise, the oblique referent of \(=s\) is often inanimate, as seen in (87) and (88):
\begin{tabular}{llllll}
Nagau & na, & ur=to & ske & lwa & faatu=s. \\
tongs & DEM & 3PL.S=IPFV & pick & \begin{tabular}{l}
remove \\
rene \\
stone=3OBL
\end{tabular} \\
'As for these tongs, they remove stones with them.'
\end{tabular}

The objects of class 2 transitives and the secondary objects of ditransitives are less affected and lower in the animacy hierarchy than typically patientive objects, thus they have similar characteristics to obliques. Whether they are objects or obliques, the arguments encoded with \(=s\) '3sG.OBJ; 3OBL' have the roles of stimulus as in (86), location as in (87), instrument as in (88), and theme as in (89):
(89)
```

A=ga malua tua=ko=s.
1SG.S=IRR later give=2SG.OBJ=3SG.OBJ
'T'll give it to you later.'
[elicited]

```

\subsection*{9.4.4.1 \(=s\) encoding objects}

In monotransitive clauses, \(=s\) ' 3 SG. OBJ' encodes the object of Class 2 transitive verbs (see 7.4.1.2, 8.5.2). In (90), \(=s\) occurs on the Class 2 transitive fatu 'step on' to encode an object with an inanimate, unaffected object:
\begin{tabular}{llllll}
(90) & Kutu na & e=ga & fatu=s, & e=go & pag. \\
louse DEM & 3SG.S=IRR & step.on=3SG.OBJ & 3SG.S=IRR & climb \\
'Louse will step on it, he will climb.' & &
\end{tabular}

Class 2 transitives include borrowed transitive verbs. The referents of these objects may be human as in (91), or inanimate as in (92):
(91) \(\mathrm{E}=\mathrm{lo}\) tae lag \(\mathrm{e}=\mathrm{pi}\) grun nge \(\mathrm{e}=\mathrm{pa}\) kasemi=s Artoka. 3SG.S=see know COMP 3sG.s=COP woman DEF 3sG.S=go reach=3sG.OBJ p.name 'He recognised that it was the girl he met in Artoka.'
\begin{tabular}{lll}
\(A=\) makemi \(=s\) & pa & \(e=n o u\),
\end{tabular}\(\quad\) mala \(\quad \mathrm{e}=\) nou \(\quad\) tapla,

1SG.S=measure=3SG.OBJ GO 3SG.S=be.finished when 3SG.S=be.finished like.this
a=to rwa rarua se a=parus=ia pa e=nou, 1SG.S=IPFV turn canoe while 3SG.S=drill=3SG.S GO 3SG.S=be.finished 'I measure it, when it is done, I turn the canoe over then I drill it until it is done,'

With ditransitive verbs, \(=s\) encode secondary objects, which have the role of theme. Recall from 6.4.2.3 that both recipient and theme are considered core arguments as they are required, and that the recipient always precedes the theme, whether they are encoded with NPs or pronominals. In (93), the recipient of tua 'give' is encoded with the object enclitic \(=r a\) ' \(3 \mathrm{PL} . \mathrm{OBJ}\) ' and precede the theme which is encoded with the NP rarua neto 'this canoe':
A=ga \(\quad\) tua=ra \(\quad\) rarua \(\quad\)\begin{tabular}{l}
n-e=to. \\
1SG.S=IRR give=3PL.OBJ canoe
\end{tabular}\(\quad\)\begin{tabular}{l}
REL-3SG.S=stay \\
'I will give them this canoe.' \\
[elicited]
\end{tabular}

In (94) and (95), both the recipient and the theme are encoded with enclitics. While the recipient is encoded with \(=r a\) ' 3 PL.OBJ' in (94) and \(=e\) ' \(3 \mathrm{SG} . \mathrm{OBj}\) ' in (95), the theme is encoded with \(=s\) ' \(3 \mathrm{sG} . \mathrm{OBj}\) ' in both examples:
\[
\begin{array}{lll}
\text { A=pa } & \text { tua }=\text { ra }=\text { s, } & \text { anpasuk=ia. } \tag{94}\\
\text { 1SG.S=go } & \text { give=3PL.OBJ=3SG.OBJ } & \text { 1SG.S=block=3SG.OBJ } \\
\text { 'I gave it to them, and formally engaged her (with my son).' }
\end{array}
\]
\begin{tabular}{lll}
E=til & memes & kik, \\
3sG.S=tell & knife & be.small
\end{tabular}

\subsection*{9.4.4.2 \(=s\) encoding obliques}

The other function of \(=s\) is to encode oblique arguments. \(=s\) '3OBL' occurs in transitive and intransitive clauses. In intransitive clauses, it attaches directly to the intransitive verb and refers to participants with a variety of semantic roles, such as location, theme and instrument. In (96), \(=s\) attaches to the intransitive maturu 'sleep' and encodes the location of the event denoted by this verb:
(96) Ur=ta tafkau, ale, nam̃it pan, ur=kut maturu=s. 3PL.S=cut undermat then mat go 3PL.S=CERT sleep=3OBL 'They cut the undermat, then, the mat goes, they sleep on it.'

In (97), it attaches to the intransitive serial verb construction loso parparo 'wash carelessly' and also encodes the location of the event:
 3SG.S=COP reef be.taboo people 3SG.S=cannot wash careless=30BL 'It is a taboo reef, people cannot wash carelessly there.'

In (98), \(=s\) occurs on the ambitransitive psa pseiki 'teach', which has the ability to function with or without an object. In this example, it functions intransitively, and \(=s\) indexes the location in which the teaching is taking place:

In (99), \(=s\) attaches to the intransitive msaki 'sick', and encodes the same referent as the object enclitic \(=i a\) ' \(3 \mathrm{SG} . \mathrm{OBJ}\) ' in the preceding clause. The referent of both \(=i a\) and \(=s\) is a sacred snake that is not to be hit if one wants to avoid being sick. While in the first clause the referent of the object enclitic is in the role of patient, in the following clause it is in the role of stimulus or causer:
\begin{tabular}{lllll}
(99) Wan & a=ga & pat=ia, & a=ga & \begin{tabular}{l}
msaki=s, \\
if
\end{tabular} \\
1SG.S=IRR & hit=3SG.OBJ & 1SG.S=IRR & \begin{tabular}{l}
sick=3OBL
\end{tabular}
\end{tabular}
nlakan \(\quad \mathrm{e}=\mathrm{pi}\) nali tap agnem.
because 3sG.S=COP place be.taboo 1PL.EXCL.POSS
'If I hit it, I will be sick with it, because it is our taboo place.'

In transitive clauses, \(=s\) ' 3 OBL' follows the object and encodes participants with the same roles than in intransitive clauses, such as location as in (100), or instrument as in (101):
(100) Natañol ur=mat, ur=po pai=ra=s
people 3PL.S=die 3PL.S=SEQ pack=3PL.OBJ=3OBL
'People died, and then they put them in it.'
(101) Memes na \(k u=m a s \quad\) bredi \(=s, \quad \mathrm{e}=\) pal.
knife REL 2sG.S=cut bread=3OBL 3sG.S=blunt
'As for the knife which you cut bread with, it is blunt.'
[elicited]

\section*{Chapter 10 - Complex Predicates}

\subsection*{10.1 Introduction}

\subsection*{10.1.1 Serial verb constructions in Oceanic languages}

Verb combinations expressing single predications constitute one of the most interesting and complex features of Oceanic languages. They bring with them substantial analytical challenges and are typically described within a framework of serial verb constructions (SVCs). The literature on this topic is rich, with typological monographs (Crowley 2002), edited books (Aikhenvald and Dixon 2006, Senft 2008), typologically oriented papers (Bril 2007), language specific papers (Early 1993, Francois 2006, Thieberger 2007) and chapters in reference grammars (Jauncey 2011, Schneider 2010, Hyslop 2001, Thieberger 2006, amongst others). Some authors have used the theoretical framework of Role and Reference Grammar (Foley and Van Valin 1984, Van Valin 1993) to tackle the descriptive and theoretical challenges of serial verb constructions. The main concepts extracted from this theory and applied to serial verb constructions in Oceanic are nuclear layer and core layer serialisation. Within this framework, the clause is viewed as a succession of layers (see fig. 10.1), the innermost layer being the nucleus and the outermost the periphery. The nucleus is comprised of the predicate, while the core includes the predicate and its subject, object and oblique arguments. The periphery includes the adjuncts:

Fig. 10.1. The layers of the clause
\begin{tabular}{|c|c|c|c|c|}
\hline PERIPHERY & CORE & NUCLEUS & CORE & PERIPHERY \\
Adjunct & Subject & predicate & Object & Adjunct \\
\hline
\end{tabular}

Applied to the analysis of SVCs, the concepts of nuclear layer and core layer serialisation refer to the layer in which the juncture of a particular SVC is located. With nuclear layer SVCs, the juncture is located in the clause nucleus, which means that predicates are serialised together, exclusive of their arguments. In contrast, core layer SVCs have their juncture at the core level, and serialise predicates with their arguments. Nuclear layer SVCs can be represented as SUBJ-V-

V-(OBJ), while core layer SVCs can be represented as SUBJ-V-OBJ-V-(OBJ). \({ }^{1}\) While core layer and nuclear layer SVCs are common in the Oceanic subgroup, not all Oceanic languages exhibit both kinds, and some do not have SVCs at all. For instance, languages of Southern Vanuatu lack SVCs (Lynch, Ross and Crowley 2002:48). Closer to Lelepa, South Efate was shown to lack SVCs analysable in terms of nuclear and core layer serialisation, and to exhibit distinct verbal constructions which have grammaticalised from SVCs (Thieberger 2006:224, 2007). In Lelepa, the situation is interesting as the language exhibits SVCs of the nuclear layer type, as well as a range of other constructions which cannot be analysed as SVCs but still express a single predication. \({ }^{2}\) Some of these constructions can be shown to have grammaticalised from earlier SVCs, while others are more difficult to link to a clear grammaticalisation process. As they form a natural class of predicates, these constructions are discussed together and grouped under the cover term complex predicates.

\subsection*{10.1.2 Defining complex predicates in Lelepa}

I follow Bril (2007) in using the term complex predicates to refer to verbal constructions expressing a single predication which are more complex than those expressed by single verbs. This label groups together different constructions in a way that allows each construction to be analysed in their own right. This would not be possible by using the term serial verb construction which only accounts for one type of construction. The term complex predicate is also reasonably theory-neutral, although there are theory-oriented uses of it that are not adopted in the present description. \({ }^{3}\) In Lelepa, complex predicates are distinguished from simple predicates and strings of clauses according to the following criteria:
1. Simple and complex predicates are monoclausal, while a string of clauses is multiclausal;
2. In addition to a main verb root, complex predicates include one or several of the following: serialised verb root, auxiliary verb, post-verb, clause-final particle.

\footnotetext{
1 This representation is used for convenience. Note that to establish the core/nuclear layer distinction, other criteria is required, such as argument sharing: in transitive nuclear-layer SVCs, both arguments are shared, whereas in core layer SVCs, not all arguments are shared by the verbs.
\({ }^{2}\) Expressing a single predication is one of the criteria generally used to recognise SVCs (Bril 2007).
\({ }^{3}\) For more theory-oriented uses of this term, see for instance Alsina, Bresnan and Sells (1997) and Amberber, Baker and Harvey (2010), in which complex predicates refer to a single type of construction rather than to an array of constructions. Complex predicates in Amberber et al. (2010) refer to co-verb constructions, which is not how this term is used in the present study. In contrast, this term is used in a much broader sense in Lelepa, following Bril (2007).
}

Criterion 1 relies on the definition of the clause. Recall that a clause is minimally defined as a verb root and a subject proclitic (see 7.2). However, subject proclitics are sometimes omitted. In such cases, the subject is traceable from earlier clauses or from the same clause if the subject NP is present. For instance, in (1), the subject proclitic is omitted (its position marked with \(\varnothing\)) but the subject NP trak 'truck' is present:

\section*{(1) Trak \(\varnothing\) po to msug=ra pa. truck SEQ IPFV carry=3PL.OBJ GO 'Then the truck would be transporting them.'}

Clauses without subject proclitic often follow a previous clause with which they are in a coordination relationship. Often, these clauses have some other preverbal material such as modality, aspect or negation particles, or auxiliary verbs, etc. In (2), the subject proclitic of the second clause is omitted: note that both clauses are in a coordination relationship and that the aspectual particle \(p o\) 'SEQ' occurs as preverbal material in the second clause. For these reasons this example is analysed as two clauses in a row:
(2) \(\begin{array}{lllllll}\text { E=po } & \text { msau-na, } \\ \text { 3SG.S=SEQ } & \text { want-3SG.OBJ } & \text { po plak lwa=e } & \text { paki } & \text { Tuktuk pa. } & \text { lead } & \text { remove=3SG.OBJ } \\ \text { to } & \text { p.name } & \text { GO }\end{array}\)
'And he wanted her, then he took her away to Tuktuk.'

Criterion 2 relates to the formal complexity of predicates. A simple predicate contains a single verb which can be marked for aspect, mood, negation and modality. In (3), the single verb paam 'eat' is marked for sequential aspect with po 'SEQ', negation with \(t i\) ' NEG ' and hosts the object enclitic \(=i a\) ' 3 SG.OBJ':
\begin{tabular}{llllll}
(3) Noatkus na-e & se, ar=po & tipaam=ia mau. & \\
fruit & DEM-ADD too 3DU.S=SEQ NEG eat=3SG.OBJ & NEG2 \\
'As for these fruits, they did not eat them afterwards either,'
\end{tabular}

Like simple predicates, a complex predicate has a single set of TAM markers. But in contrast, it can contain an additional verb, an auxiliary verb, a post-verb or a clause-final particle, or a combination of some or all of these elements. A complex predicate with several verbs is a serial verb construction; one with an auxiliary verb is an auxiliary construction and one with a post-verb is a post-verb construction. Like simple predicates, obligatory elements such as the subject proclitic occur, and optional ones such as modality and negation particles may occur as
well. In (4), the auxiliary verb panei 'come', the verbs matury 'sleep' and ne 'be with' combine together. This complex predicate includes a serial verb construction with maturu and \(n e\), and an auxiliary verb construction with panei:
(4)
\begin{tabular}{lllllll}
E=kat & ti & panei & maturu & ne=a & mau. \\
3SG.S=CERT & NEG & come & sleep & be.with=3sG.OBJ & NEG2 \\
'He certainly didn't come to sleep with her.' & &
\end{tabular}

\subsection*{10.2 Overview of complex predicates}

\subsection*{10.2.1 Construction types}

There are four types of complex predicates. They comprise subject proclitics and the following obligatory elements:
1. Auxiliary construction: consists of an auxiliary verb and a main verb
2. Serial verb construction: consists of two to three contiguous verbs
3. Post-verb construction: consists of a main verb and a post-verb
4. Clause-final particle construction: consists of a main verb and a clause-final particle

Auxiliary verb constructions are shown in fig. 10.2. Only obligatory elements are shown, but other elements of the verb complex may occur (see Fig. 9.1). Auxiliaries come from a small set of verbs which are able to function as main verbs in simple predicates (see 10.3.2).

Fig. 10.2 Auxiliary construction
\[
S U=A U X V
\]

Example (5) shows an auxiliary construction with the auxiliary \(f a\) 'go:IRR' and the main verb \(\tilde{p} a\) 'hit' (which in this example reads as 'kill'). Note the presence of the benefactive pronoun mnae '3SG.BEN’ separating the auxiliary from the main verb (see 7.5.3):
(5)
\begin{tabular}{lllll}
Pa=fa & mnae & \(\tilde{p a}\) & toa & garua. \\
2SG.S:IRR= go:IRR & 3SG.BEN & hit & chicken & IRR.two
\end{tabular}

SVCs have the structure shown in fig. 10.3. It comprises at least two verb roots in a row, and sometimes up to three. No morpheme can intervene between the verb roots, but other optional elements of the verb complex may occur:

Fig. 10.3 Serial verb construction

\section*{SU=V1 V2 (V3)}

In (6) palse 'paddle' isV1 and raus 'follow' is V2. \({ }^{4}\) No material can occur between them, and they form a SVC. Both can occur as single main verbs elsewhere:
\begin{tabular}{llll}
(6) & ' \(\tilde{\mathrm{P}} \mathrm{a}=\mathrm{ti}\) & palse & raus=ia \\
2SGS:IRR=NEG & paddle & follow=3SG.OBJ & mau. \\
& NEG2 \\
& 'Do not paddle following it.' & &
\end{tabular}

Post-verb constructions comprise a subject proclitic and a main verb followed by one or two post-verbs, as shown in fig. 10.4. No morpheme can separate the verbs and the postverb(s), and post-verbs cannot occur as verbs (see 4.4):

Fig. 10.4 Post-verb construction

SU=V PV1 (PV2)

Example (7) is an instance of a post-verb construction. The main verb ta 'cut' is followed by the post-verb plout 'completely'. In such a construction, the object enclitic attaches to the post-verb as it cannot attach to the main verb:
\begin{tabular}{llll}
A=ta & pkout=ia & garau & e=nou. \\
1SG.S=cut & completely=3sG.OBJ & adze & 3sG.S=be.finished \\
'I cut it completely with the adze until done.'
\end{tabular}

Clause-final particle constructions have the structure shown in fig. 10.5. The various particles occurring in this slot encode aspectual or directional information. As seen in fig. 9.1, a number of post-verbal elements can occur between the main verb and the particle, such as arguments, adverbs and the perfect particle:

\footnotetext{
\({ }^{4}\) In this study, the first verb in an SVC is sometimes referred to as V1, the second one as V2, etc.
}

Fig. 10.5 Clause-final particle construction
\(\mathrm{SU}=\mathrm{V}\) PART

In (8), a clause-final particle construction is formed with the main verb pkeas 'chase' and the clause-final particle panei 'COME'. Panei can function as a main verb elsewhere, but in (8) it is in clause-final position, as it follows the object. It encodes the direction towards the speaker or deictic centre:
\(\begin{array}{lll}\text { (8) } & \text { E=raus=ra, } & \text { e=pkas=ra }\end{array} \quad\) panei.
1SG.S=follow=3PL.OBJ 3SG.S=chase=3PL.OBJ COME
'He followed them, he chased them (towards deictic centre).'

In (9), the clause-final particle to 'STAT' encodes aspectual information, marking the event denoted by the copular clause as a state:
(9) Malange taplange \(\mathrm{e}=\) taos=ia, \(\mathrm{e}=\mathrm{kat}\) pi na-muru-na to. then like.this 3sG.S=be.like=3sG.OBJ 3SG.S=CERT COP N.SPEC-laugh-NMLZ STAT 'At that time it was like this, there was a big laughter.'

\subsection*{10.2.2 Semantics of complex predicates}

According to Aikhenvald (2006), SVCs encode similar functions cross-linguistically. These include aspect, direction, orientation, manner, and cause-effect. SVCs also affect argument structure, e.g. causative, benefactive, instrumental, comitative, and are used in complementation. In Lelepa, complex predicates encode a range of semantic distinctions (see table 10.1). There is a certain amount of overlap between the different constructions: direction is encoded by all constructions but post-verbs constructions, and different aspectual values are distributed amongst all four constructions. However, each construction is also specialised in encoding certain distinctions: auxiliary constructions encode modal distinctions and change of state, SVCs express cause-effect, manner, and use a specialised construction with rogo 'feel' to encode trying and testing (see 10.4.3.5). Post-verb constructions encode result and intensification, and clause-final particle constructions encode stative and durative aspect.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c}
Auxiliary \\
constructions
\end{tabular}} & Serial verb constructions & \multicolumn{1}{c|}{\begin{tabular}{c}
Post-verb \\
constructions
\end{tabular}} & \multicolumn{1}{|c|}{\begin{tabular}{c}
Clause-final \\
particle \\
constructions
\end{tabular}} \\
\hline \begin{tabular}{l}
Direction/motion \\
Imperfective
\end{tabular} & \begin{tabular}{l}
Direction/location/position \\
Sequentiality \\
Inceptive
\end{tabular} & \begin{tabular}{l}
Completion \\
Sequentiality \\
Cause-effect
\end{tabular} & \begin{tabular}{l}
Intensification \\
Danner
\end{tabular} \\
\begin{tabular}{l}
Direction \\
Stative
\end{tabular} & Result & \begin{tabular}{l}
Previous events \\
Obligation
\end{tabular} & Try, test
\end{tabular}

Table 10.1. Semantic distinctions encoded by complex predicates

While Aikhenvald (2006:21-30) discusses the functions of SVCs in a cross-linguistic perspective, Lynch, Ross and Crowley (2002:47-48) outline the functions of SVCs for the Oceanic subgroup. Table 10.2 compares the findings of these authors, and it is interesting to see that many functions are found in both studies, perhaps unsurprisingly. Also unsurprising is that less distinctions are found in the Oceanic subgroup than across languages. However, there is one particular type of SVC found in Oceanic languages that is not present in Aikhenvald's findings, that of ambient serialization. This type is defined as a two-verbs SVC in which the implicit subject of the second verb is the sub-event expressed by the first verb (Lynch, Ross and Crowley 2002:48). Note that this construction is not found in Lelepa.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Aikhenvald (2006) } & Lynch, Ross and Crowley (2002) \\
\hline Direction and orientation & Directional/positional \\
\hline \begin{tabular}{l}
Aspect: extent, change of state, \\
sequentiality, simultaneity, iterativity
\end{tabular} & Sequential \\
\hline \begin{tabular}{l}
Valency increase: causative, \\
benefactive, instrumental, comitative
\end{tabular} & Causative \\
\hline Manner & Manner \\
\hline Cause-effect & \\
\hline Complementation & Ambient \\
\hline \multicolumn{1}{|c|}{-} \\
\hline
\end{tabular}

Table 10.2. Semantics of SVCs compared

A comparison of tables 10.1 and 10.2 shows that many of the distinctions discussed by Aikhenvald (2006) and Lynch, Ross and Crowley (2002) are present in Lelepa, but do not map out neatly onto the different constructions, as there is some functional overlap between them. This is seen in (5) to (9) above: the auxiliary construction in (5), the SVC in (6) and the directional particle construction in (8) all encode direction. In contrast, aspectual distinctions
can be encoded by post-verb constructions and clause-final particle constructions: completion in (7) and stativity in (9). The most common distinctions such as aspect, modality, causeeffect, manner and direction are briefly presented below, but see 9.3.3, 9.4.3, 9.5.2 and 9.6 for more discussion on the semantics of each construction.

\subsection*{10.2.2.1 Aspect}

Some of aspectual distinctions in the language are encoded by complex predicates. In (10), the imperfective is marked in the first clause with the auxiliary to 'IPFV', while in the second clause the durative is marked with the particle \(p a^{\text {' } G O \text { '. Note that this particle also marks direction }}\) when occurring with a verb of motion, as seen in (19).

In (11), the post-verb pkout 'completely' marks the completion of the event encoded pukes 'unwrap':
(11) \(\mathrm{E}=\) pukes=ia, \(\quad \mathrm{e}=\) pukes=ia, \(\mathrm{e}=\) pukes pkout kapua nge. 3SG.S=unwrap=3SG.OBJ 3sG.S=unwrap=3sG.OBJ 3SG.S=unwrap completely laplap DEF 'She unwrapped it, she unwrapped it, she unwrapped the laplap completely.'

Other aspectual distinctions are also marked with complex predicates, such as stative (9.6.1), durative (9.6.2) and inceptive (9.3.3.2).

\subsection*{10.2.2.2 Modality}

Auxiliary constructions encode desiderativity, ability and obligation. These are only some of the modal distinctions found in the language; others are discussed in chapter 11. Desiderativity is shown with msau 'want' in (12), and ability in (13) with tae 'know' (see 10.3.3):
(12) Konou \(a=m s a u\) traus nsfa na \(a=p a t=i a \quad\) Fiji.

1SG 1SG.S=want recount what REL 1SG.S=make=3SG.OBJ p.name
'I want to talk about what I did in Fiji.'
(13) Ur=tae tasurki napua kinta.

3pl.s=can hide road 1PL.INCL
'They can hide the road from us.'

\subsection*{10.2.2.3 Valency increase}

While Aikhenvald (2006) lists a number of valency increasing processes including causative, Lynch, Ross and Crowley (2002) list only the causative as a valency increase process encoded by SVCs in Oceanic (see table 10.2). Recall that in Lelepa, the transitiviser -ki 'TR' has a causative function with a few intransitive verbs (see 8.7.1.2). In addition, a periphrastic causative can be formed with the verb pat/fat 'make;do:R/make;do:IRR' in a serial verb construction, as in (14): \({ }^{5}\)
\begin{tabular}{lllllll}
(14) \begin{tabular}{l}
Nlagiot \\
cyclone \\
' DEF \\
'The cyclone came, it destroyed the house.'
\end{tabular} &
\end{tabular}

However, this is fairly marginal, and more often this type of causative is spread over two clauses, as in (15):
(15) Ur=pat natam̃ol mat e=ga maturu=s.

3PL.S=make person dead 3SG.S=IRR sleep=3OBL
'They lay the corpse in it.'

\subsection*{10.2.2.4 Manner}

Manner constructions are productively formed with SVCs. Commonly, manner is encoded with the verbs wia 'be good' and sa 'be bad' in second position after activity verbs. The first verb specifies the activity and the second verb encodes the manner in which the activity is carried out:
\(\begin{array}{lllllll}\text { (16) } & \text { P̃a=mas } & \text { laka } & \text { wia-ki-nia } & \text { ur=ga fanei } & \text { paki } & \text { uta. } \\ \text { 2SG.S:IRR=must } & \text { see be.good-TR-3SG.OBJ } & \text { 3PL.S=IRR come:IRR } & \text { to } & \text { landwards } \\ \text { 'You'll have to watch carefully for when they come to shore.' }\end{array}\)

Other manner distinctions encoded by SVCs are discussed in 9.4.3.4.

\subsection*{10.2.2.5 Cause-effect}

In a cause-effect SVC, the first verb generally encodes the cause while the second one encodes the effect, or result (Aikhenvald 2006:29). This type is listed as causative serialisation in Lynch,

\footnotetext{
\({ }^{5}\) Note that the second verb in this construction, sa 'be bad' is transitivised with \(-k i i^{\text {'TR' }}\) to take an object (see 7.8.1). A reviewer has suggested that the causative construction with the verb pat/fat formally recall the PPn causative prefix *faka- (\(\mathrm{PEO}{ }^{*}\) paka-).
}

Ross and Crowley (2002:47). Cause-result SVCs are found in a number of Oceanic languages such as Ambae (Hyslop 2001:282), Araki (Francois 2002:148), and Nahavaq (Dimock 2009:156), amongst others. In (17), the verbs 10 'see' and tae 'know' are serialised in a causeeffect SVC. The construction can be translated with the English verb 'recognise':
(17) \(\mathrm{A}=\mathrm{pu}\) rarua kiki skei pi tena ur=ga lo tae konou=s 1SG.S=pull canoe small INDEF COP SBST.DEM 3PL.S=IRR look know 1SG=3OBL 'I held a little canoe so that they could recognise me with it.'

\subsection*{10.2.2.6 Direction/motion}

Direction and motion can be expressed by auxiliary constructions, SVCs and clause-final particle constructions. Example (18) is a combination of an auxiliary construction and an SVC. The auxiliary panei 'come' encodes motion to a location in which the event encoded by the SVC occurs:
\begin{tabular}{lllll}
(18) & E=mro \(\quad\) panei & lo & pa-ki-ra & tapla. \\
& 3SG.S=again come & look & go-TR-3PL.OBJ & like.this \\
& 'He came again and looked for them like this.' &
\end{tabular}

Clause-final particles also encode direction, as in (8), in which direction away from speaker/deictic centre with is expresses with \(p a\) 'GO':
```

(19) Ar=llu pa-ki sum̃a pa.
3SG.S=return go-TR house GO
'They went back home (away from the deictic centre).'

```

\subsection*{10.3 Auxiliary constructions}

\subsection*{10.3.1 Distinguishing auxiliary constructions from SVCs}

Auxiliary constructions and SVCs involve two (or more) verbs which can occur contiguously, thus many occurrences of SVCs and auxiliary constructions look alike. However, auxiliaries precede the main verb and can be separated from it by a benefactive phrase (see 7.5.3), which is not the case with SVCs. This is the main test distinguishing both constructions. Minor tests include membership to a small auxiliary class (see table 10.3) and the abillity to function as main verbs. Compare (20) and (21): in both examples, there are two contiguous verbs, and subject proclitics only occur before the first verbs, showing that the verbs share the same subject. However, (20) is a SVC while (21) an auxiliary construction:
\begin{tabular}{lllll}
A=pat=ia, & masta & agnou & \(\mathrm{e}=\) rog & maeto-ki \\
1SG.S=make=3SG.OBJ & boss & 1SG.POSS & 3SG.S=feel & benou. \\
be.angry-TR & 1SG \\
'I did it, and my boss got angry at me.' & & &
\end{tabular}
(21) Kenem se ur=kut tae psa-ki Inglis. 1PL.EXCL too 1PL.EXCL.S=CERT can speak-TR English

In (22), a benefactive phrase occurs between tae 'can' and the second verb pu 'pull'. Thus (22) is evidence that constructions with tae occuring before a verb are auxiliary constructions:
\begin{tabular}{llll}
(22) & Ku=tae magnou pu suk ofa? \\
2SG.S=can 1SG.BEN pull tight & heron \\
'Can you restrain the heron for me?'
\end{tabular}

\subsection*{10.3.2 Formal properties of auxiliary constructions}

Auxiliary verbs are not widely reported in Oceanic languages, and discussions of verbal constituents in these languages focus on serial verb constructions instead. This is true of descriptions of individual languages such as Tamambo (Jauncey 2011), Mavea (Guérin 2008), Abma (Schneider 2010), Lewo (Early:1994), amongst others, as well as of typologically oriented studies (Lynch, Ross and Crowley 2002:46-48, Crowley 2002). In contrast, auxiliary constructions are described in South Efate (Thieberger 2006:236-237; 252-262). Thieberger (2007) argues that the rise of auxiliary constructions in this language is linked with the fact that the language relies much less on serial verb construction than languages of northern Vanuatu, and that auxiliary constructions historically derive from serial verb constructions (Thieberger 2007:249-250).

Lelepa auxiliaries are shown in table 10.3. For some forms, glosses differ according to whether a particular form occurs as a main verb or as an auxiliary, in order to capture the semantic differences between the two positions. Note also that there are two auxiliaries borrowed from Bislama, stat 'start' and mas 'must'.
\begin{tabular}{|l|l|l|l|l|l|}
\hline Form & \multicolumn{1}{|c|}{ Gloss as V } & Gloss as AUX & Form & Gloss as V & Gloss as AUX \\
\hline to & 'stay' & 'IPFV' & msau & 'want' & 'want' \\
mato & 'stay long' & 'IPFV' & malo & 'not want' & 'not want' \\
wane & 'lie' & 'IPFV' & tae & 'know' & 'can' \\
atlakee & 'start' & 'start' & kano & 'be unable' & 'cannot' \\
stat & 'start' & 'start' & mas & 'must' & 'must' \\
pea/fea & 'be first:R/IRR' & 'first' & pa/fa & 'go:R/IRR' & 'go.R/IRR' \\
& & & panei & 'come' & 'come' \\
\hline
\end{tabular}

Table 10.3. Auxiliary verbs

Auxiliary constructions cover a rich semantic ground (see 10.3.3), and encode aspectual values such as imperfective (to, mato, wane 'IPFV') and sequentiality (pea 'first', stat 'start'), modal values such as desiderativity (msau 'want', malo 'not want'), ability (tae 'can', kano 'cannot') and obligation (mas 'must') as well as direction in motion (panei 'come', pa 'go'). Auxiliaries are exemplified below, and whenever possible, evidence for their syntactic position as auxiliaries is given with examples showing a benefactive phrase separating the auxiliary from the main verb.

\subsection*{10.3.2.1 to 'stay; IPFV'}

In (23), to occurs twice as an auxiliary encoding the imperfective (see 10.3.3.1). In the first clause, it occurs with the benefactive pronoun mnaara '3PL.BEN' and the main verb kuku 'cook', while in the following clause it immediately precedes the main verb paam 'eat':
\begin{tabular}{lllll}
Taatia & naara & \(\mathrm{e}=\) to & mnaara & kuku=s \\
mat.grandmother & 3PL.POSS & 3sG.S=IPFV & 3PL.BEN & cook=3OBL
\end{tabular}
\begin{tabular}{lll}
se & ar=to & paam=ia. \\
while & 3DU.S=IPFV & eat=3sG.OBJ
\end{tabular}
'Their grandmother used to cook it for them while they used to eat it.'

In (24), to occurs as a main verb, with the meaning 'stay':
\begin{tabular}{llllll}
\begin{tabular}{l}
Ur=to \\
3PL.S=stay
\end{tabular} & \begin{tabular}{l}
Numea, \\
p.name
\end{tabular} & \begin{tabular}{l}
a=mro \\
1SG.S=AGAIN
\end{tabular} & \begin{tabular}{l}
pag \\
climb
\end{tabular} & \begin{tabular}{l}
plen \\
plane
\end{tabular} & \begin{tabular}{l}
Numea, \\
p.name
\end{tabular} \\
ur=sfa & raki & Franis. \\
\begin{tabular}{l}
3PL.S=run
\end{tabular} & \begin{tabular}{l}
towards
\end{tabular} & \begin{tabular}{l}
p.name
\end{tabular} \\
'We stayed in Nouméa, I got on a plane again in Nouméa, we travelled to France.'
\end{tabular}

The verb to 'stay' has grammaticalised into two distinct aspect markers: an auxiliary marking imperfective, and a particle occurring at the end of the basic clause to express stativity (see 10.6).

\subsection*{10.3.2.2 mato 'stay long; IPFV'}

In (25) mato is in auxiliary position, separated from the main verb lei 'gather' by the benefactive pronoun mnaara '3PL.BEN'. As an auxiliary, it marks the imperfective, like to: \({ }^{6}\)
Ur=mato mnaara lei noan nkas nge.
3pl.S=IPFV 3PL.BEN gather fruit tree \begin{tabular}{l}
DEF \\
‘They were gathering the fruits of the tree for themselves.'
\end{tabular}

In (26), it occurs as a main verb, with the meaning 'live; reside':
(26) \(0 K\), tenge \(\mathrm{e}=\) lag namtañago \(=\mathrm{n}\) stori agnou,
OK SBST.DEM 3SG.S=MAYBE COP end=POSS:NH story 1SG.POSS
male \(a=\) mato nfano naara to.
when 1SG.S=stay.long country 3PL.POSS STAT
'OK, this may be the end of my story, when I lived in their country.'

The verb mato is probably etymologically related to to. It has followed a similar grammaticalisation path, as it became an auxiliary verb and a clause-final particle (see 10.6). As a main verb, it has a meaning close to that of to 'stay', but it additionally expresses a longer length of time than \(t\). It is used to encode the meaning 'live' or 'reside', as in (26), but also to express the idea of staying for a long time, hence the gloss 'stay.long'.

\subsection*{10.3.2.3 wane 'lie; IPFV'}

In (27), wane occurs three times, with three different functions. First, it is a main verb with the gloss 'lie' and encodes the meaning 'to be somewhere, in a low or lying position'. Then it occurs as a clause-final particle encoding stativity and the fact that the participants are in a low or lying position (see 10.6.1). Finally, it is in auxiliary position with the main verb traus 'tell' and encodes the imperfective as well as the fact that the subject is in a low or lying posture (the subject is sitting down telling traditional stories). This shows that wane has grammaticalised

\footnotetext{
\({ }^{6}\) While it is possible that as an imperfective mato contrasts with to in that an event marked with mato is longer than one marked with to, further research is needed before a full analysis of semantic differences between to and mato can be given, and as auxiliaries they are glossed identically.
}
from a verb into aspectual markers, and that the grammaticalised forms have retained the verb's semantics of posture:
\begin{tabular}{lllll}
\begin{tabular}{l}
Kenem \\
1PL.EXCL
\end{tabular} & \begin{tabular}{l}
ur=wane \\
1PL.EXCL.S=lie
\end{tabular} & \begin{tabular}{l}
suma=g \\
house=POSS:H
\end{tabular} & \begin{tabular}{l}
Naviti \\
p.name
\end{tabular} & \begin{tabular}{l}
wane, \\
STAT
\end{tabular} \\
ur=wane & & traus & nakai. & \\
\begin{tabular}{l}
1PL.EXCL.S=IPFV
\end{tabular} tell & \begin{tabular}{l}
trad.story
\end{tabular} \\
'We are at Naviti's house (sitting down), and we are telling traditional stories.'
\end{tabular}

\subsection*{10.3.2.4 atlake 'start'}

Atlake 'start' can occur in auxiliary position as in (28), or in main verb position as in (29):
(28) Ur=faam pa \(\mathrm{e}=\) nou, ar=mro atlake paus=ia.

3PL.S=eat:F GO 3sG.S=be.finished 3PL.S=again start weave=3SG.OBJ
'They ate until done, then they started to weave it again.'
(29) Ur=atlake sua.

3PL.S=start PRF
'They started already.'
[elicited]

\subsection*{10.3.2.5 stat 'start'}

The loan stat is able to occur in auxiliary position as in (30), and to function as an ambitransitive verb (see 8.4). In (31) it functions intransitively, and in (32) transitively:
(30) Ur=mro stat suaru wus napua panei.

3pL.S=again start walk follow road come
'They started to walk again on the road.'
(31) Go, tu=stat mesa na,
and 1PL.INCL=start today DEM
tu=pat naftourina, tu=pat na-faami-na.
1PL.INCL=make wedding 1PL.INCL=make N.SPEC-eat:F-NMLZ
'And, we start today, we do the wedding, we do the feast.'
\(\begin{array}{lllllll}\text { (32) } & \text { E=pi } & \text { natamol } & \text { na } & \text { e=mag } & \text { naota } & \text { stat }\end{array}\) na-wesi-na.

\subsection*{10.3.2.6 pea/fea 'first/first:IRR'}

In (33) fea 'first:IRR' occurs in auxiliary position with the benefactive pronoun mnag '2SG.BEN' and the main verb lao 'plant'. In (34), pea 'first' is the main verb root and is transitivised with \(-k i\) 'TR':
\begin{tabular}{lllll}
Ur=ga & fea & mnag & lao & gafea. \\
3PL.S=IRR & be.first:IRR & 2SG.BEN & plant & IRR.FIRST \\
'They will plant for you first.' & &
\end{tabular}
(34) Elda Masia, e=pea-ki-ra.

Elder p.name 3SG.S=first-TR-3PL.OBJ
'As for Elda Masia, he precedes them.'

\subsection*{10.3.2.7 msau 'want'}

In (35), msau is in auxiliary position and occurs with the benefactive phrase magmu ' \(2 \mathrm{PL} . \mathrm{BEN}\) ' and the main verb til 'tell'. In (36), it occurs as a main verb and takes object NPs:
(35) \(A=m r o\) msau magmu til naleti skei \(a=p a \quad\) tagau. 1SG=AGAIN want 2PL.BEN tell day INDEF1SG.S=go fish 'I want to tell you about a day I went fishing.'
(36) Se misi e=lag, 'a=ti msau namit, a=ti msau wago, while missionary 3sG.S=say 1SG.S=NEG want mat 1SG.S=NEG want pig
\(\mathrm{a}=\mathrm{ti}\) msau nafnag pi kastom mau.'
1SG.S=NEG want food COP custom NEG2
'And the missionary said, 'I don't want mats, I don't want pigs, I don't want traditional food.'

\subsection*{10.3.2.8 malo 'not want'}

In (37), malo occurs in auxiliary position, followed by the transitive pag 'climb'. In (38) it occurs twice, first as a derived transitive, then as a plain intransitive:

\begin{tabular}{|c|c|c|c|c|c|}
\hline 'Ee, konou no 1SG & \[
\begin{aligned}
& \mathrm{a}=\mathrm{pan} \\
& \text { 1sG.S=go }
\end{aligned}
\] & \begin{tabular}{l}
se \\
while
\end{tabular} & \[
\begin{aligned}
& \mathrm{e}=\mathrm{pi} \\
& 3 \mathrm{SG} . \mathrm{S}=\mathrm{COP}
\end{aligned}
\] & ñaata, snake & \[
\begin{aligned}
& \mathrm{a}=\text { mal-ki-nia, } \\
& \text { 1SG.S=not.want-TR-3SG.OBJ }
\end{aligned}
\] \\
\hline \(\mathrm{a}=\) malo, & tu=ga & & fa.' & & \\
\hline 1SG.S=not.want & 1PL.INC & \(=\mathrm{IRR}\) & go:IRR & & \\
\hline 'Well, I went but & it's a snak & I don't & ant him, I & 't want, & \\
\hline
\end{tabular}

\subsection*{10.3.2.9 tae 'know; can'}

In (39), tae occurs in auxiliary position, with the benefactive pronoun magnou ' 1 SG.BEN' whereas in (40) it functions as a main verb and takes the object nafsana 'language'. Note the difference in meaning between the main verb tae 'know' and the auxiliary tae 'can' which encodes ability (see 10.3.3.5):
(39) 'Nag ku=tae magnou pa punu ofa?

2SG 2SG.S=can 1SG.BEN hit dead heron
'Can you kill the heron for me?'
(40) Nag ku=ti tae nafsana mau, se ku=lag pa=fa?'

2SG 2SG.S=NEG know language NEG2 while 2SG.S=say 2SG.S:IRR=go:IRR
'You don't know the language, and you say that you will go?'

\subsection*{10.3.2.10 kano 'be unable; cannot'}

As an auxiliary kano encodes the inability of the subject to perform the action denoted by the verb as in (41). In main verb position, kano is an intransitive verb, as in (42):
(41) \(\mathrm{E}=\) kano sfa \(\tilde{m} r a f r a f, ~ K . ~ e=p o \quad \tilde{p} a t=i a\). 3SG.S=cannot run fast k. 3SG.S=SEQ hit=3SG.OBJ 'He couldn't run fast, then K. killed him.'
\begin{tabular}{llllll}
E=rp̃ok & lag & \(\mathrm{e}=\mathrm{ga}\) & tulen, & \(\mathrm{e}=\mathrm{kat}\) & kano. \\
3SG.S=rise & COMP & 3SG.S=IRR & stand.up & 3SG.S=CERT & be.unable \\
'He rose to stand up, but he couldn't.' & &
\end{tabular}

\subsection*{10.3.2.11 mas 'must'}

This form is borrowed from Bislama and can only function as an auxiliary; it is not attested as a main verb. It encodes obligation, as seen in (43) with the main verb \(l l u\) 'return':
\begin{tabular}{lllllll}
Ee, & \(\tilde{p} a=\) mas & llu & pa, & \(\tilde{p} a=\) mas & llu & pa, \\
no & 2SG.S:IRR=must & return & GO & 2SG.S:IRR \(=\) must & return & GO
\end{tabular}
\begin{tabular}{lllll}
nlakan & taem & nag & e=kat & nou. \\
because & time & 2SG.POSS & 3SG.S=CERT & be.finished
\end{tabular}
'No, you'll have to go back, you'll have to go back, because your time is finished.'

\subsection*{10.3.2.12 pa/fa 'go:R/IRR'}

In (44) \(p a\) occurs in auxiliary position with the benefactive pronoun magmu ' 2 PL.BEN'. It is in its irrealis form, as it is preceded by the irrealis particle \(g a\) 'IRR' (see 11.2.2.1). In (45), pa 'go' functions as a main verb:
(44) Okay, tu=ga fa magmu plaga=s.
okay 1PL.INCL.S=IRR go:IRR 2PL.BEN look.for=3SG.OBJ
'Okay, let's go look for it for you.'
(45) Nala, ur=sraki-nia tau lag tau se ar=kat pa.
basket 3pl.S=hang-3SG.OBJ STAT upwards STAT while 3PL.S=CERT go
'As for the basket, they hung it up then they went.'

\subsection*{10.3.2.13 panei 'come'}

In (46) panei is in auxiliary position, followed by the benefactive maginta ' 1 PL.BEN' and the main verb mat 'die'. In (47), it functions as the main verb:
(46) Nae, e=panei maginta mat,

3sG 3sG.S=come 1PL.INCL.BEN die
\(\mathrm{e}=\mathrm{t}\) p̃a \(\quad\) na=mer lo sa-na aginta.
3SG.S=punch ART=act look be.bad-NMLZ 1PL.INCL.POSS
'As for him, he came and died for us, he cancelled our sins.'
\begin{tabular}{llllll}
(47) 1944 & pa-ki & 1945, ten & Amerika & ur=panei. \\
1944 & go-TR 1945 & SBST.POSS:NH & p.name & 3PL.S=come \\
'From 1944 to 1945, the Americans came.' & &
\end{tabular}

\subsection*{10.3.3 Semantics of auxiliary constructions}

In table 10.4, auxiliary verbs are classified according to their semantic values. They encode aspect (imperfective, inceptive, sequential), modality (desiderativity, ability, obligation), change of state, direction and motion. The imperfective is marked with three different auxiliaries: to, mato, and wane 'IPFV'. Modal auxiliaries form pairs marking opposing values: desiderativity is
marked with msau 'want' and malo 'not.want', ability with tae 'can' and kano 'cannot'. Obligation is encoded with mas 'must', and note that there is no form expressing the opposite value. Change of state is encoded with panei 'come' when it occurs as an auxiliary to the copula \(p i / f i\) 'COP' or to stative intransitive verbs. Finally, direction and motion is encoded with the pair pa 'go' and panei 'come'. \({ }{ }^{\prime}\)

Table 10.4. The semantics of auxiliaries

\subsection*{10.3.3.1 Imperfective}

The three imperfective auxiliaries are to, mato and wane 'IPFV'. While semantic differences between to and mato are difficult to pinpoint, wane encodes a lying or low position in addition to the imperfective. To can occur with various main verbs, such as activity verbs in (48) and (49), psychological verbs in (50), and motion verbs in (51). It does not occur with stative verbs. It encodes several imperfective values: habitual in (48) and (51), progressive in (49), and present imperfective in (50):
\(\begin{array}{llllll}\text { (48) } & \begin{array}{l}\text { Te=matua } \\ \text { SBST=be.old }\end{array} \quad \text { ur=to } & \text { til=ia } \quad \text { lag, }=\text { IPFV } & \text { tell=3SG.OBJ } & \text { COMP } & \text { "Moru=n } \\ & \text { hole=POSS:NH } & \text { Wota." } \\ & \text { p.name }\end{array}\)
(49) \(\mathrm{E}=\) to man=ia pan pan pa,
3SG.S=IPFV grate=3SG.OBJ GO GO GO
'She was grating it on and on,'
(50)
\begin{tabular}{lllll}
A=to & mtouki-nia, & a=to & mtouki & Pafunu. \\
1SG.S=IPFV & fear-3SG.OBJ & 1SG.S=IPFV & fear & p.name
\end{tabular}
'I fear it, I fear Pafunu.'

\footnotetext{
\({ }^{7} \mathrm{~Pa}\) and panei also occur as clause-final particles to encode direction, with \(p a\) additionally encoding durativity in that position (see 10.6).
}
\[
\begin{align*}
& \text { A=to pa-ki } \quad \text { stoa. } \tag{51}\\
& \text { 1sG.S=IPFV go-TR } \\
& \text { 'I used to go to the store.' }
\end{align*}
\]

Similarly, mato can occur with different types of verbs, including activity verbs as in (52), motion verbs as in (53), and telic verbs as in (54). In all three examples it encodes the progressive:
\(\begin{array}{llllll}\text { (52) } & \begin{array}{llll}\text { Ur=pan } & \text { pan } & \text { pa } & \text { ur=mato } \\ \text { 3SG.S=go } & \text { GO } & \text { GO } & \text { 3PL.S=IPFV }\end{array} & \begin{array}{l}\text { lei=a } \\ \text { gather=3SG.OBJ }\end{array} & \text { tapla, } \\ & \text { like.this }\end{array}\) 'They went on and on, they were gathering them like this,'
(53) E=sfa llu pan pan pa, e=kat mato llu panei, 3sG.S=run return GO GO GO 3SG.S=CERT IPFV return COME 'He ran back, he was returning,'
(54) Ur=suara pa-ki p̃ag, ur=kat mato sili pa. 3PL.S=walk go-TR inside 3PL.S=CERT IPFV enter GO 'They walk in, they are entering.'

The third imperfective auxiliary is wane 'IPFV'. Recall form 10.3.2.3 that in addition to marking imperfective, wane denotes a lying or low position. As a main verb, it means 'lie', or 'be in a low position or lying position'. As an auxiliary, it is often found with main verbs denoting that the subject is in a low or lying position, as seen in (55) with the main verb waafe 'swim':
\begin{tabular}{lllll}
(55) & \begin{tabular}{l}
Kusue \\
rat
\end{tabular} & \begin{tabular}{l}
\(\mathrm{e}=\) kat \\
3SG.S=CERT \\
'The rat was swimming.'
\end{tabular} & \begin{tabular}{l}
wane \\
IPFV
\end{tabular} & \begin{tabular}{l}
waafe. \\
swim
\end{tabular} \\
&
\end{tabular}

Wane can also occur with main verbs which do not encode a particular position. In this case, it expresses the fact that the subject is in a low or lying position, as in (56):

e=wane kai.
3SG.S=IPFV cry
'The wife was sick, she lay in her bed, she was crying (in a lying position).'

\subsection*{10.3.3.2 Inceptive}

Inceptive aspect is expressed with the auxiliaries atlake 'start' in (57) and the Bislama loan stat 'start' in (58). Given that Lelepa has atlake which functions as both a main verb and an auxiliary, it is unclear why stat was borrowed, since it has the same functions and distribution as atlake:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ur=faam & pa & \(\mathrm{e}=\) nou, & ur=mro & atlake & paus \(=\) ia. \\
\hline 3PL.S=eat:F & GO & 3sG.S=be.finished & 3 PL. \(\mathrm{S}=\mathrm{AGAIN}\) & start & weave=3SG.OBJ \\
\hline \multicolumn{6}{|l|}{'They ate until done, then they started to weave it again.'} \\
\hline
\end{tabular}
(58) ur=stat tfag=ia las wik Eprel 1980. 3PL.S=start build=3SG.OBJ last week April 1980
'They started building it in the last week of April 1980.'

\subsection*{10.3.3.3 Sequentiality}

Pea/fea 'first' marks an event as occurring before another one. It does not mark the passage from one stage to another in a sequence, nor does it mark the start of an event as an inceptive would. This is shown in (59):
(59) Naara ur=pea pi te=matua, ur=pea rki kenemi=s.

3pl 3pL.S=first COP SBST=be.old 3SG.S=first tell 1PL.EXCL=3SG.OBJ 'They were elders first, and they told us about it first.'

\section*{10-3.3.4 Desiderativity}

Two auxiliaries mark positive and negative desiderativity, msau 'want' and malo 'not.want'. In (60), msau is an auxiliary to the main verb pat 'make; do':
(60) A=mro msau pat na-fsa-na naluokia skei=g

1SG.S=AGAIN want make N.SPEC-speak-NMLZ proverb INDEF=POSS:H
te=matua aginta.
SBST=be.old 1PL.INCL.POSS
'I want to tell one of our elders' proverbs again.'

In (61), malo occurs twice, first as a main verb transitivised with \(-k i{ }^{\prime}\) ' \(\mathrm{R}^{\prime}\), then as an auxiliary
with the main verb rogo 'feel':
\[
\begin{align*}
& \mathrm{E}=\text { to laka=e taplange nlakan } \tag{61}\\
& \text { 3SG.S=IPFV see=3SG.OBJ like.this because }
\end{align*}
\]
\(\mathrm{e}=\) malo rogo nap̃ona=\(=\mathrm{n}\) nkapu.
3SG.S=not.want feel smell=POSS.NH fire
'He was watching it like this because he did not want any fire smoke, he didn't want to feel the smell of fire.'

\subsection*{10.3.3.5 Ability}

Like desiderativity, the encoding of ability is done by two auxiliaries expressing opposite values: tae 'can' marks the ability to perform the activity denoted by the main verb, while kano 'cannot' marks the inability to perform it. Example (62) shows both auxiliaries occurring in turn: tae occurs with the main verb msug 'carry' and kano with pa-ki 'go-TR':
(62) Konou a=tae msug=ko paki uta pa,

1SG 1SG.S=can carry=2SG.OBJ to landwards GO
kane a=kano pa-ki nalia garapa.
but 1SG.S=cannot go-TR place be.dry GO
'I can carry you to the shore, but I can't go on land.'

In (63) and (64), kano occurs with pat 'make, do' and loso 'wash':
(63) Ur=ga fat nkapu sei? Nkapu, ur=kano pat nkapu. 3PL.S=IRR make:IRR fire where fire 3PL.S=cannot make fire 'Where would we make fire? (no,) fire, we couldn't make any fire.'
(64) Natam̃ol e=kano loso parp̃aro=s.
person 3SG.S=cannot wash be.careless=3OBL 'People cannot wash carelessly there.'

Inability can also be expressed by negating a clause with tae as an auxiliary:
\begin{tabular}{lcccc}
A=ti & tae & palse & matatig-ki-nia & mau. \\
1SG.S=NEG & can & paddle & close-TR-3SG.OBJ & NEG2 \\
'I cannot paddle close to it.' & &
\end{tabular}

\subsection*{10.3.3.6 Obligation}

Mas 'must' is a Bislama borrowing encoding the obligation to perform the action denoted by the main verb. Given that the language does not show another means to express obligation,
this borrowing fills an important gap. Interestingly, mas is attested as an auxiliary but not as a main verb, but since the equivalent of mas does not function as a main verb in neither English nor Bislama, this is not surprising. \({ }^{8}\) In (66), mas occurs with a serial verb construction formed with three verbs: 10 'see', parkat 'catch' and wia 'good':
(66) \(\tilde{P} a=m a s\) lo wan \(e=g a \quad\) fanei, 2SG.S:IRR=must look catch be.good-TR-3SG.OBJ if 3 SG.S=IRR come:IRR 'You must be really careful if he comes,'

In (67), mas occurs twice, with the main verbs tua 'give' and wus 'take'. In the first occurrence, obligation is oriented towards the hearer while in the second one it is oriented towards the speaker:
(67) \(\tilde{P} a=m a s\) tua konou gaskei,
2SG.S=must give 1SG IRR.INDEF
\begin{tabular}{lclcll}
a=ga & mas & wus=ia & pa & lao=ea & na. \\
1SG.S=IRR & must & take=3SG.OBJ & GO & plant-3SG.OBJ & DEM \\
'You must give me one, I must take it away and plant it.' &
\end{tabular}

\subsection*{10.3.3.7 Change of state}

One use of panei 'COME' as an auxiliary is to encode a change of state (in addition to direction, see 9.3.3.8). In this case, panei tends to occur with the copula \(p i\), as seen in (68) and (69):
(68) Ur=kut panei pi te=matua.

3pl.S=CERT come COP SBST=be.old
'They became old.'
(69) Tu=panei pi natam̃ol maskosko. 1PL.INCL.S=come COP person mature
'We became adults.'

However, the elicited examples below show that panei does not need to occur with the copula to express a change of state. With stative intransitives such as matua 'be old' or kiki 'be small', the copula is not needed:

\footnotetext{
\({ }^{8}\) Note also that a homophonous and native form exists: the intransitive verb mas 'be cooked'.
}

\subsection*{10.3.3.8 Direction and motion}

Two auxiliaries express direction and motion to the location of the event encoded by the main verb. \(P a\) expresses direction away from the speaker or deictic centre, while panei encodes the opposite direction, namely towards the speaker or deictic centre. They also encode motion since they occur with non-motion verbs. In (72), pa occurs with the main verb kil 'dig', encoding motion away from the deictic centre and towards the location of the digging:

\section*{(72) \(\mathrm{Tu}=\mathrm{mro}\) pa kil nawi. 1PL.INCL.S=AGAIN go dig yam \\ 'We went to dig yam again.'}

In (73), fa occurs in an irrealis clause. It expresses motion away from the deictic centre to undertake the carrying event:
(73) Kane nag ku=kasua, \(\quad\) pa=fa \(\quad\) slat=ia.
but 2SG 2sG.S=be.strong 2SG.S:IRR=go:IRR carry=3SG.OBJ
'But you're strong, you'll go and carry it.'

In (74), panei is an auxiliary to the serial verb construction formed with matur 'sleep' and ne 'be.with'. It encodes motion towards the deictic centre to undertake the sleeping event:
\begin{tabular}{lllll}
E=ti & panei & maturu & ne=a & mau. \\
3sG.S=NEG & come & sleep & with=3SG.OBJ & NEG2 \\
'She didn't come to sleep with him.' & &
\end{tabular}

Note that \(p a\) and panei also occur as clause-final particles to express direction (see 10.6.4, 10.6.5). This is shown in (75), in which panei occurs twice, first as a clause-final particle following the verb talof 'shake hands', then as an auxiliary with the main verb skar 'join'. In both cases, panei expresses motion and direction towards the speaker as the main verbs are not verbs of motion. The difference between auxiliary and particle is that in the auxiliary
construction, motion is undertaken towards the location of the event, whereas with the final particle, motion occurs as part of the event itself:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ur=talof & panei, & ur=panei & skar & tena & n -ur=to. \\
\hline 3PL.S=shake.hands & COME & 3pl.s=come & join & SBST.DEM & REL-3PL.S=stay \\
\hline 'They shake hands, & coming & ards speaker) & hey co & to join th & e ones.' \\
\hline
\end{tabular}

\subsection*{10.4 Serial verb constructions}

\subsection*{10.4.1 Phonological and formal properties of SVCs}

SVCs consist of more than one verb filling the V slot of the verb complex (see chapter 9, fig. 9.1). The verbs are contiguous and no element can occur to separate them. While this is the main defining property, other important properties are compounding and argument sharing.

Verb compounding occurs when contiguous verb roots are part of the same phonological word. \({ }^{9}\) This happens either when the first verb in the series is monosyllabic or, if it is disyllabic or trisyllabic, when its final syllable has no onset. In (76), to 'stay' and raki 'follow' form a SVC and are part of the same phonological word, because to is monosyllabic. They form a compound:

In (97), maroa 'think' and parkat 'catch' also form a compound. Note that maroa loses its final vowel in the compounding process:
\begin{tabular}{lllll}
& ['ap.lo] & [.ma.ro.'par.ke.'ti] & \\
konou & a=plo & maroa & parkat=ia & to. \\
1SG & 1SG.S=STILL & think & catch=3SG.OBJ & STAT \\
'I still remember it.' & & &
\end{tabular}

When the first verb does not satisfy these constraints, the serialised verbs belong to different phonological words and compounding does not occur. This is seen in (78), in which palse 'paddle' does not form a compound with raus 'follow':

\footnotetext{
\({ }^{9}\) See 2.4.3.2 on stress and the phonological word and 3.2.3 on nominal compounding.
}
\begin{tabular}{llll}
{\(\left[\right.\) ['kp \({ }^{\mathrm{w}}\) a.ti] } & ['pal.sə] & [raw.'si] & \\
\(\tilde{\mathrm{p} a=t i}\) & palse & raus=ia & mau. \\
1SG.S=STILL & paddle & catch=3SG.OBJ & STAT \\
'Do not paddle following it' & &
\end{tabular}

Another piece of evidence for compounding is given by verbs undergoing final-consonant loss alternation (see 3.3.5). These verbs lose their final consonant when they occur in first position in an SVC. In (105) the verbs put 'pull' and rogo 'feel' form a compound: put is reduced to \(p u\), and the verb roots form a single phonological word including the subject and object clitics:
(79) [e.pu.ro.'ye]

A=pu rog=ea tapla, e=sok!
1SG.S=pull feel=3SG.OBJ like.this 3SG.S=jump
'I tried to pull it like this, it jumped!'

Because compounding in SVCs depends on the syllable shape of V1, it is not regarded as a general defining property of SVCs, but only as a property of some SVCs. There has been some debate in the literature as to whether compound verbs should be treated as SVCs or not. In Saliba, Margetts (1999:101) suggests that verb compounding does not contradict a serialisation analysis. Similarly, Crowley (2002:16) does not oppose verb compounds and serialised verbs, and suggests that compounding is one property found in some SVCs and for some languages. However, an opposite view arguing that compound verbs cannot be analysed as SVCs is also taken. In South Efate, Thieberger (2006:223-224; 2006:226; 2007) analyses the equivalent of SVCs in many other Oceanic languages as symmetrical compounds. Following this analysis for Lelepa would entail recognising two distinct constructions: verb-verb sequences forming a phonological word would be compounds, while those that do not form a phonological word would be SVCs. This is not attractive for Lelepa, as compounding is a characteristic of some verb-verb sequences only. Thus, positing SVCs and recognising that some of these can form compounds leads to a simpler analysis.

Argument sharing is another common property of serial verbs, as discussed in Aikhenvald (2006:12), Crowley (2002:40), and Bril (2007:281), amongst others. In Lelepa, serialised verbs can share up to two arguments, depending on their transitivity status. In the case of SVCs with intransitive verbs only, verbs share the subject, as in (80):
(80)
\begin{tabular}{lllllll}
Ur=self & nmal & nkas tete na & e=roa & wane & napua \\
3PL.S=be.beside & trunk & tree & some REL & 3SG.S=fall & lie & road \\
'They were next to a tree trunk which had fallen on the road.' &
\end{tabular}

In SVCs mixing transitive and intransitive verbs, only the subject argument is shared, as in (81):
\begin{tabular}{lllll}
A=tagtof=ia, & a=tagtof=ia & e=roa & nat & ntan. \\
1SG.S=cut=3SG.OBJ & 1SG.S=cut=3SG.OBJ & 3SG.S=fall & throw & ground \\
'I cut it, I cut it and it falls down hard on the ground.' & &
\end{tabular}

In the case of an SVC involving transitive verbs only, all arguments are shared by both verbs, as in (82):
(82)
\begin{tabular}{llllll}
A=ta & p̃rae & kopea, & a=ta & prae & kerak. \\
1SG.S=cut & split & stern & 1SG.S=cut & split & prow \\
'I split the stern in two, and I split the prow in two.' &
\end{tabular}

It may also be the case that the serialised verbs do not share any argument. In (83), the first verb kasua 'strong' has a subject realised with the proclitic \(e=\) '3sG.S'. The second verb wia 'be good' expresses the manner in which the event encoded by kasua is performed. It functions as a modifier of V1 and does not subcategorise for any argument, so it does not participate in argument sharing:
\(\begin{array}{llllllll}\text { (83) } & \text { Ar=kat } & \text { mut } & \text { suk~suk } & \text { nalul-la } & \text { pan } & \text { pan } & \text { pa, } \\ & \text { 3DU=CERT } & \text { tie } & \text { tight~RED } & \text { hair-3SG.POSS } & \text { GO } & \text { GO } & \text { GO }\end{array}\)
e=kat kasua wia to.
3SG.S=CERT be.strong be.good STAT
'They tied his hair tightly until it was very strong.'

\subsection*{10.4.2 Patterns of formation}

There are two basic patterns of SVC formation: in pattern 1, V1 does not vary and combines with a variety of V2s (see table 10.5), while in pattern 2 (see table 10.6), V2 does not vary while V1 does. Note that some constructions occur in both patterns, showing that SVCs are not exclusive to either pattern. In the first pattern, V2 modifies V1 to produce a range of meanings. These meanings can be compositional, as with rog maeto feel+be angry > 'feel angry', lao mtarog stand+be quiet \(>\) 'stand quietly', palse raus paddle+follow \(>\) 'paddle following s.t.', but can also be non-compositional and lexicalised, as with rog tortor feel+sweat > 'hurry', to len
stay + be straight \(>\) 'stand up', lo sarsar look+run \(>\) 'look everywhere' or roa nat fall+throw \(>\) 'fall hard'.
\begin{tabular}{|c|c|c|c|}
\hline V1 & V2 & gloss V1+glossV2 & overall gloss \\
\hline rogo & \begin{tabular}{l}
maeto \\
wia \\
tae \\
tortor
\end{tabular} & \[
\begin{array}{|l|}
\hline \text { 'feel' + 'be angry' } \\
\text { 'feel' + 'be good' } \\
\text { 'feel' + 'know' } \\
\text { 'feel' + 'sweat' } \\
\hline
\end{array}
\] & \begin{tabular}{l}
'feel angry' \\
'feel good' \\
'recognise' \\
'hurry'
\end{tabular} \\
\hline lao & \begin{tabular}{l}
mtarog \\
to \\
mato
\end{tabular} & \[
\begin{array}{|l|}
\hline \text { 'stand' + 'be quiet' } \\
\text { 'stand' + 'stay' } \\
\text { 'stand' + 'stay.long' } \\
\hline
\end{array}
\] & \begin{tabular}{l}
'stand quietly' \\
'stand waiting' \\
'stand waiting for a long time'
\end{tabular} \\
\hline palse & \begin{tabular}{l}
raus \\
llu \\
wuru \\
talel
\end{tabular} & \[
\begin{array}{|l|}
\hline \text { 'paddle' + 'follow' } \\
\text { 'paddle' + 'return' } \\
\text { 'paddle' + 'pass s.w.' } \\
\text { 'paddle' + 'go around' } \\
\hline
\end{array}
\] & 'follow paddling' 'return paddling' 'pass s.w. paddling' 'paddle around s.t.' \\
\hline kasua & wia & 'be strong' + 'be good' & 'be very strong' \\
\hline maro(a) & \begin{tabular}{l}
parkat \\
kasua \\
llu
\end{tabular} & \begin{tabular}{l}
'think' + 'catch' \\
'think' + 'be strong' \\
'think' + 'return'
\end{tabular} & \begin{tabular}{l}
'remember' \\
'be sure' \\
'think back'
\end{tabular} \\
\hline len & wia & be straight + be good & 'be nicely straight' \\
\hline to & \[
\begin{array}{|l|}
\hline \text { len } \\
\text { plak }
\end{array}
\] & \[
\begin{array}{|l|}
\hline \text { 'stay' + 'be straight' } \\
\text { 'stay' + 'be with s.o.' } \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline \text { 'get up’ } \\
\text { 'stay with s.o.' } \\
\hline
\end{array}
\] \\
\hline 10 & tae wia-ki parkat sarsar wus \(p a-k i\) maskos & \[
\begin{array}{|l|}
\hline \text { 'see' + 'know' } \\
\text { 'see' + 'be good-TR' } \\
\text { 'see + 'catch' } \\
\text { 'see' + ‘flow' } \\
\text { 'see' + 'follow' } \\
\text { 'see' + 'go-TR' } \\
\text { 'see' + 'be clear' } \\
\hline
\end{array}
\] & \begin{tabular}{l}
'recognise' \\
'look at s.t. with interest' \\
'look after; beware’ \\
'look everywhere’ \\
'follow s.t. with eyes' \\
'look towards’ \\
'see s.t. clearly'
\end{tabular} \\
\hline psa & \begin{tabular}{l}
sursuru \\
tonaki
\end{tabular} & \begin{tabular}{l}
'speak' + 'seduce' \\
'speak' + 'block'
\end{tabular} & 'comfort' 'explain' \\
\hline ta & \[
\begin{aligned}
& \hline \text { pkal } \\
& \text { prae }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 'cut' + 'raise' } \\
& \text { 'cut' }+ \text { 'split' } \\
& \hline
\end{aligned}
\] & 'finely shape’ 'split s.t. in two' \\
\hline roa & \begin{tabular}{l}
nat \\
pra \\
pat \\
\(p a-k i\)
\end{tabular} & \[
\begin{array}{|l}
\hline \text { 'fall' + 'throw' } \\
\text { 'fall' + 'crash' } \\
\text { 'fall' + 'hit' } \\
\text { 'fall' + 'go-TR' } \\
\hline
\end{array}
\] & \begin{tabular}{l}
'fall hard' \\
'fall and crash' \\
'fall and hit' \\
'fall on s.t.'
\end{tabular} \\
\hline sok & pat & 'jump' + 'hit' & 'jump and hit s.t.' \\
\hline
\end{tabular}

Table 10.5. SVC formation (pattern 1)

SVCs following the second pattern often include an activity or motion verb as V1, while V2 does not vary and modifies V1. SVCs expressing cause-result follow this pattern, with V2 expressing the result of the event encoded by V1: for instance prae 'split' as V2 expresses result and combines with cutting and breaking verbs such as ta 'cut' and \(\tilde{p a t}\) 'hit'.

Motions verbs as V1 combine with a directional V2 which gives a direction or a destination to the motion. When motion verbs combine with \(p a-k i\) ' \(g o-T R\) ' as V 2 , the object has the role of location, and if they combine with pnoti 'go away' the SVC expresses motion away from the speaker or deictic centre. Activity verbs can also combine with rogo 'feel; hear' V2 position to express the meaning 'try to perform the activity encoded by V1'. For instance paam 'eat' combines with rogo to express the meaning 'taste', while put 'pull' with rogo gives the meaning 'try to pull'.
\begin{tabular}{|c|c|c|c|}
\hline V1 & V2 & gloss V1+glossV2 & overall gloss \\
\hline \begin{tabular}{l}
paam \\
типи \\
put \\
lao \\
kel \\
tla \\
wules \\
Lotu
\end{tabular} & rogo & \[
\begin{aligned}
& \text { 'eat' + 'feel' } \\
& \text { 'drink' + 'feel' } \\
& \text { 'pull' + 'feel' } \\
& \text { 'spear' + 'feel' } \\
& \text { 'dig' + 'feel' } \\
& \text { 'lever' + 'feel' } \\
& \text { 'call out' + 'feel' } \\
& \text { 'worship' + 'feel' }
\end{aligned}
\] & \begin{tabular}{l}
'taste (by eating)' \\
'taste (by drinking)' \\
'try to pull' \\
'try to spear (to reach target)' \\
'dig to test (if yam is harvestable)' \\
'try to lever (to get s.t. out of ground)' \\
'call out to test (whether someone is there)' \\
'experience being a Christian'
\end{tabular} \\
\hline \begin{tabular}{l}
taakiae \\
sara
\end{tabular} & wuru & \[
\begin{aligned}
& \text { 'dance' + 'pass' } \\
& \text { 'run' + 'pass' } \\
& \hline
\end{aligned}
\] & 'dance all around s.w.' 'run along s.w.' \\
\hline lik maroa & kasua & \[
\begin{aligned}
& \text { 'hang' + 'be strong' } \\
& \text { 'think' + 'be strong' }
\end{aligned}
\] & 'hang strongly' 'be sure' \\
\hline \begin{tabular}{l}
maroa \\
10
\end{tabular} & parkat & \[
\begin{aligned}
& \text { 'think' + 'catch' } \\
& \text { 'see' + 'catch' }
\end{aligned}
\] & \begin{tabular}{l}
'remember' \\
'look after; beware; observe'
\end{tabular} \\
\hline \[
\begin{array}{|l|}
\hline t a \\
\tilde{p a t} \\
\text { sil } \\
\hline
\end{array}
\] & prae & \begin{tabular}{l}
'cut' + 'split' \\
'hit' + 'split' \\
'enter' + 'split'
\end{tabular} & 'split by cutting' 'split by hitting' 'split open' \\
\hline \[
\begin{array}{|l|l}
\text { to } \\
\text { sfa }
\end{array}
\] & raki & \[
\begin{aligned}
& \text { 'stay' + 'follow' } \\
& \text { 'run' + 'follow' } \\
& \hline
\end{aligned}
\] & 'wait for' 'run towards' \\
\hline \[
\begin{aligned}
& \hline \text { pat } \\
& \text { tae } \\
& \text { lo } \\
& \hline
\end{aligned}
\] & wia & \[
\begin{aligned}
& \text { 'make' + 'be good' } \\
& \text { 'know' + 'be good' } \\
& \text { 'look' + 'be good' } \\
& \hline
\end{aligned}
\] & 'make s.t well; treat s.o. well' 'know well' 'regard s.t./s.o. well' \\
\hline \[
\begin{array}{|l|}
\hline \operatorname{sun}(a) \\
\text { sak } \\
\hline
\end{array}
\] & pa-ki & \[
\begin{aligned}
& \text { 'go down' + 'go-TR' } \\
& \text { 'go.up' + 'go-TR' } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
'go down s.w.' \\
'go up to s.w.'
\end{tabular} \\
\hline \[
\begin{array}{|l}
\hline p a \\
\text { suara } \\
\text { sfa } \\
\text { sal } \\
\text { sua } \\
\text { ta } \\
\hline
\end{array}
\] & pnot & \[
\begin{aligned}
& \text { 'go' + 'go away' } \\
& \text { 'walk' + 'go away' } \\
& \text { 'run' + 'go away' } \\
& \text { ‘drift + 'go away' } \\
& \text { 'go down' + 'go away' } \\
& \text { ‘cut' + 'go away' } \\
& \hline
\end{aligned}
\] & ```
'go away'
'walk away'
'run away'
'drift away'
'go down and away'
'cut away (from starting point of cutting)'
``` \\
\hline
\end{tabular}

Table 10.6. SVC formation (pattern 2)

\subsection*{10.4.3 Semantics of SVCs}

\subsection*{10.4.3.1 Direction/location/position}

Expressing location and direction is a common function of SVCs. SVCs encoding such distinctions are generally a combination of a motion verb as V1 and a directional verb as V2. If V2 is intransitive, the direction or location is given by its semantics. In contrast, with a transitive V2 the direction/location is expressed by the object. In (84) and (85) V2 is intransitive: \(l l u\) 'return' expresses direction back to a previous location, and pnoti 'go away' expresses direction away from the speaker or deictic centre:
\begin{tabular}{lllll} 
(84) & Ar=to & se, \(\quad\) ar=sfa & llu & panmei. \\
1DU.EXCL. \(S=\) stay while 1DU.EXCL.s=run & return & COME \\
'We (two) stayed, then we ran back.' & &
\end{tabular}


In contrast, raki 'follow' is a transitive directional verb expressing an indeterminate direction. In (86) it occurs as V2 and takes the object Fels 'p.name' which encodes the direction of the motion expressed by sfa 'run':
Ur=sfa raki \(\quad\) A=fels.
3pL.S=run follow \(\quad\) LOC=p.name
'They ran towards Fels.'

Some SVCs encode motion to a location. This is generally done with a motion verb as V1, followed by the derived transitive \(p a-k i\) 'go-TR' as V2. The object of the SVC encodes the destination of the motion. This is seen with sua 'go down' in (87), sak 'go up' in (88), and roa 'fall' in (89):

(88) E=sak pa-ki sum̃a pan tapla se, 3SG.S=go.up go-TR house go like.this while 'He went up to the house like this,'
(89)
\begin{tabular}{lllll}
\begin{tabular}{lll} 
Ar=pa \\
3DU.S=go
\end{tabular} & \begin{tabular}{l} 
pos \\
step
\end{tabular} & \begin{tabular}{l} 
nrana, \\
branch
\end{tabular} & \begin{tabular}{l}
\(\mathrm{e}=\) makoto, \\
3 SG.S=break
\end{tabular} & \begin{tabular}{l} 
ar=roa, \\
\(3 D U . S=\) fall
\end{tabular} \\
\begin{tabular}{llll} 
ar=roa & pa-ki & tan & pa. \\
\begin{tabular}{l} 
3DU.S=fall
\end{tabular} & go-TR & down GO \\
'They (two) & went to step on the branch, it broke, they fell, they fell down on the ground.'
\end{tabular}
\end{tabular}

Like pa-ki, wuru 'pass' is a transitive motion verb which does not express a particular direction and can occur in SVCs as V2. In (90), the object Mtalnafia 'p.name' encodes the location that the river is running along:
(90) Nuwai wa-n e=sara wuru aaa... a=sei... Mtalnafia pa. water DEM-ADD 3SG.S=run pass HESIT LOC=who p.name GO 'That river runs along hum... where... Mtalnafia.'

Less commonly, a SVC can express position, which is denoted by V2, generally an intransitive verb. In (91) wane 'lie' denotes the position of a corpse. Recall from 10.3.2.3 that wane also occurs as an auxiliary and a clause-final particle. As an auxiliary, it precedes the main verb, and as a clause-final particle, it occurs after all arguments. The construction in (91) is analysed as an SVC because wane follows mat 'dead' and precedes the oblique argument napua 'road':
(91) \(\mathrm{E}=\) kat mat wane napua.

3SG.S=CERT dead lie road
'He lay dead on the road.'

\subsection*{10.4.3.2 Sequentiality}

In sequential SVCs, the event denoted by the clause is a sequence of several sub-events encoded by each serialised verb. The sequence is ordered following the order of the verbs: the event encoded by V1 happens before the one encoded by V2. This is seen in (92), in which the subject of the SVC sok \(\tilde{p} a\) 'jump and hit s.t.' is a fish that jumped out of the water and hit the surface:
(92)
\[
\begin{aligned}
& \mathrm{e}=\text { sok } \quad \text { pa ntas. } \\
& \text { 3sG.s=jump hit sea } \\
& \text { 'It jumped and hit the sea.' }
\end{aligned}
\]

In (93), the verbs tof 'push' and rwa 'turn' are serialised and express two sub-events in a sequence. Tof surfaces without its final consonant because it is a transitive verb which participates in final-consonant loss alternation (see 3.3.5):
(93)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline A=lop̃a & wara & luku & e=ga & wane=s, & \(\mathrm{a}=\) to & rwa=e, \\
\hline 1SG.S=see & place & hole & 3SG.S=IRR & \(\mathrm{lie}=3 \mathrm{OBL}\) & 1SG.S=push & turn=3SG.OBJ \\
\hline a=to & rwa=e & p & \(\mathrm{e}=\) nou, & & & \\
\hline 1sG.S=push & turn=3 & G.OBJ & 3sG.s=be & finished & & \\
\hline 'I look at the until done,' & place in & hich th & ole will be at & I push and & turn it over, & sh and turn \\
\hline
\end{tabular}

In (94), roa 'fall' expresses a falling sub-event and pra 'fall' the following crash:
(94) Ten yia, nasum̃a tap nge e=roa pra ntan. ten years house taboo DEF 3SG.S=fall crash ground '(after) Ten years, the church fell down on the ground.'

\subsection*{10.4.3.3 Cause-effect}

Like in sequential SVCs, in cause-effect SVCs the main event denoted by the clause is comprised of several sub-events, each of which is encoded by a verb in the series. However, cause-effect SVCs differ in that V1 expresses a cause and V2 its effect, thus cause-effect SVCs entail a change of state. This is seen in (95) and (96), in which the hitting sub-event in (95) and the entering sub-event in (96) are causes encoded by V1. The effect is the splitting of the object encoded by prae 'split' as V2:
\begin{tabular}{llll}
\(\mathrm{E}=\) pa & prae & rarua & naara. \\
3SG.S=hit & split & canoe & 3PL.POSS
\end{tabular}
'He split their canoe by hitting it.'
(96) String e=ga sil p̃rae nar-go
string 3SG.S=IRR enter split hand-1SG.Poss
'The string would split my hand by entering it.'

In some SVCs, the cause-effect relationship is not obvious, suggesting a lexicalised construction. This is seen in (97) with maroa parkat 'think + catch' which is translated with the English verb 'remember':
\begin{tabular}{llllll} 
(97) & \begin{tabular}{l} 
Tu=ga \\
1PL.INCL.S=IRR
\end{tabular} & to & IPFV & maroa & parkat=ia \\
think & catch=3SG.OBJ & \\
& & & & & \\
takanei & misi & e=wus & na-fsa-na & tap. \\
how & missionary & 3sG.S=follow & N.SPEC-peak:IRR-NMLZ & be.taboo \\
'We will remember how & missionaries brought the Gospel.' &
\end{tabular}

\subsection*{10.4.3.4 Manner}

In manner SVCs, V2 modifies V1 to encode the manner in which the event is performed. Generally, V1 is an activity verb that can be intransitive or transitive, while V2 is a stative intransitive verb. However, V2 can sometimes be transitive, as will be seen below. In (98) and (99), the stative intransitive kasua 'be strong' occurs as V2, functioning as an intensifier of the event encoded by V1. In (98), the subject is told to hang strongly:
(98) Turaraka, pa a liko sua ta=ga pa se ki lau p.name 2SG.S:IRR=hang be.strong while 1DU.S.INCL=IRR go.down go-TR seawards 'Tuaraka, hang on strongly while we go down to the shore.'

In (99), the SVC maroa keasua 'think+be strong' encodes the meaning 'be sure':
(99) Go nlakan \(\mathrm{e}=\mathrm{pi}\) tenge,
and because 3 SG.S=COP SBST.DEF
\(\begin{array}{lllll}\text { a=maroa kasu-ki-nia lag } & \text { nae } & \text { mol, } \\ \text { 1SG.S=think } & \text { be.strong-TR=3SG.OBJ } & \text { COMP } & \text { 3SG only }\end{array}\)
e=ga mro mas skei-na
3SG.S=IRR AGAIN must one-3SG.POSS
'And because of this, I was sure that (it would be) just him, he would have to be by himself.'

A common combination expressing manner has wia 'be good' as V2. In this case, the event encoded by V1 is done properly if V1 is an activity verb, or does not incur any negative change of state if V1 is a stative verb. In (100), the object of the SVC is a raft that the subject is making for a sea voyage:
(100) \(\mathrm{E}=\) pat wia-ki-nia,go \(\mathrm{e}=\) tumalua.

3SG.S=make be.good-TR-3SG.OBJ and 3SG.S=leave
'He made it properly, then he left.'

In (101), the stative verb tau 'stay' is V1 and is modified with wia as V2. The SVC expresses that no change of state occurred. The subject of the SVC nap̃as aginta 'meat 1PL.EXCL.POSS >
our meat' refers to game that hunters hung to a tree, in order to avoid spirits stealing or eating it:
(101) Nap̃as aginta e=ga tau wia tau pan pa... paki pulp̃og pa. meet 1PL.INCL.POSS 3SG.S=IRR stay be.goodSTAT GO GO to morning GO 'Our meat will stay safe on and on, until morning.'

It is also possible for wia to be transitivised with \(-k i\) 'TR'. In this case the SVC can be applicative (see 8.7.1.1) as in (102), or take a complement clause, as in (103):
\begin{tabular}{lllll} 
(102) & \begin{tabular}{l} 
E=ga
\end{tabular}\(\quad\) fat & wia-ki & srago & \begin{tabular}{l} 
a=sum̃a. \\
3SG.S=IRR
\end{tabular} \\
& make & be.good-TR-3SG.OBJ & things & LOC=house \\
& 'She will do the house chores properly.'
\end{tabular}
(103) Maala nae... e=tae wia-ki-nia lag ur=ga fa lao, swamp.harrier 3SG.S=know be.good-TR-3SG.OBJ COMP 3PL.S=IRR go:IRR plant 'And the swamp harrier... he knew well that they would go plant,'

\subsection*{10.4.3.5 V1 + rogo 'feel': try, test}

This interesting construction involves an activity verb as V1 and the transitive verb rogo 'feel; hear' as V2. It expresses the fact that the subject tries to perform the activity encoded by V1. V1 expresses the activity that is tested, while rogo contributes the 'trying' or 'testing' meaning. This construction is not semantically compositional, but its semantics are predictable, as shown by the different combinations of V1 with rogo (table 10.6), which all express the idea of trying or testing. It is possible that the combination of paam 'eat' with rogo 'feel' seen in (104) is the bridging context for this construction, which is close to be semantically compositional:
(104) Ar=pan lag ar=ga faam rog=ea, ar=paam=ia se... 3DU.S=go PURP 3DU.S=IRR eat:IRR feel=3SG.OBJ 3DU.S=eat=3SG.OBJ while 'They went in order to taste it, they ate it while...'

In contrast, the SVCs in (105) to (107) are not semantically compositional, but their meaning is predictable:
\begin{tabular}{llll} 
A=pu & rog=ea & tapla, & \(e=\) sok! \\
3sG.S=pull & feel=3sG.OBJ & like.this & 3sG.S=jump
\end{tabular}
(106) \(\mathrm{ku}=\mathrm{kano} \quad\) lao=ea, \(\mathrm{ku}=\) kano lao rogo neika tete.

2SG.S=cannot spear=3SG.OBJ 2SG.S=cannot spear feel fish some
'You can't spear it, you can't try spearing any fish.'
(107) \(\mathrm{A}=\mathrm{ga}\) kil rogo tena. 1SG.S=IRR dig feel SBST.DEM 'I will try digging this one.'

\subsection*{10.5 Post-verb constructions}

\subsection*{10.5.1 Formal properties of post-verb constructions}

Post-verb constructions involve a verb immediately followed by a post-verb (see 4.4). Postverbs (in bold) modify a main verb (underlined) as in (108) or a whole SVC (underlined) as in (109):
\begin{tabular}{lll} 
E=msug & lwa & konou \\
3SG.S=carry & removed & 1SG
\end{tabular}
'He took me away.'
(109) \(\mathrm{Ku}=\underline{\text { lao }}\) p̃rae lwa skei.

2SG.S=spear split removed one
'You speared and split one out.'

Several post-verbs can also combine with a main verb, as in (110):
(110) E=pla lwa pkout fefe mauna nae.

3SG.S=pick removed completely leaf all 3SG.Poss
'She completely removed all her leaves by picking them.'

\subsection*{10.5.2 Semantics of post-verb constructions}

Post-verbs encode a range of semantic distinctions including aspect, intensification and result (table 10.7). Completion is encoded with pkout 'completely', and intensification with suk 'tight'. Result is encoded by four different forms, each of which expressing a particular result of the event denoted by the verb. For instance, \(\tilde{p} a\) punu 'hit dead' expresses death by hitting, tpa punu 'shoot dead' expresses death by shooting, and kis punu 'press dead' expresses death by strangling.
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Completion } & \multicolumn{2}{|c|}{ Intensification } & \multicolumn{2}{c|}{ Result } \\
\hline pkout & 'completely' & suk & 'tight' & punu & 'dead' \\
& & & hwa & 'removed' \\
& & & & paksaki & 'clean' \\
& & & & gor & 'block' \\
\hline
\end{tabular}

Table 10.7. Semantics of post-verb constructions

\subsection*{10.5.2.1 Completion: pkout 'completely'}

Typically, pkout occurs with activity verbs to encode the fact that an event is taken to completion. This is seen in (111) with \(t a\) 'cut', in (112) with faam 'eat:IRR', and in (113) with plus 'wipe':
(111)
\begin{tabular}{lll} 
A=ta & pkout=ia & garau
\end{tabular}\(\quad\) e=nou,, finished
(112) Ur=ga faam pkout, go ur=ga sal natmat 3PL.S=IRR eat:IRR completely and 3PL.S=IRR dance peace.ceremony 'They would finish eating, then they would dance at the peace ceremony.'
\begin{tabular}{lll} 
E=kat ti & plus & pkout=ia \\
3SG.S=CERT NEG & wipe
\end{tabular}
namagfai \(\mathrm{e}=\mathrm{kat}\) plupla to.
half 3SG.S=CERT dirty STAT
'She didn't wipe it completely, half (of it) was dirty.'

However, it can occur with some stative intransitive verbs such as wia 'be good' in (114) and paatka 'be enough' in (115) to encode the fact that the state encoded by the verb has been reached:
\begin{tabular}{lclll}
\begin{tabular}{l} 
Ar=pat \\
3DU.S=make
\end{tabular} & \begin{tabular}{l} 
rarua \\
canoe
\end{tabular} & \begin{tabular}{l} 
naara, \\
3PL.POSS
\end{tabular} & \begin{tabular}{l} 
naose, \\
paddle
\end{tabular} & \begin{tabular}{l} 
niasu, \\
bailer
\end{tabular} \\
\begin{tabular}{lllll} 
sragmauna \\
everything
\end{tabular} & pan & pa & \begin{tabular}{l} 
e=wia
\end{tabular} & pkout,
\end{tabular}
ar=tum̃alua.
3DU.S=leave
'They made their canoe, the paddle, the bailer, everything until it was completely fine, and they left.'
\begin{tabular}{lllll} 
Tu=pitlak & nsfa tu=msau-na & malange, & \(\mathrm{e}=\) paatka & pkout. \\
1PL.INCL.S=have what 1PL.S=want-3SG.OBJ & then & 3SG.S=be.enough & completely \\
'We have whatever we want then, that's enough.' & &
\end{tabular}

\subsection*{10.5.2.2 Intensification: suk'tight', suk~suk'tight \(\sim\) RED'}

This post-verb is very common and can be reduplicated to encode emphasis. Constructions with suk express a range of meanings which can be fully compositional as well as noncompositional. In the former case, suk has a meaning close to 'tightly' or 'tighten' and occurs with verbs of holding, grabbing, taking and tying, amongst others. In contrast, when the semantics are not compositional, suk is an intensifier, and can be reduplicated. Post-verb constructions with compositional meaning are shown in (116) to (119) with wus 'hold', pu 'pull', lkoo 'tie' and kis 'press'. These are holding and tying verbs and the gloss 'tight' shows that the meaning of these constructions is compositional:
(116) Kanokik nge \(e=\) wus suk soup̃oumila skei. boy DEF 3sG.s=get tight red.headed.honeyeater INDEF 'The boy tightly held a red-headed honeyeater.'
(117) Marka Ruku \(\mathrm{e}=\mathrm{pu}\) suk ofa to. old.man p.name 3sG.S=pull tight heron STAT 'The old Ruku held the heron tightly.'
(118) \(A=\) lko suk string agnou paki nakiat. 1SG.S=tie tight string 1SG.POSS to boom 'I tied my string to the boom tightly.'
(119) Kanokik e=to kis suk np̃ou soup̃oumila. boy 3SG.S=IPFV press tight head red.headed.honeyeater 'The boy was squeezing the head of the red-headed honeyeater.'

In compositional constructions, suke can also be reduplicated. In this case, it expresses intensification of the activity encoded by the verb. This is shown in (120) with likoo 'hang':
\(\begin{array}{llllll}\text { (120) } & \text { Malmauna, } & \tilde{p} a=\text { liko } & \text { konou, } & \tilde{p} a=\text { liko } & \text { suk~suk } \\ \text { now } & \text { 2SG.S:IRR=hang } & \text { 1SG } & \text { 2SG.S:IRR=hang } & \text { tight~RED } & \text { 1SG }\end{array}\)
nlakan natamol ur=laapa.
because people 3pl.s=be.many
'Now, hang on to me, hang on to me really tight, because there are many people.'

In contrast, with verbs that are not verbs of grabbing, holding, taking or tying, the constructions are not compositional and suk is generally reduplicated. In (121), suksuk combines with pat to give the meaning 'prepare':


In (122), suksuk combines with psa 'speak' to give the meaning 'explain'. In this example, the subject is preparing a plan which he is explaining to people:
\(\begin{array}{llllllll}\text { (122) } & \text { E=to } & \text { pat } & \text { suk } \sim \text { Suk=ia, } & \text { e=to } & \text { psa } & \text { suk } \sim \text { suk } & \text { paki }\end{array}\)

In (123), pai 'pack' combines with suksuk to produce the meaning 'pack quickly'. In this example, the woman heard her son yelling, so she quickly packs the yams she was digging to go check on her son:
\(\begin{array}{lllll}\text { (123) Nina, fterki } & \text { nge } & \mathrm{e}=\mathrm{rog}=\mathrm{ea} & \text { taplange, } \\ \text { then } & \text { woman } & \text { DEF } & \text { 3SG.S=hear=3SG.OBJ } & \text { like.this }\end{array}\)
e=pai suk~suk nawi nge paki kotor nae, se e=tumalua. 3SG.S=pack tight \(\sim\) RED yam DEF to basket 3sG.POSS while 3SG.S=leave 'Then, the woman heard him like this, she quickly packed the yam in her basket, and she left.'

In addition, there are a few forms ending in suksuk which appear to be not analysable in terms of post-verb constructions. Suksuk was fused to these roots and the resulting forms can only be synchronically treated as verb roots with fixed meanings. This is shown in (124) with mursuksuke 'prepare', and in (125) with mtasuksuk 'put aside'. In (124), the speaker observes that when preparations for a wedding are done properly, the wedding invitees are happy:
(124) Go mala wan ku=mursuksuk wia raki-nia, ku=laka=e lag... and when if 2 SG.S=prepare be.good follow-3SG.OBJ 2sG.S=see=3sG.OBJ COMP
te=laapa aginta ur=panmei, ur=lailai.

3sG.S=be.many 1PL.INCL.POSS 3PL.S=come 3PL.S=be.happy
'And when you prepare properly for it, you see that... many of our people come, they're happy.'

In (125), the speaker explains that people make funerary mats for their elders in advance before they pass, then store the mats until they are needed:
\begin{tabular}{lllll} 
Ur=mnaara & pat & tena & e=kat & wane, \\
3pL.S=3PL.BEN & make & SBST.DEM & 3sG.S=CERT & lie
\end{tabular}
kut mtasuksuk=ia e=kat to.
CERT put.aside=3SG.OBJ 3SG.S=CERT stay
'We make this one for them, and we put it aside.'

\subsection*{10.5.2.3 Result: punu 'dead', lwa 'removed', paksaki 'clean', gor 'block'}

These four post-verbs express different results when they occur with activity verbs. The verb expresses the activity performed to reach the result expressed by the post-verb. Note that when these post-verbs occur with pat 'make', the construction encodes the generic activity leading to the result expressed by the post-verb:
\begin{tabular}{lll} 
pat рипи & 'make' + 'dead' & 'kill' \\
pat lwa & 'make' + 'removed' & 'remove' \\
pat paksaki & 'make' + 'clean' & 'clean' \\
pat gor & 'make' + 'cover' & 'cover; block'
\end{tabular}
- рипи 'dead'

In this construction, the verb specifies the mode of killing, and the post-verb the result. Some attested combinations are shown below:
\begin{tabular}{lll} 
рат рипи & 'make' + 'dead' & 'kill' \\
\(\tilde{\text { pa рипи }}\) & 'hit' + 'dead' & 'kill by hitting' \\
\(\tilde{\text { tп }}\) рипи & 'punch' + 'dead' & 'kill by punching' \\
lao рипи & 'spear' + 'dead' & 'kill by spearing' \\
si рипи & 'shoot' + 'dead' & 'kill by shooting (with a gun)'
\end{tabular}
\begin{tabular}{lll} 
tра рипи & 'shoot' + 'dead' & 'kill by shooting (with a bow)' \\
kis рипи & 'press' + 'dead' & 'kill by strangling' \\
sиk pипи & 'stab' + 'dead' & 'kill by stabbing' \\
kat pипи & 'bite' + 'dead' & 'kill by biting; mangle to death' \\
sfа рипи & 'cut circularly' + 'dead' & 'kill by biting (said of sharks)' \\
tа рипи & 'cut' + 'dead' & 'kill by cutting' \\
tа рипи & 'peck' + 'dead' & 'kill by pecking'
\end{tabular}

However, in textual data the form that occurs most commonly is pa punu 'kill by hitting', followed by the generic construction pat punu 'kill'. Note also than in most occurrences of \(\tilde{p} a\) рипи the mode of killing is actually not hitting. This suggests that pa punu is becoming the default way of expressing 'kill'. For instance, in (126) the speaker relates a pig-hunting session. It is known from context that the weapon used to kill the pig was a gun, so hitting was likely not the mode of killing:
\(\begin{array}{llllll}\text { (126) } & \begin{array}{l}\text { Mala } \\ \text { when }\end{array} & \text { tu= } \mathrm{p} a & \text { punu=ea } & \text { tapla, } & \text { tu=slat=ia }\end{array} \quad\) pa.
'When we kill it like this, we carry it away.'

In (127), killing is expressed with pat punu 'kill'. The speaker asks the hearer to kill the heron without specifying the mode of killing, leaving this choice to the hearer:
\begin{tabular}{llllll} 
(127) \begin{tabular}{l} 
Nag \(\quad\) ku=tae
\end{tabular} magnou pat punu ofa? \\
2SG 2SG.S=can 1SG.BEN & make dead & heron \\
'Can you kill the heron for me?'
\end{tabular}
- Iwa 'removed'

This post-verb typically occurs with verbs of getting/grabbing, such as wus 'get' pu 'pull', rkea 'hold with tongues', pla 'pick from ground', saf'pick from tree', etc. It also occurs with verbs of digging such as fes 'dig' and traf 'dig with hands' to encode the activity of digging something out. As shown in the list below, constructions with lwa are largely compositional, even if some are not, such as sru lwa 'shit' + 'remove' > 'shit a lot'.
\begin{tabular}{lll} 
pat liwa & 'make' + 'removed' & 'remove' \\
pa lwa & 'go' + 'removed' & 'remove'
\end{tabular}
\begin{tabular}{lll} 
msug lwa & 'transport' + 'removed' & 'remove by transporting' \\
sla lwa & 'carry' + 'removed' & 'remove by carrying' \\
wus lwa & 'get' + 'removed' & 'remove by getting' \\
pu lwa & 'pull' + 'removed', & 'remove by pulling' \\
pla lwa & 'pick.from.ground' + 'removed' & 'remove by picking from the ground' \\
saf lwa & 'pick.from.tree' + 'removed' & 'remove by picking from a tree' \\
rka lwa & 'remove.stones' + 'removed', & 'remove stones from ground oven' \\
ske lwa & 'pick.with.tongs' + 'removed', & 'remove with tongs' \\
fes lwa & 'dig' + 'removed' & 'dig out' \\
tra lwa & 'dig.w.hands' + 'removed', & 'dig out with hands' \\
rako lwa & 'empty' + 'removed' & 'empty out' \\
nat lwa & 'throw.stones' + 'removed', & 'remove by throwing stones at' \\
tagtof lwa & 'chop' + 'removed' & 'chop out' \\
sura lwa & 'shit' + 'removed' & 'shit a lot'
\end{tabular}

In (128), lwa occurs with the verb of getting/grabbing wus 'get':
\begin{tabular}{llllll} 
E=wus lwa & noana & nanu & nge & nae. \\
\begin{tabular}{l} 
3sG.S=get \\
'He to
\end{tabular} & removed & fruit & coconut & DEF & 3sG.POSS
\end{tabular}

It also occurs with verbs of carrying such as slat 'carry' in (129). In this example, the speaker explains how he changed names several times in the course of his life, to mark advance in social status: \({ }^{10}\)
(129) Ur=mro sla lwa nagi konou. 3PL.S=again carry removed name 1SG
'They removed my name again.'

In (130), lwa occurs with rako 'empty':

\footnotetext{
\({ }^{10}\) Changing names is a common practice in Lelepa. Names are removed and re-assigned to people by men with high status.
}
(130) A=rako lwa nati rarua. 3pl.s=empty removed banana canoe 'I emptied out the bananas from the canoe.' [elicited]

Two constructions, with \(p a t\) 'make' and \(p a\) 'go' as verbs, express identical meanings, that of removing without specifying how:
\begin{tabular}{llllll} 
E=lgaki=nia, & kat & pat & lwa=e & paki & Tuktuk \\
3SG.S=marry=3sG.OBJ & CERT & pa. \\
make & removed=3SG.OBJ & to & Tuktuk & GO \\
'He married her, and took her to Tuktuk.' & & &
\end{tabular}

Note that with pa lyva 'go+remove > remove', there is no motion involved:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline (132) & Ee, & konou & \(\mathrm{a}=\mathrm{pa}\) & lwa & namul=go & na & to. \\
\hline & no & 1SG & 1SG.S=go & removed & skin \(=1\) SG.Poss & DEM & Stat \\
\hline & & remo & skin.' & & & & \\
\hline
\end{tabular}

Finally, note that an equivalent construction is found in Bislama. The suffix aot, related to English out, is productively paired with transitive verbs to give the forms tekemaot 'remove by taking', karemaot 'remove by getting', pulumaot 'remove by pulling', sakemaot 'throw away', etc. Note that Bilsama also has the transitive verb aotem 'remove'.
- paksaki 'clear; clean'

Activity verbs combine with the post-verb paksaki 'clear; clean' to specify the mode of cleaning or clearing. Paksaki can be used when the object of the cleaning/clearing refers to a house, a garden, or a canoe in the making, but also to smaller items, e.g. yams or fruits that were harvested and need cleaning.
\begin{tabular}{lll} 
pat paksaki & 'make' + 'clean' & 'clear; clean' \\
ta paksaki & 'cut' + 'clear' & 'clear by cutting' \\
mas paksaki & 'saw' + 'clear' & 'clear by sawing' \\
srapaksaki & 'sweep' + 'clean' & 'clean by sweeping' \\
plus paksaki & 'wipe' + 'clean' & 'clean by wiping' \\
tpo paksaki & 'push' + 'clear' & 'clear by pushing'
\end{tabular}

In (133), pat paksaki expresses the activity of cleaning a garden:
\begin{tabular}{lllll} 
Go... a=pat & paksaki & tera & agnem, \\
and & 1SG.S=make clean & garden & 1PL.EXCL.POSS \\
'And... I cleaned our garden,' & &
\end{tabular}

In (134), sra paksaki expresses the activity of sweeping the floor clean:
\begin{tabular}{llll} 
Ale, \(\quad\) tu = ga & sra & paksaki & ntan, \\
then & 1PL.INCL.S=IRR & sweep
\end{tabular}\(\quad\)\begin{tabular}{l} 
clean=3SG.OBJ \\
ground
\end{tabular}

In (135), tpo paksaki denotes the action of a bulldozer pushing vegetation to the ground to clear a piece of bush:
(135)
\begin{tabular}{lllll} 
Malmauna, & buldos & \(\mathrm{e}=\) panei & pusum & nkas, \\
now & bulldozer & 3sg.s=come & push & tree
\end{tabular}
e=tp̃o paksaki nalia kane...
3SG.S=push clean place but
'Now, bulldozers come to push trees to the ground, they clear places by pushing vegetation to the ground, but...'

In (136), the object of plus paksaki 'wipe clean' refers to limes that were harvested, cleaned and squeezed:
(136)
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathrm{E}=\) plus
3SG.S=wipe & \begin{tabular}{l}
paksaki-nia \\
clean-3SG.OBJ
\end{tabular} & \[
\begin{aligned}
& \text { pan } \\
& \text { GO }
\end{aligned}
\] & \[
\begin{aligned}
& \text { pan } \\
& \text { GO }
\end{aligned}
\] & \[
\begin{aligned}
& \text { pa, } \\
& \text { GO }
\end{aligned}
\] \\
\hline \(\mathrm{e}=\) nou & tapla, & \multicolumn{3}{|l|}{\(\mathrm{e}=\) mul \(=\) ia.} \\
\hline 3SG.S=be.fini & hed like.this & \multicolumn{3}{|l|}{\(2 \mathrm{SG} . \mathrm{S}=\) squeeze \(=3 \mathrm{SG} . \mathrm{OBJ}\)} \\
\hline
\end{tabular}
- gor 'block; cover'

Like suk, gor is undergoing grammaticalisation. Morphologically, it is still analysable as a postverb in some instances, while it has been fused to a root in others. Semantically, constructions with gor express meanings that range from being compositional to non-compositional. While gor is glossed 'block; cover', the meaning of non-compositional post-verb constructions are best expressed by the free translation. Gor generally occurs with activity verbs, but there are a few instances in which it occurs with stative verbs, for instance tap gor be taboo + block \(>\) wed'. Analysable and non-analysable forms are shown below:
\begin{tabular}{lll} 
Kul gor & 'cover' + 'block' & 'cover (with soft implement)' \\
tpa gor & 'punch' + 'block' & 'prohibit' \\
seisei gor & 'meet' + 'block' & 'negotiate without reaching agreement' \\
mu gor & 'go.in' + 'cover' & 'cover by going in (of tide)' \\
pu gor & 'pull' + 'cover' & 'cover s.t. by pulling s.t. over' \\
ta gor & 'cut' + 'cover' & 'cover s.t. by cutting vegetation to cover it' \\
tun gor & 'bury' + 'cover' & 'bury completely' \\
tap gor & 'be.taboo' + 'cover' & 'wed (of pastor)' \\
raki gor & 'follow' + 'cover' & 'close a march' \\
sragor & 'cover' & \\
tarpagor & 'forget' & \\
tugor & 'obstruct' &
\end{tabular}

Post-verb constructions with gor are always syntactically transitive, with a subject and an object. However, semantically they have three participants (an agent, a patient and an additional participant such as an instrument). In (137), there are two syntactic participants represented by two syntactic arguments, but three semantic participants:
```

(137) Ur=kul gor=ea tapla se ur=tum̃alua.
3SG.S=cover block=3SG.OBJ like.this while 3PL.S=leave
'They covered it like this while they left.'

```

In (138), gor combines with \(p u\) 'pull' to give the compositional meaning 'cover by pulling'. Like in (137), there are three participants: the subject performing the covering, the object that is covered and a third participant, an instrument used to do the covering. Again, only the subject and the object are overtly realised:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{(138)} & To & se, & \(\mathrm{e}=\mathrm{mro}\) & pu & gor=ea, \\
\hline & stay & while & 3SG.S=again & pull & block=3SG.OBJ \\
\hline & \multicolumn{5}{|l|}{'Then he covered it again (by pulling something over it).'} \\
\hline
\end{tabular}

Gor has cognates in a number of Vanuatu languages which show comparable grammaticalisation paths. In some languages such as South Efate (Thieberger 2006:227) and Lolovoli (Hyslop 2001:284), these cognate forms are analysed as verbs with similar glosses
which occur in a range of compositional and non-compositional constructions. In languages such as in Abma, in which goro has a wide range of meanings, it is a verb grammaticalising into a preposition (Schneider 2010:196). Finally, in some languages such Mwotlap, cognates of gor are not analysable as verbs but occur in predicative constructions which show a high degree of non-compositionality (François 2000).

\subsection*{10.6 Clause-final particle constructions}

These particles mark the right boundary of the basic clause and of the verb complex. They encode aspectual values such as stative (to, mato, wane 'STAT'), durative ( \(p a\) ' GO '; \(p a n ~ p a\) ' GO GO'), and whether an event occurred before another one (pea 'FIRST'). They also mark direction towards the deictic centre (panei 'COME') or away from it ( \(p a\) ' GO '). They are the result of grammaticalisation: the same forms also occur as main verbs and as auxiliaries.
\begin{tabular}{|l|l|l|}
\hline & Gloss & \multicolumn{1}{c|}{ Function } \\
\hline to & \multirow{2}{*}{ STAT } & stative \\
\cline { 1 - 1 } mato & & stative (when subject is in a low/lying position) \\
\hline wane & & durative, direction away from speaker/deictic centre \\
\hline\(p a\) & GO & durn \\
\hline pan \(p a\) & GO GO & durative \\
\hline panei & COME & direction towards speaker/ deictic centre \\
\hline pea & FIRST & marks event which happened before other events \\
\hline
\end{tabular}

Table 10.8. Functions of clause-final particles

\subsection*{10.6.1 Stative: to, mato, wane}

These particles occur with two types of verbs: stative intransitives and telic verbs. When they occur with stative verbs, the state is viewed as being perpetuated and no change is envisaged. In contrast, when they occur with telic verbs, the particles encode the fact that an endpoint has been reached and that the event is now a state. These particles do not occur with dynamic verbs expressing activities such as eat, run, sleep, etc. In (139) and (140), to occurs with the stative verbs to 'stay' and pura 'be full':
\begin{tabular}{llcl} 
E=panei to Fatuma & to. \\
3SG.S=come stay p.name & STAT \\
'He came and stayed in Fatuma.'
\end{tabular}
\(\begin{array}{lllll}\text { (140) } & \text { Tum̃o } & \text { nge, } & \text { e=pura } & \text { to. } \\ \text { p.name } & \text { DEF } & \text { 3sG.S=be.full } & \text { STAT }\end{array}\)

In contrast, in (141) and (142), to occurs with wus 'get' and lgaki 'marry', which are both nonstative verbs with an endpoint:
\begin{tabular}{lllll} 
(141) & A=wus=ia & to, & namaliar-go & to. \\
& SGG.S=get=3SG.OBJ STAT & hand-1SG.POSS & STAT \\
& 'I got it, (it is) in my hand.' & &
\end{tabular}
(142) \(\mathrm{Ar}=\) to pan pan pa \(\mathrm{e}=\) nou,
3DU.S=stay GO GO GO 3sG.S=be.finished
\begin{tabular}{lll} 
ar=kat & mnaara & lgaki-ra
\end{tabular} to..

The particle mato occurs in the same environments and has similar semantics. As a verb, mato 'stay long' denotes staying for a longer time than to 'stay', and it is likely that as a stative particle, mato expresses a state that is to remain unchanged for a longer time than to. In (143) and (144) it occurs with the stative verbs lao 'stand' and ne 'be with s.o.', and in (145) with the telic verb tun 'bury':
\begin{tabular}{ll} 
(143) \begin{tabular}{l} 
Ur \(=\) mro \\
3pl.S \(=\) AGAIN stand
\end{tabular} mato. \\
& 'They are standing.'
\end{tabular}
\(\begin{array}{lll}\text { (144) } \begin{array}{ll}\text { Tu=kat } & \text { ne=ra }\end{array} & \text { mato. } \\ \text { 3pl.S=CERT } & \text { be.with=3PL.OBJ } & \text { STAT }\end{array}\)
'We live with them.'
(145) \(\mathrm{A}=\) tun=ia mato warampa.

1SG.S=bury=3SG.OBJ STAT there.forward
'I buried her (and she remains) there.'

Wane expresses an additional contrast that is not encoded by to and mato: in addition to the stative, it expresses the fact that the subject is in a lying or low position. For instance, in (146) wane occurs with the stative verb tapla 'be like this', and the subject is a group of women sitting down and preparing a feast:
(146) Tena SBST.DEM ur=tapla
3pL.s=be.like.this
wane, ur=kat to maginta marka,
STAT 3PL.S=CERT IPFV 1PL.EXCL.BEN make.laplap
ur=to pat nafnaga \(=\mathrm{n}\) aleat.
3PL.S=IPFV food=POSS:NH food=POSS:NH middle.day
'Those who are like this (in a low position, sitting down), they make laplap for us, they are preparing lunch.'

Similarly, in (147) it occurs with the telic verb liko 'hang', and the subject is in the water, swimming with their canoe, and thus is both in a lying and low position:
\(\begin{array}{llllllll}\text { (147) Wan rarua } & \text { nag } & \mathrm{e}=\mathrm{ga} & \tilde{m} u r u, & \tilde{\text { pa }} \mathrm{a}=\mathrm{ti} & \text { trups=ia } & \text { mau, } \\ \text { if } & \text { canoe } & \text { 2SG.POSS } & \text { 2SG.S=IRR } \operatorname{sink} & \text { 2SG.S:IRR=NEG leave=3SG.OBJ NEG2 }\end{array}\)
\(\tilde{p} a=l i k o=s \quad\) wane.
2SG.S:IRR=hang=3SG.OBJ STAT
'If you canoe sinks, do not let it go, hang on to it.'

\subsection*{10.6.2 Durative: pa, pan pa}

In (148) \(p a\) 'GO' occurs in a clause with an activity verb, the transitive net 'plane'. While the first clause denotes a durative activity with \(p a\), the following clause denotes the completion of the activity with the post-verb \(p k\) out 'completely':
\begin{tabular}{llllll} 
E=ga & net=ia & pa, & e=ga & net & pkout=ia. \\
3SG.S=IRR & plane=3SG.OBJ & GO & 3SG.S=IRR & plane & completely=3SG.OBJ
\end{tabular}
'He will plane it on and on, he will plane it completely.'

Examples (149) to (150) exemplify clause-final pa occurring with non-motion verbs as a marker of duration. In (149), the activity of planting is durative, as shown by the occurrence of \(p a\) and by the reduplication of lao 'plant':
```

(149) Nalaklak naara ur=lao~lao pa,elo tra tapla,
white.eye 3PL 3PL.S=RED~plant GO sun shine like.this
ur=ftunu, ur=marou...
3PL.S=be.hot 3PL.S=be.thirsty
`The white-eyes planted and planted, the sun was shining, they were hot, they were thirsty...'

```

Similarly, in (150) the activity of bathing is durative, which is emphasised by the occurrence of clause-final \(p a\). It could be argued that \(p a\) is marking motion away from the deictic centre, especially given the occurrence of the auxiliary verb pa before los 'bathe'. However, since the
main verb is not a verb of motion, clause-final \(p a\) is regarded as marking duration rather than motion away:
\begin{tabular}{llllllll} 
E=pea & pa & los & pa, & grunkiki & e=pa & los, & e=jenj, \\
3SG.S=first & go & bathe & GO & girl & 3SG.S=go & bathe & 3SG.S=change \\
e=kat & panei & to & uta & to. & & \\
3SG.S=CERT & \begin{tabular}{llll} 
come & stay
\end{tabular} & \begin{tabular}{l} 
seawards STAT
\end{tabular} &
\end{tabular}
'She went to bathe first, the girl went to bathe, she changed, and she came to stay on the beach.'

Clause-final \(p a\) very commonly combines with pan 'go' to form the complex particle pan pa 'GO GO'. Although this is a different construction from the one described so far, its function is very similar to when \(p a\) occurs without pan, as pan \(p a\) also denotes that an event is durative. \(P a\) and pan pa contrast in that the latter is used not only to express duration, but also to signal that a following event is to take place. In this sense pan \(p a\) is similar in meaning to English 'until'. Although pan pa is viewed as a single particle on a grammatical level, it forms two phonological words as each syllable is stressed. In (151), it occurs at the end the first clause, showing that the event denoted by the first clause has duration but also signalling that the second clause is in a sequence with the first one:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (151) & \[
\begin{aligned}
& \mathrm{E}=\mathrm{ufa}=\mathrm{e} \\
& \text { 3sG.S=carry=3sG.OBJ }
\end{aligned}
\] & \begin{tabular}{l}
pan \\
go
\end{tabular} & \[
\begin{aligned}
& \text { pa, } \\
& \text { go }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{e}=\text { oufaki-nia } \\
& \text { 3sG.S=bury-3SG.OBJ }
\end{aligned}
\] & warange, there & Maroa, p.name \\
\hline & \[
\begin{aligned}
& \text { taafa }=\mathrm{n} \\
& \text { inlandwards }=\text { POSS. NH }
\end{aligned}
\] & \multicolumn{2}{|c|}{Maroa. p.name} & & & \\
\hline & 'She carried her on and & on, & & her there, in Maro & p the hill & aroa.' \\
\hline
\end{tabular}

Pan can be repeated to encode an unusually long duration, as in (152) and (153). This shows iconicity between the form of the particle (repeated several times) and the duration of the event (especially long). In (152) pan pan pa occurs twice, to encode the long duration of a plane trip:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline (152) & \[
\begin{aligned}
& \mathrm{Ur}=\mathrm{sfa} \\
& \text { 3pL.S=run }
\end{aligned}
\] & \[
\begin{aligned}
& \text { pan } \\
& \text { GO }
\end{aligned}
\] & \[
\begin{aligned}
& \text { pan } \\
& \text { GO }
\end{aligned}
\] & pa
GO & \begin{tabular}{l}
aleat \\
day
\end{tabular} & \begin{tabular}{l}
Mande, \\
Monday
\end{tabular} & & \\
\hline & \[
\begin{aligned}
& \text { ur=mro } \\
& \text { 3pL.S=AGAIN }
\end{aligned}
\] & \begin{tabular}{l}
sfa \\
run
\end{tabular} & pan
GO & \begin{tabular}{l}
pan \\
GO
\end{tabular} & \[
\begin{aligned}
& \text { pa } \\
& \text { GO }
\end{aligned}
\] & Mande, Monday & \[
\begin{aligned}
& \mathrm{e}=\mathrm{mro} \\
& \text { 3sG.S }=\text { AGAIN }
\end{aligned}
\] & malogo be.dark \\
\hline
\end{tabular}
'We travelled on and on until the Monday, we travelled again for a long time on the Monday, until it was night again.'

In (153), pan is repeated five times, denoting an unusually long length of time:
\begin{tabular}{llllll} 
Pasta & Lori & e=mro & pi & intemodereta & agnem, \\
pastor & p.name & 3sG.S=AGAIN & COP & inter-moderator & 1PL.EXCL.POSS
\end{tabular}
\begin{tabular}{lll} 
e=stat & 1980 & nge, \\
3sG.S=start & 1980 & DEF
\end{tabular}
e=to pat na-wesi-na pan pan pan pan pan pa,
3SG.S=IPFV make N.SPEC-work-NMLZ GO GO GO GO GO GO
'Pastor Lori became our inter-moderator, he started in 1980, he worked on and on and on and on,'

\subsection*{10.6.3 Previous events: pea}

In contrast to the other clause-final particles, pea 'FIRST' is rare in the textual data. It marks an event as occurring before another event, as in (154):

Kalontan \(e=\tilde{p} a \quad\) punu=ea pea.
p.name 3 sG.s=hit dead=3sG.OBJ FIRST
'Kalontan killed him beforehand.'

Many occurrences of pea as a particle are in conjunction with fea/pea 'first:IRR/R' as an auxiliary, as seen in (155). In this case, clause-final pea denotes the fact that the event it marks is part of a sequence with following events:
\(\begin{array}{llllll}\text { (155) } & \text { Tu=ga } & \text { fea } & \text { pa-ki } & \text { nlak-na } & \text { pea. } \\ & \text { 1PL.INCL.S=IRR } & \text { first:IRR } & \text { go-TR } & \text { trunk-3sG.POSS } & \text { FIRST } \\ & \text { 'We will go to its trunk first.' } & & & \end{array}\)

\subsection*{10.6.4 Direction away from deictic centre: pa}

It was shown that \(p a\) encodes durative aspect with activity verbs. With motion verbs, verbs of throwing, carrying, or any verb which entails motion, pa expresses direction away from the speaker or the deictic centre. In (156) and (157), it occurs with the motion verbs suara 'walk' and the SVC sfa llu 'run return \(>\) run back':
(156) Malmauna, ta=ga to suara pa raki te=ftauri. now 1DU.INCL.S=IRR IPFV walk GO towards SBST=be.married 'Now, let's walk (away from here) towards the married couple.'
(157) Konou a=kat mal-ki-go, \(\tilde{p} a=s f a \quad\) llu pa. 1SG 1SG.S=CERT not.want-TR-2SG.OBJ 2SG.S=run return GO 'I don't want you, run back (away from deictic centre).'

In (158), it occurs with the motion verb sale 'drift'. Note that sale and tataliop 'turn on itself' are two intransitive verbs also forming a SVC:
(158) Faatu namsal na,e=wane sale ta~taliop pa.
stone pummice DEM 3SG.S=IPFV drift RED~turn.around GO
'As for this pummice stone, it was drifting away in circles.'

In (159), it occurs with the throwing verb tarpaki 'drop'. The speaker describes how coconut fronds are left on roof ridges then sewn together tightly to make ridges waterproof:
(159) Ur=pan pan pa, tarp̃aki-nia pa np̃ou fatu a=lag, 3pl.S=go GO GO drop-3SG.OBJ GO top ridge LOC=up
ur \(=\) sel \(\quad\) suk \(\sim\) suk \(\sim\) suk=ia.
3PL.S=sew tight~RED~RED=3SG.OBJ
'They go on and on, drop it on the ridge, then they sew it very tightly.'

In (160) and (161), it occurs with the carrying verbs slat 'carry' and msug 'transport':
\begin{tabular}{llllll} 
(160) & \begin{tabular}{l} 
E=po \\
3SG.S=SEQ
\end{tabular}\(\quad\) mag & fterki & nge & slat=ia & poman
\end{tabular} DEF \begin{tabular}{l} 
carry=3SG.OBJ
\end{tabular}\(\quad\) GO
\(\begin{array}{lllll}\text { (161) } \begin{array}{ll}\text { Trak } & \mathrm{e}=\mathrm{po} \\ \text { truck } & \text { 3sG.S=SEO }\end{array} & \text { to } \mathrm{IPFV} & \text { msug-ra } & \text { pa. } \\ & \text { transport-3PL.OBJ } & \text { GO }\end{array}\) truck 3 SG.S \(=\) SEQ IPFV
'Then transport-3PL.OBJ GO 'Then the truck takes them away.'

In (162), it occurs in a copular clause. While there is no verb entailing motion in this clause, nam̃oru as a predicate expresses a certain idea of distance between the deictic centre (here, the surface of the sea) and the bottom of the sea:
(162) \(\mathrm{E}=\mathrm{pi}\) nausausa kiki wane go \(\mathrm{e}=\mathrm{pi}\) na-m̃oru pa. 3SG.S=COP reef.crack be.small STAT and 3SG.S=COP N.SPEC-hole GO 'It is a narrow crack in the reef and it is very deep.'

\subsection*{10.6.5 Direction towards deictic centre: panei}

Panei 'COME' is in direct contrast with directional \(p a\) 'GO'. It occurs with the same range of verbs and encodes motion towards the deictic centre. It occurs with verbs of motion, as in (163) with sua 'go down', in (164) with wus 'follow', and in (165) with plas 'chase':
\begin{tabular}{lccll} 
Ar=kat \(\quad\) lag & ar=ga & sua & panei. \\
3DU.S=CERT & say & 3DU.S=IRR & go.down & COME \\
'They (two) said they (two) would come down.'
\end{tabular}
(164) \(\mathrm{Tu}=\) po wus napua panei. 1PL.INCL.S=SEQ follow road COME 'We're following the road back.'
\(\mathrm{E}=\) raus \(=\mathrm{ra}, \quad \mathrm{e}=\mathrm{pkas}=\mathrm{ra} \quad\) panei. 3sG.S=follow=3PL.OBJ 3sG.S=chase=3PL.OBJ COME 'He followed them, he chased them (towards deictic centre).'

It occurs with verbs of carrying, as in (166) with msug 'transport':


It is also possible for directional particles to occur with verbs which do not encode any motion. When this is the case, panmei encodes both direction and motion: \({ }^{11}\)
(167) Pasta e=kat pea panmei, ur=kat talofa panmei. pastor 3SG.S=CERT first come 3SG.S=CERT shake.hands COME 'The pastor comes first, they are shaking hands (coming towards us).'

\footnotetext{
\({ }^{11}\) No functional or semantic difference between panmei and panei has been observed, and they seem to be in free variation. My thanks go to Frank Lichtenberk who pointed out that it is likely that panmei comes historically from *pano mai 'go hither', in which case the form panei is innovative (Lichtenberk pers. com.).
}

\section*{Chapter 11 - Aspect and Modality}

\subsection*{11.1 Introduction}

Although aspect and modality are distinct concepts (see 11.1.1 on terminology), they are treated together because they are interacting categories in the language. Lelepa does not display a grammatical category of tense (see 11.4), but in contrast aspect and mood are overt categories. Modality is obligatorily encoded in every clause and aspect is optional but often marked. The clause in (1) has a realis reading but no overt realis marking; and in (2) the irrealis particle \(g a\) 'TRR' occurs in both clauses to mark irrealis mood. \({ }^{1}\) These two examples show that a clause with \(g_{a}\) 'IRR' is in the irrealis, while a clause without it is in the realis. This means that irrealis is overtly marked with \(g a\), and realis is unmarked. An alternative analysis of these two examples would posit a past/future distinction, but note a present reading is possible for (1). In addition, the irrealis is also used to encode other meanings, such as the possibility for an event to occur and the imperative (see 11.2.1.2).
(1) \(E=\) to sarik taplange,

3SG=stay a.little like.this
'He waited a little like this,'
(2) \(\mathrm{Tu}=\mathrm{go}\) trus \(=\mathrm{ia}\), \(\mathrm{e}=\mathrm{ga}\) to sarik.

1PL.INCL.S=IRR leave=3SG.OBJ 3SG.S=IRR stay a.little
'We will leave it, it'll wait a little.'

Mood and modality are often distinguished on a form/semantics basis, whereby mood is used to designate the forms which encode modality, while modality is regarded as a unit of meaning. However, mood and modality are sometimes used interchangeably without distinction. In this study, these two labels are used along a form/semantics distinction, whereby mood is the grammatical expression of modality (see 11.1.2).

\footnotetext{
\({ }^{1}\) Note that the irrealis marker can surface with the back vowel/o/instead of \(/ \mathrm{a} /\), due to a regular process of assimilation discussed in 2.4.5.
}

\subsection*{11.1.1 Terminology}

In this section I introduce the terminology used in this chapter, and particularly the notions of aspect, mood, modality, realis and irrealis, as well as time of speech and time of reference. Since many of these terms are used in different ways in the literature, I define them in the way I use them in the present work to avoid terminological confusions.

Aspect. As often noted in the literature, aspect is a hotly disputed domain in linguistics (see Sasse 2002 for a survey and a historical review of the evolution of this concept in linguistics). Despite differences, it is well accepted on a theoretical point of view that there are two distinct domains to consider when looking at aspect, which could possibly be viewed as two different kinds of aspects: grammatical or verbal or viewpoint aspect (or Aspect1 in Sasse 2002) on the one hand, and lexical aspect, actionality, Aksionsart or situation aspect (Aspect2 in Sasse 2002) on the other. In Binnick's definition (Binnick 2012:32), the former is a language-specific category which interacts with the latter, which is regarded as a 'language-independent categorization of types of eventualities and/or their lexical expression.' It is interesting to note that although grammatical aspect is not further defined by Binnick, the interaction between the two kinds of aspects is recognised, as Binnick states that 'lexical aspect constrains grammatical aspect', while '[grammatical] aspect may serve to transform ("coerce") one Aksionsart into another' (Binnick 2012:32). In the present study, I follow Comrie 1976's definition in which aspect pertains to the internal temporal structure of an event. An event can be temporally bounded or unbounded: a bounded event can be encoded by the inceptive (if only the initial boundary of the event is encoded), the perfective (if both initial and final temporal boundaries of the event are know) or the perfect (when the final boundary of the event is known and has present relevance). In the case in which the event is unbounded, its temporal boundaries are unknown and the event can be viewed as ongoing, in progress or habitual: such events can be encoded in the imperfective. More specifically, I use the term aspect to refer to the notion of grammatical, verbal or vienpoint aspect. In cases where I need to refer to the notion of lexical aspect, I use the term lexical aspect to avoid confusion with aspect.

Mood and Modality. A traditional way of distinguishing these two notions is to regard moods as ways to grammatically encode modalities (Palmer 1986:21). However, it also happens that both notions are not clearly distinguished and used interchangeably (see Timberlake 2007). In this study, mood and modality are distinguished according to Palmer's definition: modality
refers to the semantic space grouping the different modalities together while mood refers to the overt grammatical devices present in the languages to encode those modalities.

Realis and irrealis: these notions refer to two opposite mood values expressing whether the speaker classifies a particular event as actualised or not. An event marked as realis is happening or has happened, while one marked as irrealis has not been actualised - it hasn't happened. In Lelepa, the realis is used to express past and present events, while the irrealis is used to express future events, as well as conditionals and imperatives. Note that negation interacts with both the realis and the irrealis: a negated clause can be marked either as realis or irrealis (see 7.7 on negation).

Time of speech and time of reference: the time of speech is the time when the speaker produces a particular utterance, while the time of reference is the time expressed in a particular utterance. When time of speech and time of reference are the same, this correlation can be referred to as present time. Alternatively, when the time of reference is anterior to the time of speech, this is referred to as past time and when the time of reference is located ahead of time with respect to the time of speech, this is referred to as future time.

\subsection*{11.1.2 Aspect and mood: two overt categories}

Aspect is overtly marked with particles occurring in several places in the clause. There are four positions for aspect particles, with two pre-verbal positions and two post-verbal ones. The pre-verbal positions include the aspect and modality particles' position and the auxiliary position (see fig. 9.1). Post-verbally, one position is dedicated to encoding the perfect, and the other is for encoding duration and stativity with clause-final particles (see 7.1.2, 10.6). Recall from 10.3.2.1 and 10.6 that to 'stay' is an intransitive verb that has grammaticalised into an imperfective auxiliary ( \(t o\) ' \(I P F V\) ') and a clause-final particle ( \(t o\) 'STAT'). Thus to is found in verbal, auxiliary and clause-final particle positions. In (3), to is the main verb in the clause, in (4) it occurs in auxiliary position to mark the imperfective with a progressive reading, and in (5) it occurs as a clause-final particle to mark the event as a state:

40211 Aspect and modality
(3)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \mathrm{A}=\text { panei } \\
& \text { 1SG.S=come }
\end{aligned}
\] & \[
\begin{aligned}
& \text { pa-ki } \\
& \text { go-TR }
\end{aligned}
\] & \begin{tabular}{l}
uta \\
landwards
\end{tabular} & \begin{tabular}{l}
nakerker \\
sand
\end{tabular} & \[
\begin{array}{ll}
\text { taare } & \text { Nak } \\
\text { white } & \text { p.na }
\end{array}
\] & \begin{tabular}{l}
Naktaf, \\
p.name
\end{tabular} \\
\hline \(\mathrm{a}=\mathrm{ti}\) & msau-na & lag & \(\mathrm{a}=\mathrm{ga}\) & fut=ia & mau, \\
\hline 1SG.S=NEG & want-3SG.OBJ & COMP & 1SG.S=IRR & pull:IRR=3SG.OBJ & NEG2 \\
\hline nlakan & \(\mathrm{a}=\mathrm{kano}\) & to & rarua & put=ia. & \\
\hline because & 1SG.S=cannot & t stay & canoe & pull=3SG.OBJ & \\
\hline
\end{tabular}
'I came ashore on the beach at Naktaf, I didn't want to pull it, because I couldn't stay on the canoe and pull it.'
(4) Ur=to pat n-sale-na, ur=to taakae.

3PL.S=IPFV make ART-dance-NMLZ 3PL.S=IPFV dance
'They were having a dance ceremony, they were dancing.'
(5) Konou, \(a=\) tapla mas pa lwa namulu-go na. 1SG 1SG.S=like.this STAT 1SG.S=IRR must go removed skin-1SG.POSS DEM 'As for me, I am like this, I will have to remove my skin.'

Irrealis mood is marked with the particle ga 'IRR', as seen in (2) above. Alternatively, when ga does not occur, the clause has a realis reading. Subject proclitics could be regarded as having the additional function of marking realis, but this would imply that the realis marking carried by the subject proclitic is neutralised when \(g a\) occurs. This explanation can be avoided by stating that the irrealis is marked with ga and the realis unmarked. Mood is also overtly marked in a group of verbs which undergo lenition of their initial consonant from \(p\) to \(f\) when they are immediately preceded by the irrealis particle ga. I call this process stem-initial mutation (see 11.2.2) after Thieberger (2012). These verbs are \(p\)-initial when not immediately preceded by \(g a\) and an \(f\)-initial when preceded by \(g a\). This is shown in (6) and (7) with the verb pan/fan 'go:R/go:IRR': pan occurs in a realis clause and fan in an irrealis one:
(6) \(A=p a n, \quad a=p a \quad\) tagau \(e=p i \quad\) pog. 1SG.S= go 1sG.s=go fish 3sG.S=COP night 'I went, I went fishing at night.'
(7) 'Ae, ta=ga fan, ta=ga loso lau.
hey 1DU.INCL.S=IRR go:IRR 1DU.INCL.S=IRR bathe seawards 'Hey, let's go, let's bathe down at the beach.'

As seen in (6) and (7) one function of this process is to participate in mood marking, thus it is regarded as an overt manifestation of mood. Note also that this process not only affects verbs but also \(p / f\)-initial aspect and modality markers, and auxiliaries (see 11.2.2).

Epistemic modality is marked in the verb complex in the AM slot (see 9.3.3 and fig. 9.1), with the two particles kat 'CERT' and lag 'MAYBE'. In (8) and (9) both kat and lag are shown in irrealis clauses:
\begin{tabular}{lllll} 
Ur=ga & mro & sra & kiki=nia & garau, \\
3PL.S=IRR & again & dig & be.small=3SG.OBJ & chisel
\end{tabular}
\begin{tabular}{lllllll} 
e=ga & msalsal & ur=ga & kat & put=ia & pa-ki & lau. \\
3SG.S=IRR & be.light & 3PL.S=IRR & CERT & pull=3SG.OBJ & go-TR & NEG2
\end{tabular}
'They will hollow it out a bit with the chisel again, it will be light and they will pull it to the shore.'
\(\mathrm{E}=\) ga lag puro ri... e=puro.
3SG.S=IRR MAYBE be.empty sorry 3SG.S=be.empty
'It may be empty, sorry... it is empty.'

\subsection*{11.2 Modality}

\subsection*{11.2.1 The first division: realis and irrealis}

Every clause is coded for mood. Realis clauses are unmarked (see 11.2.1.1) and irrealis clauses are marked with the particle \(g a\) 'IRR' or the subject proclitic \(\tilde{p} a=\) ' 2 SG:IRR' (see 11.2.1.2). Another way of marking these mood values is stem-initial mutation, a process restricted to some verbs and which is sensitive to both modality and transitivity (see 11.2.2).

\subsection*{11.2.1.1 Realis clauses}

Realis clauses denote events which can have a past or a present reading and cannot be used to denote an event whose time of reference is located after the time of speech. See the elicited (10) which can have both a past and a present reading, but not a future reading:
\[
\begin{aligned}
& \text { (10) Ur=faam } \quad \text { taafa. } \\
& \text { 3PL.s=eat:F inlandwards } \\
& \text { 'They eat/ate inland' } \\
& \text { [elicited] }
\end{aligned}
\]

Although it seems that having a single category covering both past and present could lead to ambiguities, there are clues for disambiguation. An important one is lexical framing of time (see 11.4). Contextual clues also play a crucial role in disambiguating past and present time. For instance, in (11) the speaker talks about their holidays in Fiji. As an introduction to the narrative, the speaker sets the temporal frame of the event by giving its specific temporal
location (i.e. September 2006), which is anterior to the time of speech. In this way, the temporal context is set, and subsequent clauses with a realis marking have a past reading:
```

(11)

Konou	$a=g a$	traos	marmar	o-na	agnou
1SG	$1 \mathrm{SG} . \mathrm{S}=\mathrm{IRR}$	recount	rest-NML		1SG.POSS
Fiji p.name	atlaga= month=	OSS:NH	Septemba September	$\begin{aligned} & 2006 . \\ & 2006 \end{aligned}$	

Konou a=pa marmaro Fiji namba fotin septemba gane fren agnou.
1SG 1SG.S=gorest p.name number fourteen september with friend 1SG.POSS
Ar=pa-ki
afta, ar=mro panei.
then 1DU.EXCL.S=AGAIN come
'I will talk about my holidays in Fiji from September 2006. I went to have a holiday in Fiji on
the 144h}\mathrm{ of September with my friend. We went to Fiji, we had a holiday for a week, then, we
came back.'

```

Sometimes, the extra-linguistic settings of a particular speech event can suffice in indicating the temporal context. For example, (12) is extracted from a conversation in which the speaker and addressee share the deictic settings of the reference, so no ambiguity is possible. The sentence is in the realis, and has a present reading - a past reading would be impossible, as the temporal reference is immediately accessible to both the speaker and the hearer. Note that the imperfective to 'IPFV' occurs with the realis, but has no function of anchoring the reference in time, as it can also occur in the irrealis (see 11.2.1.2):
\begin{tabular}{llllll} 
(12) Naara & wei & na & ur=to & suara & panmei, \\
3PL & TOP & DEM & 3PL.S=IPFV & walk & come
\end{tabular}
ur=kat to suara panmei pa raki namta. 'It's them who are walking our way, they are walking our way towards the entrance.'

\subsection*{11.2.1.2 Irrealis clauses}

Recall from 11.1.2 that most irrealis clauses are marked with \(g a\). However, when the subject of an irrealis clause is second person singular, the subject proclitic \(\tilde{p} a=\) ' 2 SG.S:IRR' occurs instead of the expected but unattested \(* k u=g a\) ' 2 SG. \(S=I R R\) '. This means that for second person singular
only, the subject proclitics effectively have the additional function of marking mood, with k.u= encoding realis and \(\tilde{p} a=\) irrealis, as seen in (13) and (14) respectively:
(13) \(\mathrm{Ku}=\) lop̃a taikiki nag, ur=kut plag-ki-go tapla mato. 2SG.S=see young.sibling 2SG.POSS 3PL.S=CERT look.for-TR-2SG.OBJ like.this STAT 'You see your little brothers; they are looking for you like this.'
(14) \(\tilde{\mathrm{P}} \mathrm{a}=\) sralesko Iesu, \(\tilde{p} a=f a f a t u=s\) !

2SG.S:IRR=believep.name 2SG.S:IRR=trust=3SG.OBJ
'Believe in Jesus, trust him!'

The alternation between \(k u=\) ' 2 SG.S' and \(\tilde{p} a=\) ' 2 SG.S:IRR' possibly shows a change in progress which could result in the emergence of a full set of subject proclitics marking irrealis, while the current paradigm of subject proclitics would be marking the realis. South Efate has separate paradigms of subject proclitics encoding the realis/irrealis distinction (Thieberger 2006:105). \({ }^{2}\) However, at this stage, Lelepa subject proclitics are regarded as encoding the subject of a clause in person and number, to the exception of the proclitics k \(u=\) ' 2 SG.S:IRR' and \(\tilde{p} a=\) ' \(2 \mathrm{SG} . \mathrm{S}\) ' which also mark mood.

Irrealis clauses have a number of functions: they locate the event they denote in time, occur in complement clauses denoting an event which belongs to the irrealis domain, occur in some conditional clauses introduced with wan 'if', and finally, express the imperative. Unlike realis clauses, irrealis clauses are not ambiguous with respects to temporal location of an event. When they encode temporal location, it is always future, as in (15):
\begin{tabular}{lllllll} 
(15) & Ur=kat & mato & pa & raki & wara & ur=ga
\end{tabular} \begin{tabular}{l} 
tof=ra=s. \\
3sG.s=CERT
\end{tabular} IPFV go \begin{tabular}{ll} 
precede & place
\end{tabular}
'They are going to the place in which they will elevate them.'

The irrealis also occurs in certain complement clauses introduced by lag 'COMP'. These clauses typically occur as the complement of complement-taking predicates such as the desiderative \(m s a u\) 'want'. There are no examples in the corpus in which a complement clause of msau is not in the irrealis. Thus:

\footnotetext{
\({ }^{2}\) South Efate went further in developing a third paradigm of subject proclitics encoding perfect aspect/aspectual past in addition to the paradigms of realis and irrealis subject proclitics (Thieberger 2006:105; 110-111).
}
(16) \(\quad K u=m s a u-n a\)

2SG.S=want-3SG.OBJ
lag pa=fa-ki
2SG.S:IRR=go:IRR-TR
maket market
malmauna, now
pa \(=\) mas msug srago nag lans.
2SG.S:IRR = must carry things 2SG.POSS speedboat
'You want to go to the market nowadays, you'll have to carry your things on a speedboat.'
\begin{tabular}{lllll} 
E=msau-na & lag & e=ga & faam & neik. \\
3SG.S=want-3SG.OBJ & COMP & 3SG.S=IRR & eat:F & fish \\
'He wanted to eat fish.' & & &
\end{tabular}

However, if the event denoted by the complement clause has been actualised and is thus part of the realis domain, that clause is in the realis, as in (18) and (19):
(18) \(\mathrm{Te}=\) matua \(\mathrm{ur}=\) til=ia \(\mathrm{e}=\) pitlaka natkon larua.

SBST=be.old 3PL.S=say=3sG.OBJ COMP 3SG.S=have village seven
'The elders said that there were seven villages.'
(19) Kane \(e=l o \tilde{p} a=e\) lag ur=pi nafnag nae to nge. but 3sG.S=see=3SG.OBJ COMP 3PL.S=COP food 3SG.POSS STAT DEF 'But he saw that they were his own food.'

The irrealis also occurs in some conditional clauses. Such clauses are introduced by wan (lag) 'if, when' and set a condition for a future event to be realised: the irrealis is needed as the events have not been actualised and so are not part of the realis domain. This is shown in (20), in which both conditional clauses introduced by wan are in the irrealis. The clauses following the conditional clauses have a future reading as they denote future events, to be realised under the condition expressed in the clause introduced by lag:
(20)
\begin{tabular}{llll} 
Wan & \(\tilde{p} a=\) to, \(\tilde{p} a=\) wia, \\
if & 2̃a=sak & panei & \\
2SG.S:IRR=stay & 2SG.S:IRR=be.good & 2SG.S:IRR=go.up & come
\end{tabular}
pa=lpis konou np̃ou ntaafa.
2SG.S:IRR=watch 1SG head NMLZ-inlandwards
\(\begin{array}{llllll}\text { Kane } & \text { wan } & \tilde{p} a=s a, & \tilde{p} a=\text { kat } & \text { to tan } & \text { to, } \\ \text { but } & \text { if } & \text { 2SG.S:IRR=be.bad } & \text { 2SG.S:IRR=CERT } & \text { stay downwards } & \text { STAT }\end{array}\)
p̃a=kat roten mol wur tan pan.
2SG.S:IRR=CERT rotten only pass downwards GO
'If you wait, you will be fine, you will come up and see me on top of the hill. But if you're bad, you will stay down, you will just rot down.'

The irrealis also occurs in clauses which denote events that may possibly occur, as seen with the first occurrence of \(g a\) in (21). In this clause the speaker sees the situation as a possibility but does not take a stance regarding the possibility of it becoming a reality. The next clause has a future reading, and the speaker has now taken a clear stance that the situation is leaving the realm of possibilities to become a reality.


Examples (22) - (26) compare irrealis clauses denoting the future and the imperative. As such clauses have the same modal value, distinguishing them can be difficult. However, the shape of intonation contours in irrealis clauses is a reliable indicator. While non-imperative clauses end in a flat to falling pitch, imperative clauses are realised with a sharp rise towards the end, followed by a fall. Compare (22), a future clause, with (23), an imperative:
\begin{tabular}{lcl} 
A=lag, & "gaio, & pa=fa." \\
1SG.S=say & okay & 2SG.S:IRR= =go:IRR \\
'I said, "Okay, you'll go." &
\end{tabular}

SL1-20060402TomsenFrance-TNls_323015_323965

(23)
\begin{tabular}{lll} 
Malmauna, & \(\tilde{p} a=l l u\) & pano! \\
now & 2SG.S:IRR=return & go \\
'Now, go back!' & &
\end{tabular}

SL1-20060402TomsenFrance-TNls_352330_353520


Clues for distinguishing imperative and future may also be found in certain non-linguistics characteristics of the speaker and hearer. For instance, differences in social status can be relevant: people with higher social status are expected to use the imperative when addressing people lower in the social hierarchy. This is seen in (24) in which a father gives a command to his daughter, and in (25) in which a chief gives a command to his people:
(24) Mameia=g grunkiki \(\mathrm{e}=\) rki-nia=s lag,
father \(=\) POSS:NH girl \(\quad 3 \mathrm{sG} . \mathrm{S}=\) tell-3sG.OBJ=3sG.OBJ COMP
"p̃a=fa-ki pag pa."
2SG.S:IRR=go:IRR-TR inside GO
'The girl's father told her, "Go inside."
(25) Kur=ga mro lko fatu nap̃a-na, kur=ga salea-ki-nia, 2PL.S=IRR AGAIN tie stone neck-3SG.POSS 2PL.S=IRR float-TR-3SG.OBJ
kur=ga fa taroaki-nia lau.
2PL.S=IRR go:IRR throw-3SG.OBJ seawards
'Tie a stone to his neck, put him in the water, throw him away in the sea.'

In (26), the speaker leads a visitor, and insider vs. outsider status is relevant. The imperative reading is justified as the speaker-insider is guiding the hearer-outsider through his own community:
\begin{tabular}{lll} 
Malmauna, & \begin{tabular}{l} 
pa \(a=s u a r u\) \\
now
\end{tabular} & 2SG.S:IRR=walk
\end{tabular} \begin{tabular}{l} 
panmei, \\
come
\end{tabular}
\begin{tabular}{lllll} 
ta=ga & fa & lop̃a & takanei & na \\
1DU.INCL.S=IRR & go:IRR & see & how & DEM
\end{tabular}
\begin{tabular}{llclll} 
ur=kut & pea & taon & kapu=n & gotfan & tu. \\
3PL.S=CERT & first & bake & laplap= POSS.NH & afternoon & STAT \\
'Now, come, let's go see how they bake tonight's laplap.' &
\end{tabular}

\subsection*{11.2.2 Stem-initial mutation}

This process concerns a small group of verbs which switch their initial consonant from \(p\) to \(f\) in two different situations. In the first one, \(p\)-initial verbs occur with an initial \(f\) when they are immediately preceded by the irrealis particle \(g a\) or the subject proclitic \(\tilde{p} a=\) ' 2 SG.S:IRR'. In this case, stem-initial mutation is a mood-sensitive process, as it applies according to the presence of irrealis markers. The second situation concerns \(p / f\)-initial ambitransitive verbs (see 8.4), which are able to function with or without an object. These verbs surface as \(p\)-initial when they have an object and as \(f\)-initial when they function intransitively, regardless of the mood of the clause. This second situation is thus sensitive to transitivity and not to mood. Consequently, stem-initial mutation is a process with two separate functions: one is to mark irrealis mood, and the other intransitivity. Although only one of these functions is related to mood, both are discussed in this section, because this process is fairly minor in the language and concerns a minority of verbs, of which an even smaller number is ambitransitive and undergoes steminitial mutation to mark intransitivity. Some of these verbs are shown in table 11.1:
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline \multicolumn{3}{|c|}{ Intransitives } & \multicolumn{3}{c|}{ Transitives } & \multicolumn{3}{c|}{ Ambitransitives } \\
\hline \begin{tabular}{c}
\(\boldsymbol{f}\)-initial \\
form
\end{tabular} & \begin{tabular}{c} 
p-initial \\
form
\end{tabular} & Gloss & \begin{tabular}{c}
\(\boldsymbol{f}\)-initial \\
form
\end{tabular} & \begin{tabular}{c} 
p-initial \\
form
\end{tabular} & Gloss & \begin{tabular}{c}
\(\boldsymbol{f}\)-initial \\
form
\end{tabular} & \begin{tabular}{c} 
p-initial \\
form
\end{tabular} & Gloss \\
\hline fag & pag & 'climb' & fagan & pagan & 'feed' & faam & paam & 'eat' \\
\hline false & palse & 'paddle' & fai & pai & 'pack' & faos & paos & 'weave' \\
\hline fanei & panei & 'come' & farus & parus & 'drill' & fnak & pnak & 'steal' \\
\hline frau & prau & 'be.long' & fat & pat & 'make' & fsruki & psruki & 'speak' \\
\hline
\end{tabular}

Table 11.1. Verbs undergoing stem-initial mutation

Linguists working on Vanuatu languages have long known of this phenomenon, as seen in early works such as Codrington (1885), MacDonald (1889) and Ray (1926). Later, it was described in more detail for the individual languages Nguna (Schütz 1968), Raga (Walsh 1982), Bierebo (Tryon 1986), Nāti (Crowley 1998b:124-125), Paamese (Crowley 1982), Southeast Ambrym (Crowley 1991), Lewo (Early 1994), Sye (Crowley 1998a), and South Efate (Thieberger 2006, 2012), amongst others. In these languages, stem-initial mutation is associated with mood marking, except in Sye (Crowley 1998a). Additionally, in some of these languages this process has a role in compounding and nominalization: in South Efate, deverbal nouns from verbs undergoing stem-initial mutation use the \(f\)-initial form of the verb (Thieberger 2006:133), as is the case in Lelepa (see 3.4.1.1).

Interestingly, stem-initial mutation in Lelepa and South Efate has developed an additional function, that of intransitivity marking. This is not discussed in the other languages mentioned above, so it may be an innovation of Lelepa and South Efate. There are seventyfour known Lelepa verbs which participate in stem-initial mutation, of which eight are ambitransitive and participate in both mood and intransitivity marking. Note also that some verbs seem to be good candidates for stem-initial mutation but do not participate in it. For instance, \(f e\) 'read; count:TR' and \(f e f\) 'read; count:INTR' do not have a \(p\)-initial form. Others, such as the ambitransitive prak/fnak 'steal' participate in mood-related stem-initial mutation but not in transitivity-related stem-initial mutation.

\subsection*{11.2.2.1 Mood-related stem-initial mutation}

The main function of stem-initial mutation is to mark irrealis, in addition to \(g a\) ' \(\operatorname{IRR}\) ' and \(\tilde{p} a=\) '2sG:IRR'. \({ }^{3}\) Verbs undergoing this process can be in auxiliary or main verb position, but mutation only occurs when they immediately follow \(g a\) or \(p a\). In (27), pag 'climb' occurs as the main verb in a realis clause, while its f-initial counterpart fag 'climb:IRR' occurs immediately after \(g a\) in (28):

\footnotetext{
\({ }^{3}\) Because \(f\)-initial forms of verbs occur in nominalisation constructions, and that \(g a\) 'IRR' and \(\tilde{p} a\) ' \(2 \mathrm{SG}: I R R\) ' do not occur in such construction, stem-initial mutation is not simply regarded as a morpho-phonemic device triggered by the occurrence of these two morphemes.
}

41111 Aspect and modality
(27)
\(\mathrm{E}=\mathrm{mro} \quad\) legat=ia taplange,
3SG.S=AGAIN sing=3SG.OBJ like.this
fterki \(\mathrm{e}=\mathrm{kat}\) panei pag wara gara.
wife 3sG.S=CERT come climb place be.dry
'He sang it again thus, the woman got on dry land.'
(28) Au=mersera tapla, ur=lag au=ga fag lans,

1PL.INCL.S=try like.this 3PL.S=MAYBE 1PL.INCL.S=IRR climb:IRR speedboat
lans \(\quad \mathrm{e}=\mathrm{ga} \quad\) sfa.
speedboat 3SG.S=IRR run
'We tried like this, they said to get on the boat, and that the boat would go.'

In (29), palse 'paddle' occurs in a realis clause, while in (30) the false 'paddle:IRR' hosts \(\tilde{p} a=\) '2SG:IRR':
(29) E=palse llu pa-ki sum̃a pa.

3SG.S=paddle return go-TR house go
'He paddled back home.'
(30) Kane wan ku=lag pa=false raus rarua fea nge, but if 2SG.S=say 2SG.S=paddle:IRR follow canoe first:IRR DEF
narua nmat e=go fu kumu na rarua pa raki Artok pa. current low.tide 3SG.S=IRR pull:IRR 2PL DEMcanoe GO towards p.name GO 'But if you think that you'll paddle following this first canoe, the low tide will pull you to Artok.'

In (31), pkas 'chase' occurs in a realis clause while in (32) fkas 'chase:IRR' occurs immediately after \(g a^{\text {'IRR': }}\)
\begin{tabular}{lllllll} 
Mautariu & e=kao & nap̃e & nae & se & \(e=\) pkas=ia & pan. \\
p.name & 3SG.S=arm & club & 3sG.POSS & while & 3sG.S=chase=3SG.OBJ & GO \\
'Mautariu armed his club and chased him away.' & & &
\end{tabular}
\(\begin{array}{llllll}\text { E=maroa-ki-nia } & \text { lag } & \text { e=ga } & \text { fkas } & \text { maaata nge. } \\ \text { 3SG.S=think-TR-3SG.OBJ } & \text { COMP } & \text { 3SG.S=IRR } & \text { chase:IRR } & \text { eye } & \text { DEF }\end{array}\)
'He thought that he would chase the snake.'

When verbs normally affected by stem-initial mutation do not immediately follow \(g a\) or \(\tilde{p} a=\) in irrealis clauses, the process does not apply. If other elements of the verb complex occur between the irrealis marker and the verb, the \(p\)-initial form of the verb occurs. In (33), the
auxiliary verb to occurs between the irrealis marker and the verb paam 'eat:P' and blocks the application of the process, as the \(f\)-initial form of the verb does not occur:
\begin{tabular}{llllll}
\(\mathrm{E}=\mathrm{pi}\) & nasifara & agnou, & a=ga & to & paam=ia \\
3SG.S=COP & banana.sp & 1SG.POSS & 1SG.S=IRR & IPFV & eat:P=3SG.OBJ \\
'It is my nasifara banana, I will eat it.' & & & &
\end{tabular}

Similarly, in (34) the negator \(t i\) 'NEG1' occurs between \(g a\) and the auxiliary verb \(p a\) ' \(g o: R\) ', blocking the process as well:
(34) Nlakan wan \(\mathrm{a}=\mathrm{ga}\) ti pa lwa namulu-go mau,
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline because & if & \[
\begin{aligned}
& \mathrm{a}=\mathrm{ga} \\
& \text { SG. }
\end{aligned}
\] & & NEG & \[
\begin{aligned}
& \text { pa } \\
& \text { go }
\end{aligned}
\] & removed & skin-1SG.POSS & NEG2 \\
\hline \(\mathrm{a}=\mathrm{ga}\) & matua & sa, & \(\mathrm{a}=\) & & mate & na. & & \\
\hline 1SG.S=IRR & be.old & very & & . \(\mathrm{S}=\) IRR & & DEM & & \\
\hline \({ }^{\text {'Because if }}\) & don't ren & ve m & kin, & I will b & be very & old, and I & will die.' & \\
\hline
\end{tabular}

In (35), the aspect particle mro 'AGAIN' occurs between the subject proclitic \(\tilde{p} a=\) ' \(2 \mathrm{SG} . \mathrm{S}:\) IRR' and the verb \(p u t\) 'pull', prompting the \(p\)-initial form to occur:
\begin{tabular}{|c|c|c|c|c|}
\hline (35) & \(\tilde{\mathrm{P}} \mathrm{a}=\mathrm{mro}\) & put=ia & gaskei & wei! \\
\hline & 2SG.S:IRR=AGAIN & pull=3SG.OBJ & IRR.INDEF & TOP \\
\hline & 'Pull out another & & & \\
\hline
\end{tabular}

In (36), the benefactive pronoun magnou '1SG.BEN' occurs between the irrealis marker and the verb. Again, the process of stem-initial mutation does not apply and this results in the occurrence of the \(p\)-form of the verb:
\begin{tabular}{llllll} 
A=ga & maginta & pat & natrausina & kiki & skei. \\
1SG.S=IRR & 1PL.INCL.BEN & make & story & be.small & INDEF \\
'I will make a little story for us.' & & &
\end{tabular}

\subsection*{11.2.2.2 Transitivity-related stem-initial mutation}

The other function of stem-initial mutation is to mark intransitivity. This only applies to the subclass of ambitransitive verbs, which can function with or without an object (see 8.4). This is a small class with thirty known members, of which only eight can undergo transitivity-related stem-initial mutation (see table 11.2):
\begin{tabular}{|l|l|l|l|l|l|}
\hline p-form & \(\boldsymbol{f}\)-form & \multicolumn{1}{c|}{ Gloss } & p-form & \(\boldsymbol{f}\)-form & \multicolumn{1}{c|}{ Gloss } \\
\hline psapseiki \(i\) & fsapseiki \(i\) & 'teach:P/F' & paam & faam & 'eat:P/F' \\
psruki & fsruki & 'speak:P/F' & paus & faus & 'weave:P/F' \\
patka & fatk.a & 'be enough:P/F' & pnak & fnak & 'steal:P/F' \\
pes & fes & 'dig.w.hands:P/F' & psatra & fsatra & 'answer:P/F' \\
\hline
\end{tabular}

Table 11.2. Ambitransitive verbs undergoing stem-initial mutation

For the present discussion, the verb paam/faam 'eat' is taken as representative of the process, see (37) to (45). In (37), paam 'eat:P' occurs in an irrealis marked clause with an object. The verb occurs in its \(p\)-form as it functions transitively. Note that the clause is in the irrealis, but the verb, directly following \(g a\), occurs in its \(p\)-form rather than its \(f\)-form as would be expected in mood-related stem-initial mutation:
(37) Kar=ga ftol, kar=ga paam nafnag ar=magmu pai=a.

2DU.S=IRR hungry 2DU.S=IRR eat:P food 1PL.EXCL.S=2PL.BENpack=3SG.OBJ
You will be hungry, you will eat the food we packed for you.'

Similarly, in (38), the \(f\)-form of the verb occurs despite the clause being in the realis. This shows that mood is not relevant here since the distribution of the \(f\) - and \(p\)-form does not conform to patterns of mood-related stem-initial mutation. The condition for the process to apply in (38) is that faam 'eat:F' functions intransitively:
\begin{tabular}{lll} 
Tu=faam, & tu=rogo & wia, \\
1PL.INCL.S=eat:F & 1PL.INCL.S=feel & be.good
\end{tabular}
tu=pitlaka srago mauna tu=msau-na raki na-ftauri-na.
1PL.INCL.S=have things every 1PL.INCL.S=want-3sG.OBJ towards N.SPEC-marry-NMLZ 'We eat, we feel good, we have everything we want for the wedding.'

In (39) and (40), paam has an object and thus the \(p\)-initial form occurs. Again, note that in both examples the \(p\)-form occurs regardless of mood:
\begin{tabular}{llll} 
E=go paam & tena & nmau-na & \(\mathrm{e}=\) to=s. \\
3SG.S=IRR eat:P & SBST.DEM & feather-3SG.POSS & 3SG.S=stay=3OBL
\end{tabular}
'He will eat the one with feathers on.'
(40) E=to paam ntai-na nge,

3SG.S=stay eat:P excrement-3SG.POSS DEF
'She was eating his excrement,'

However in (41) and (42), the \(f\)-initial form occurs, and in both cases faam has an object, which is a similar environment to that of (39) and (40). This contrast relates to the definiteness of the object. In (39) and (40), the objects are definite: in (39) tena is a demonstrative pronoun further specified by a relative clause, thus its referent is definite. In (40), ntai-na 'excrement-3sG.POSs' is also definite as it is possessed and takes the definite determiner nge. In contrast, the objects in (41) and (42) are indefinite: neika 'fish' is generic and thus indefinite, and nmatuna kas gaskei 'something sweet' is also indefinite: the head noun nmatuna is lexically indefinite, while the occurrence of the indefinite determiner gaskei 'IRR.INDEF’ strengthens the indefinite status of the referent of the object:
\begin{tabular}{lllll} 
E=msau-na & lag & \(\mathrm{e}=\mathrm{ga}\) & faam & neika. \\
\begin{tabular}{l} 
3SG.S=want-3sG.OBJ \\
'He wanted to eat fish.'
\end{tabular} & & & \\
COMP
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline (42) & A=msau-na & lag & \(\mathrm{a}=\mathrm{ga}\) & faam & nmatuna & kas & gaskei. \\
\hline & 1SG.S=want-3SG.OBJ & COMP & 1SG.S=IRR & eat:F & something & be.sweet & IRR.INDEF \\
\hline & 'I want to eat somethi & swe & & & & & \\
\hline
\end{tabular}

At this point, we have seen that transitivity-related stem-initial mutation is not only sensitive to the presence of an object, but also to its definiteness: when the verb functions intransitively as in (38), the \(f\)-form occurs, whereas when the verb functions transitively, the \(f\)-form occurs if the object is indefinite, while the \(p\)-form occurs if the object is definite. In other words, the process treats the lack of an object and the occurrence of an indefinite object as identical environments. In terms of Hopper and Thomson's criteria to determine high and low transitivity (Hopper and Thompson 1980:252-253), this does not seem to be surprising: an event with a single participant is low in transitivity, and an event with two participants in which the object is non-individuated is also low in transitivity. \({ }^{4}\) Thus (38), (41) and (42) are low in transitivity, which explains why the \(f\)-form of faam occurs in these examples. That said, (43) to (45) seem problematic under this analysis. In (43), the \(p\)-form of the verb occurs even though the object nataĩol 'people' is indefinite and non-referential, thus non-individuated:

\footnotetext{
\({ }^{4}\) Hopper and Thompson define an individuated object is as referential and definite, and a non-individuated one as non-referential and indefinite (Hopper and Thompson 1980:253).
}
(43) Kane ku=tae, mutuama ur=pi natañol ur=to paam natamol. but 2sG.S=know ogre 3PL.s=COP people 3PL.s=IPFV eat:P people 'But you know, ogres are people who eat people.'

In contrast, in (44), the \(f\)-form of the verb occurs while the object pronoun \(=k_{o}\) ' \(2 \mathrm{SG} . \mathrm{OBJ}\) ' has a referential, definite and thus individuated referent. Example (45) is also problematic as both forms of the verb occur, while in both occurrences the verbs have an individuated object. What the objects natamol 'people' and both occurrences of \(=k_{0}\) in (44) and (45) have in common is that their referents are humans. In contrast, the referent of \(=i a\) ' \(3 \mathrm{SG} . \mathrm{OBJ}\) ' in (45) is non-human. This means that the humanness of the object is also relevant, and if the referent of an object has a [+human] value, this has the effect of blocking the application of transitivity-related stem-initial mutation. Again, this conforms to Hopper and Thomson's predictions, as an object with a [+human] value is regarded as individuated (Hopper and Thompson 1980:253)Further, these examples also show that mood-related stem-initial mutation applies instead, as the distribution of the \(p\) - and \(f\)-initial forms complies with moodmarking in these clauses:
\begin{tabular}{lllllll} 
(44) & \begin{tabular}{l} 
Ku=pa \\
\(2 s G . S=\) go
\end{tabular} & lwa removed & taptap, pakoa & e=po & float & shark
\end{tabular}
'You let go of your float, and the sharks eat you.'
\begin{tabular}{llllll}
\(\tilde{\mathrm{P}} \mathrm{a}=\mathrm{ti}\) & paam=ia & mau, & mesa & a=ga & faam=ko. \\
2SG.S:IRR=NEG & eat:P=3SG.OBJ & NEG2 & today & 1SG.S=IRR & eat:F=2SG.OBJ
\end{tabular}
'(If) you don't eat it, today I'll eat you.'

This section has shown that stem-initial mutation in Lelepa is an intricate process sensitive to mood, verb class, transitivity, and definiteness and humanness of the object. The process has two functions, mood marking and intransitivity marking, and concerns a small but nevertheless significant group of verbs. In addition to being complex, this process is marginal, and its rules can be summarised as follows:

\section*{(46) Stem-initial mutation rules}
- Non-ambitransitive verbs occur in their f-initial when they immediately follow an irrealis marker, either \(g a\) 'IRR' or \(\tilde{p} a=\) ' 2 SG.S:IRR'. If this constraint is not satisfied, \(p\) initial forms occur in irrealis clauses.
- Ambitransitive verbs alternate their \(p\) - and \(f\)-initial forms according to features of transitivity: low transitivity, defined as either the absence of an object or the occurrence of an indefinite object, conditions the occurrence of \(f\)-initial forms. High transitivity, manifested by the occurrence of a definite object, correlates with the occurrence of \(p\) initial forms. This rule does not apply if the object encodes a human referent, in which case transitivity-related stem-initial mutation is neutralised and mood-related steminitial mutation applies.

\subsection*{11.2.3 Epistemic modality in the verb complex}

The two particles lag 'MAYBE' and kat 'CERT' encode epistemic modality: they allow speakers to express their own judgment regarding the truth of a proposition. These particles are mutually exclusive: kat allows speakers to judge whether an event has happened or not, while lag expresses their own stance on the possibility for an event to occur. As the language lacks clausal and sentential adverbials expressing epistemic modality, they have a high functional load and are frequent in the textual corpus while being fully optional. They occur in the AM slot of the verb complex (see fig. 9.1 and table 9.2), and can occur with some aspect particles (see 11.3.1) as well as with some auxiliaries. Note that it is possible for speakers to assert the truth of a particular portion of discourse with sentences such as (47) which does not make use of these particles. Instead, the speaker uses the verb sralesko 'believe' in the first clause and lesko 'true' in the final one to express his judgment on the truth value of the proposition expressed in the subordinate clause introduced by \(\operatorname{lag}\) 'COMP': 5
(47) Go \(a=\) sralesko \(=s\) lag warange, \(\mathrm{e}=\mathrm{pi}\) nalia tap naara, and 1SG.S=believe=3SG.OBJ COMP there 3sG.S=COP place be.taboo 3PL.POSS
\[
\begin{array}{ll}
\mathrm{e}=\mathrm{pi} & \text { lesko. } \\
\text { 3sG.S=COP } & \text { true }
\end{array}
\]
'And I believe that there, it is their taboo area, it is true.'

\subsection*{11.2.3.1 Hypothetical: lag 'MAYBE'}

The particle lag is used when speakers want to express that they regard the event denoted by the clause as hypothetical, or as a possibility which may be realised or not. It occurs in both

\footnotetext{
\({ }^{5}\) Note that sralesko 'believe' is a lexicalised and non-analysable compound formed with lesko 'true' and sra which occurs in a number of verbal compounds but cannot be analysed on its own.
}
realis and irrealis clauses, thus a combination of realis and hypothetical does not mean that the event is part of the realis domain, but that the speaker hypothesises that it may or may not be part of it. In contrast, when lag occurs in the irrealis, the clause has a future reading, and the speaker hypothesises that the event may happen in the future. In (48), the main character of a story is feeling sick and possible reasons for him being unwell are given in two clauses marked with lag. The speaker is using lag because he is not sure that the reasons he gives are the right explanation for the event denoted in the final clause:
\begin{tabular}{llllllll} 
E=lag & pkate & palse, & \(\mathrm{e}=\) lag & pkate & paam & kapu & nge, \\
3SG.S=MAYBE & too.much & paddle & 3SG.S=MAYBE & too.much & eat & laplap & DEF
\end{tabular}
\begin{tabular}{llllll}
\(\mathrm{e}=\mathrm{rog}=\) ea... & \(\mathrm{e}=\mathrm{ti}\) & rogo & wia & kiki=s & mau. \\
3SG.S=feel=3SG.OBJ & 3SG.S=NEG & feel=3SG.OBJ & be.good & be.small=3OBL & NEG2
\end{tabular} 'Maybe he paddled too much, maybe he ate too much of the laplap, he felt... he didn't feel very good about it.'

In (49) lag occurs in two clauses, first with the stative intransitive sa 'bad' then with the auxiliary kano 'cannot' and the transitive lopa 'see'. Note that while these two clauses are marked with hypothetical modality, the preceding one is marked with kat which expresses certainty. The speaker asserts that he is an old man, and that consequently his vision may be impaired:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{ll} 
Kane & a \\
but & 1
\end{tabular} & \[
\begin{align*}
& \mathrm{a}=\text { kat }  \tag{49}\\
& \text { 1SG.S=CERT }
\end{align*}
\] & pi
COP & marka old.man & \multicolumn{2}{|l|}{tapla, like.this} \\
\hline namta-go eye-1SG.POSS & \[
\begin{array}{ll} 
& \mathrm{e}=\mathrm{lag} \\
\text { SS } & \text { 3SG.S }=\mathrm{MA}
\end{array}
\] & \multicolumn{2}{|l|}{\begin{tabular}{l}
sa, \\
BE be.bad
\end{tabular}} & & \\
\hline \(\mathrm{a}=\) lag & kano & lop̃a & tena & \(\mathrm{e}=\) to & \(\mathrm{a}=\) mae . \\
\hline 1SG.MAYBE & cannot & see & SBST.DEM & 3SG.S=stay & LOC=far \\
\hline
\end{tabular}

Lag can also be used emphatically, as in (50). In this example, although the speaker knows that the yam patch is devoid of wild yams, he uses the hypothetical emphatically, in conjunction with the particle \(r i\) 'sorry' to express his regrets that someone lacks wild yams:
(50) Ee, kano niao nae eto, e=lag puro ri. no man REL-3SG.S=stay wild.yam 3SG.POSS 3SG.S=MAYBE be.empty sorry 'Well, as for this guy, his wild yam patch may be empty, poor guy.'

In (51), lag occurs in an irrealis clause. The clause has a future reading and the speaker hypothesises on the number of puddings that will be made with a yam he just dug out:
\begin{tabular}{lllllll} 
E=ga lag & pi & rãok & garua, & kete & e=ga & fia
\end{tabular} na-e?

\subsection*{11.2.3.2 Certainty: kat 'CERT'}

Complementing lag in the expression of epistemic modality, kat expresses the speaker's certainty regarding the event denoted by the clause. It can occur in both realis and irrealis clauses, and in the realis kat reflects either speakers' first-hand experience or else their certainty over a particular event despite not having first-hand experience of it. In an irrealis clause, the speaker's first-hand experience of the event is not available, and this situation kat expresses the speakers' certainty that the event denoted by the clause will happen. Example (52) is extracted from a personal narrative, which by definition is likely to reflect first-hand experience. The speaker recounts his first travel overseas, and the first time he wakes up in a new and unfamiliar place:
(52) Kane \(a=k a t\) ti tae takanei \(a=g a \quad\) fat=ia mau. but 1sG.S=CERT NEG know how 1sG.S=IRR make=3SG.OBJ NEG2 'But I certainly didn't know what to do.'

In (53), the speaker also has first-hand experience as she hears the child crying in the distance:
\begin{tabular}{lllll} 
Te=rua & kiki & wa-n & ar=pag-ki & ntalia, \\
SBST=two & be.small & DEM-DIST & 3DU.S=climb-TR & tropical.almond
\end{tabular}

'These two little ones climbed the tropical almond tree, they fell down, one is down and the other is crying.'

As mentioned earlier, first-hand experience is not needed for speakers to express their certainty with kat. In (54), the speaker relates a series of historical events regarding the coming of Christianity to the Lelepa region. Even though the speaker wasn't born at the time the event in
(54) occurred, his knowledge of the event allows him to use kat, \({ }^{6}\) and the various historical records also corroborate what the speaker is saying:

'Christianity came, it started in... it stood in Erakor and Pango. For sure, they (i.e. people from Erakor and Pango) worshipped first. They worshipped first, they were enlightened, and they knew what God was about.'

However, kat is not only used to mark events over which the speaker has first-hand experience, or to mark events which are corroborated by historical records. Any event which the speaker wants to express his certainty about can be marked with kat. In (55) to (57), the speakers express their certainty that the event has happened or will happen, even though the intrinsic truth value of the different propositions is unknown:
(55) E=kat pi rarua, go ur=kut tae palse-ki-nia.

3PL.S=CERT COP canoe and 3PL.S=CERT can paddle-TR-3SG.OBJ
'It is a canoe, and they can paddle it.'
(56) Malmauna, ur=kut maturu, na-p̃ogi-na e=kat matua-ki-ra.
now 3PL.S=CERT sleep N.SPEC-night-NMLZ 3SG.S=CERT be.old-TR-3SG.OBJ 'Now, they're certainly asleep, and for sure it is the middle of the night for them.'
(57) Kanokik nge naara e=to, ur=kut lag ur=ga fkal=ea. boy DEF 3PL.POSS 3sG.S=STAY 3SG.S=CERT say 3sG.S=IRR raise=3SG.OBJ 'Their boy stayed, and they certainly thought that they would raise him.'

\footnotetext{
\({ }^{6}\) Note that in this example the certainty particle surfaces as kut following a process of vowel assimilation to the vowel of the subject proclitic (see 2.5.4).
}

\subsection*{11.3 Aspect}

Aspect is encoded pre-verbally and post-verbally in the verb complex. Pre-verbal aspect marking is done with aspectual particles occurring in the AM slot and by auxiliaries (see fig. 9.1, sections 9.3.3, 9.3.6, 10.3.3). Post-verbally, the perfect is marked with the particle sua 'PRF', and durative aspect is marked with the clause-final particle \(p a\) 'GO' (see 10.6.2, 10.6.4). In addition, certain aspectual values are encoded by complex predicates: some serial verb constructions mark sequentiality (see 10.4.3.2), while completion is encoded by post-verb constructions with pkout 'completely' (see 10.5.2.1). This section discusses aspectual particles occurring in the AM slot, auxiliaries marking aspect and the perfect.

\subsection*{11.3.1 Pre-verbal aspect particles}

There are three aspect particles occurring: mro 'AGAIN' marks an event as being re-iterated, \(p o\) 'SEQ' marks an event as being in a sequence with a previous event, while plo marks an event as ongoing.

\subsection*{11.3.1.1 Iterative and emphatic: mro 'AGAIN'}

Mro mostly occurs with non-stative verbs. The semantics of mro can be split along a 3 -way distinction: a basic meaning, an extended meaning, and an abstract, grammaticalised meaning. In its basic meaning, mro encodes re-iteration of an event. The extended meaning is somehow close to the basic one, and denotes an event that is similar to a previous event but not its exact repetition. For instance, when an event affecting a particular object has been completed, a similar event, denoting the same activity but affecting a different object may be marked with mro. Finally, the abstract meaning encodes emphasis on a completely new event. In (58) to (61), mro occurs in its basic, iterative meaning. It can occur in both realis and irrealis clauses:
(58) Ur=mro palse,

3pl.s=AGAIN paddle
ur=palse palse panei panei pan pa pa-ki A=magas.
3PL.s=paddle paddle COME COME GO GO go-TR LOC=p.name 'They paddled again, they paddled and paddled on and on to Magas.'
(59) \(\mathrm{E}=\mathrm{mro}\) rki-nia na-fsa-na skimau nge.

3SG.S=AGAIN tell-3SG.OBJ N.SPEC-speak-NMLZ be.same DEF
'He told her the same thing again.'
(60) \(\mathrm{E}=\) to \(\mathrm{se}, \quad \mathrm{e}=\mathrm{mro}\) tumalua.

3SG.S=stay while 3SG.S=AGAIN leave
'Then, he left again.'
(61) \(\mathrm{Tu}=\mathrm{ga}\) faam Krismas, konou \(\mathrm{a}=\mathrm{ga}\) mro tae rki kumu=s. 1PL.INCL.S=IRR eat:F Christmas 1SG 1SG.S=IRR AGAIN can tell 2PL=3SG.OBJ 'We will eat at Christmas (i.e. we will have Christmas dinner), and I will be able to tell it to you again.'

In it extended meaning, mro encodes the fact that an event has similarities with the previous one. For instance, it can encode the same activity as in a previous event, but with a different object, as in (62), in which the speaker explains that after having woven one side of a mat, she weaves the other side. The activity is similar (weaving the sides of a mat) but the object is different:
(62) Tu=ga mro pau narp̃an ke-rua pan pan pa e=ga fa nou, 1PL.S=IRR AGAIN weave side ORD=two GO GO GO 3SG.S=IRR go:IRR be.finished 'We will weave the other side until it will be done,'

Similarly, in (63) there is no iteration of a previous event, which would mean that the speaker wants to return to a location. Rather, the speaker tells the hearer that they should change location - they are digging yam at a place that is not favourable:
Tu=ga mro \(\quad\) pa-ki \(\quad\) warampa.
1PL.INCL.S=IRR AGAIN go-TR there.forward
'Let's go there (i.e. let's change location).'

In its emphatic meaning, mro encodes the importance of the event in the eyes of the speaker. Technically, this distinction takes mro closer to modality than to aspect, as it encodes the speaker's stance. Also, in this meaning mro can occur with stative verbs, which is not the case with the other meanings. In (64), the speaker uses mro to convey that the event is important, adding a warning for the hearer that the command should be accomplished:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline P \(\mathrm{a}=\) kat & pa & pat & nmatuna & nge, & & \\
\hline 2SG.S=CERT & go & make & something & DEF & & \\
\hline pa \(=\) mro & ti & pat & na-maroa-na & nag & galaapa & mau. \\
\hline 2SG.S=AGAIN & NEG & make & N.SPEC-think-NML & Z 2SG.Poss & IRR.be.many & NEG2 \\
\hline
\end{tabular}

In (65), mro adds emphasis on the event denoted by to 'stay', and particularly on the duration of the stay:
\begin{tabular}{lllll} 
Malange, \(\quad\) ur=mro & to & Tahiti & wik & mau \\
1PL.EXCL.S=AGAIN & skei. \\
then & p.name week & all & INDEF \\
'That time, we stayed in Tahiti for a whole week.' & &
\end{tabular}

In (66) it occurs with the stative verb paatka 'be enough'. In this example, the speaker uses mro to emphasise the fact that his budget was enough for the wedding of his son Bruce:
\begin{tabular}{lllll} 
tena \(=\mathrm{g}\) & Bruce, & e=mro & paatka & skei, \\
SBST.DEM=POSS:H & p.name & 3SG.S=AGAIN & be.enough & INDEF
\end{tabular}
a=pitlaka \(\quad\) wan \(\quad\)\begin{tabular}{l} 
andred
\end{tabular}\(\quad\)\begin{tabular}{l} 
fifty. \\
1SG.S=have \\
one
\end{tabular}
hundred
'Wifty 'With Bruce's, it was enough really, I had one hundred and fifty (thousand vatu).'

\subsection*{11.3.1.2 Ongoing/continuous: plo 'STILL’}

This particle marks an event as ongoing. There are no other known lexemes in the language such as adverbials to mark an event as being continuous or ongoing. Plo does not occur in irrealis clauses and must occur with the imperfective with dynamic verbs such as ta rarua 'canoe cutting', seisei 'have a meeting' or tagau 'fish'. In contrast, with stative verbs or non-dynamic activity verbs such as to 'stay', maroparkat 'remember' and wia 'be good', plo can occur without the imperfective. Dynamic verbs need the imperfective to be further marked as ongoing events with plo. In this situation, the imperfective can be seen as a deriving a semantic subclass of predicates, that of stative predicates. When mro occurs with dynamic verbs, a semantic incompatibility occurs and needs to be repaired with the imperfective to: this represents a form of aspect shift and coercion (De Swart 1998). Note that most occurrences of plo in the textual data are in clauses in which to 'stay' is the main verb. This is not surprising as to is possibly the most salient non-dynamic verb in the language as it grammaticalised into an imperfective auxiliary and a stative particle. In (67), plo occurs with the non-dynamic to 'stay':
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{align*}
& \mathrm{E}=\mathrm{mro}  \tag{67}\\
& 3 \mathrm{sG} . \mathrm{S}=\mathrm{AGAIN}
\end{align*}
\] & \begin{tabular}{l}
pu \\
pull
\end{tabular} & & \begin{tabular}{l}
lwa \\
removed
\end{tabular} & \begin{tabular}{l}
fefe \\
leaf
\end{tabular} & & ke-rua, ORD-two \\
\hline \(e=l o p ̃ a=e\) & & se & \(\mathrm{e}=\) plo & & to. & \\
\hline \(3 \mathrm{SG} . \mathrm{S}=\) see=3SG.OBJ & & whil & ile 3SG.S= & STILL & & \\
\hline
\end{tabular}

Similarly in (68) to (72), plo occurs with other non-dynamic verbs, and the imperfective to does not occur. In (68), plo occurs with maroa parkat 'think catch > remember':
\begin{tabular}{lllll} 
(68) \begin{tabular}{ll} 
Konou & a=plo \\
1SG
\end{tabular} & \begin{tabular}{l} 
maroa \\
think
\end{tabular} & \begin{tabular}{l} 
parkat=ia \\
catch=3SG.OBJ
\end{tabular} & \begin{tabular}{l} 
to, \\
STAT
\end{tabular} \\
& & & & \\
a=msau-na & lag & a=ga & til=ia & malmauna. \\
1SG.S=want-3SG.OBJ & COMP & \begin{tabular}{l} 
1SG.S=IRR
\end{tabular} & tell=3SG.OBJ & now \\
'I still remember it, I want to tell it now.'
\end{tabular}

In (69), plo occurs with the stative wia 'be good' and the stative particle to 'STAT'. Stative verbs cannot occur with the imperfective, but can occur with the stative particle to encode the fact that the state is continuing and no change is expected (see 10.6.1):
(69) \(\mathrm{Tu}=\mathrm{pa}\) laka nap̃as aginta se \(\mathrm{e}=\mathrm{plo}\) wia to. 1PL.INCL.S=go see meat 1PL.INCL.POSS while 3SG.S=still be.good STAT 'We go check on our meet and it's still fine.'

In (70), plo occurs with laotu 'be standing', which denotes the state of being in a standing position, and in this example, the subject is a church building. The church was built and stood for many years, as shown by the reduplication of pan \(p a^{\text {'GO GO'. Plo encodes that the church is }}\) still in the state of standing after many years:
(70) A=maroa-ki-nia lag ur=lag pat=ia 1913 taplange pa, 1SG.S=think-TR-3SG.OBJ COMP 3PL.S=MAYBE make=3SG.OBJ 1913 like.this GO

1914 wei.
1914 TOP

Ur=to pan pan pan pan pa,
3PL.S=stay GO GO GO GO GO
nasum̃a tap nge \(e=\) to, \(\quad \mathrm{e}=\) plo laotu.
house be.taboo DEF 3SG.S=stay 3SG.S=STILL stand
'I think that maybe they did it around 1913, or rather 1914. They stayed on and on, the church remained, it was still standing.'

In (71) plo occurs with the stative \(m u\) 'be.in [tide]', which denotes the state of a tide being in:
\begin{tabular}{llllll} 
(71) & \begin{tabular}{ll} 
Kane & pulp̃og \\
but & e=plo \\
morning & 3SG.S=STILL
\end{tabular}\(\quad\) bu, & na-mu-na & rgona! \\
'But in the morning it was still in, a huge tide!'
\end{tabular}

In contrast to non-dynamic verbs, dynamic verbs must occur with the imperfectives to or wane to occur with plo as well. In (72), maturu 'sleep' occurs with the imperfective auxiliary wane 'IPFV', which allows plo to mark the event as ongoing:
\begin{tabular}{llllll} 
E=pan & se & fterki & e=plo & wane & maturu. \\
3SG.S= go & while & woman & 3SG.S=STILL & IPFV & sleep \\
'He went while the wife was still asleep.' & &
\end{tabular}

In (72), plo occurs with the imperfective and with activity verbs. Activities and states share some properties; in particular they both denote events that are atelic and durative. However, they differ in that states denote static events, while activities do not (see Smith 1997, Bertinetto 1997 and Riemer 2010):
(73) \(\mathrm{E}=\mathrm{plo}\) to palse-ki rarua.

3SG.S=STILL IPFV paddle-TR canoe
'He is still paddling.'
[elicited]
(74)

E=plo to ta rarua.
3SG.S=STILL IPFV cut canoe
'He is still cutting canoes.'
[elicited]
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{(75)} & \(\mathrm{E}=\) plo & to & tagau. \\
\hline & 3SG.S=STILL & IPFV & fish \\
\hline & \multicolumn{3}{|l|}{'He is still fishing.' [elicited]} \\
\hline \multirow[t]{3}{*}{(76)} & Ur=plo & to & seisei. \\
\hline & 3PL.S=STILL & & meet \\
\hline & \multicolumn{3}{|l|}{'They're still having a meeting.' [elicited]} \\
\hline
\end{tabular}

\subsection*{11.3.1.3 Sequential: po 'SEQ'}

Po 'SEQ' marks an event as being in a sequence with previous events. It is optional and clauses in series denoting events in a sequence do not require its occurrence. When it occurs, it never does to mark the first event in the series, but in clauses denoting subsequent events. For this reason it is analysed as a sequential marker, and not as an inceptive or inchoative marker. In (77) it occurs marking the second and last event of the series:


In (78) po occurs in the second and third clause. These clauses are in a sequence and present two different formulations of the same event. The speaker describes the burial practice of wrapping the deceased in mats and laying them inside canoe hulls prior to burial. In the first clause, the verb mate 'die' denotes the start of the sequence (i.e. the dying), then po occurs in the following clauses, which encode the wrapping event with pai 'pack' and the laying event with taroaki 'drop':
(78) Natam̃ol ur=mate, ur=po pai=ra=s.
people 3PL.S=die 3PL.S=SEQ pack=3PL.OBJ=3SG.OBJ
\(\begin{array}{lllll}\text { Ur=po } & \text { taroaki-ra } & \text { pa-ki } & \text { rarua } & \text { nge. } \\ \text { 3PL.S=SEQ } & \text { drop=3PL.OBJ } & \text { go-TR } & \text { canoe } & \text { DEF }\end{array}\)
'People died, and then they would put them in it. They would drop them in the canoe.'

Example (79) is extracted from a narrative about the coming of Christianity to Lelepa. The speaker talks about MacDonald, a missionary posted in the region, then makes a digression about another part of that history. Coming back to his main point about MacDonald, he explains in the first clause that the event he described in his digression took place before MacDonald's arrival, and in the following clause, marked with po 'SEQ', he states that the missionary came after:

'As for that time, it was before him, MacDonald came later. Let's go back to MacDonald's story.'

In (80), there are three clauses in a sequence. Only the second clause is marked with \(p o\), while the third clause is the final event in the sequence. This shows that po can occur to mark only one event in a sequence, and not necessarily the last one:
\begin{tabular}{lll} 
A=mro & pa-ki & namlas, \\
1SG.S=AGAIN & go-TR & bush
\end{tabular}
\begin{tabular}{llllll}
\begin{tabular}{lll} 
a=po & ta & ntal
\end{tabular}\(\quad\)\begin{tabular}{l} 
nag-na
\end{tabular} & panei & pa, \\
1SG.S=SEQ & cut & rope & ASS-3SG.POSS & COME & GO
\end{tabular}

In contrast, in (81) both clauses are marked with \(p o\). They are part of a larger sequence describing the making of a canoe, so even though po occurs in the first clause of the example, this clause is not the first clause of the sequence. The fact that the second clause is marked shows that two subsequent clauses in a sequence can be marked with \(p o\) :
(81) \(A=\) po pau suk~suk nasma nag-na pa-ki nakiat nag-na, 1SG.S=SEQ weave RED~tight outrigger ASS-3SG.POSS go-TR crossboom ASS-3SG.POSS go \(\quad \mathrm{e}=\mathrm{po} \quad \mathrm{pi} \quad\) rarua. and 3SG.S=SEQ COP canoe
'Then I tie its outrigger to its crossbooms very strongly, and then it is a canoe.'

\subsection*{11.3.2 Auxiliaries marking aspect}

The AUX slot is populated by a closed set of auxiliary verbs, some of which mark aspectual distinctions, while others encode direction and modality (see 9.3.3, 10.3.3). This section expands the discussion of the imperfective auxiliaries to, mato and wane started in 10.3.3.1.

\subsection*{11.3.2.1 Imperfective: to and mato 'IPFV'}

The auxiliary to has grammaticalised from its position and semantics as a main verb meaning 'stay' to an aspectual marker encoding the imperfective-type meanings of progressive and habitual. As an auxiliary, to occurs with activity and process verbs but not with stative verbs. It can occur in realis and irrealis clauses, thus the event can be actualised or not, and take place at several points in time (past, present and future). In (82) the speaker describes the flattening of a canoe's stern with pas 'flatten'. His description occurs as the activity is taking place, so the event is marked with to and has a progressive reading:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (82) & Tarei & e=to & pas=ia, & e=to & pas & pkea. \\
\hline & p.name & \(3 \mathrm{SG} . \mathrm{S}=\mathrm{IPFV}\) & flatten=3sG.OBJ & \(3 \mathrm{SG} . \mathrm{S}=\mathrm{IPFV}\) & flatten & stern \\
\hline & \({ }^{\prime}\) Tarei is & tening it, he & attening the ster & & & \\
\hline
\end{tabular}

In (83), to occurs in a realis clause which encodes a past event, as the speaker talks about the time when missionaries were based on Efate, in the late nineteenth Century. The occurrence of to has a habitual reading as suggested by the occurrence of sara ntau 'each year', denoting an event that usually happens every year:
\begin{tabular}{lll} 
misi & laapa & nge, \\
missionary & many & def
\end{tabular}
ur=pitlaka naara n-seisei-na skei \(e=\) to pa-ki liga sara ntau. 3PL.S=have 3PL.POSS ART-meet-NMLZ INDEF 3SG.S=IPFV go-TR out each year
'As for these many missionaries, they had their meeting that used to occur every year.'

In (84), to occurs in the realis. The event is not connected to a particular point in time but more to a general current time, as malmauna 'now' suggests. The reading of the imperfective is also habitual, as when one goes to Maua they see Komagal, a traditional site located there:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline A=maua & malmauna & \(\mathrm{ku}=\) to & lop̃a=e, & \(\mathrm{e}=\mathrm{pi}\) & tewei & na-e, \\
\hline LOC \(=\) p.name & now & \(2 \mathrm{SG} . \mathrm{S}=\mathrm{IPFV}\) & see=3sG.OBJ & \(3 \mathrm{SG} . \mathrm{S}=\mathrm{COP}\) & SBST.TOP & DEM-ADD \\
\hline \(\mathrm{e}=\mathrm{pi}\) & Komagal & na-e & a. & & & \\
\hline 3SG.S=COP & p.name & DEM-ADD D & EM & & & \\
\hline
\end{tabular}
'In Maua nowadays you see it, it is the one, it is Komagal.'

The imperfective also occurs in the irrealis, with both progressive and habitual readings. In (85) to occurs in an irrealis clause which has a future and progressive reading:
(85) \(\mathrm{Ku}=\) lag \(\tilde{\mathrm{p}} \mathrm{a}=\) to tuma-ma pseiki-go, kane pa=lo parkat=ia. 2SG.S=say 2SG.S=IPFV RR-2SG.POSS show-2SG.OBJ but 2SG.S:IRR=look catch=3SG.OBJ 'You think you'll be showing off, but be careful.'

In (86), to occurs in an irrealis subordinate clause. Although the narrative relates past events, subordinate clauses occurring as complements of msau-na 'want-3sG' are always in the irrealis (see 12.4.3.5). There are two subordinate clauses following each other in (86) and the imperfective occurs in both. These clauses have a habitual reading as suggested by the occurrence of sral 'often':
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{(86)} & Naara & \multicolumn{2}{|l|}{ur \(=\) msau-na} & \multicolumn{2}{|l|}{lagur=ga to} & \multicolumn{2}{|l|}{malamala to,} & \multirow[b]{2}{*}{STAT} \\
\hline & 3PL & \(3 \mathrm{PL} . \mathrm{S}=\mathrm{w}\) & t-3sG.OBJ & COMP & \(3 \mathrm{PL} . \mathrm{S}=\mathrm{IRR}\) & IPFV & be.naked & \\
\hline & ur=ga & to & taakae & sral. & & & & \\
\hline & \(3 \mathrm{PL} . \mathrm{S}=1\) & R IPFV & dance & often & & & & \\
\hline & \multicolumn{7}{|l|}{'They wanted to stay naked, they danced often.'} & \\
\hline
\end{tabular}

Another imperfective auxiliary is mato 'IPFV'. Similarly to to, it can function as a main verb and as an auxiliary. Both forms are etymologically and semantically related but their semantic differences are difficult to pinpoint. While some of their semantic differences can be teased out when they function as main verbs (contrast to 'stay' and mato 'stay long; reside'), as auxiliaries they are glossed identically. \({ }^{7}\) The examples below show that mato encodes aspectual values similar to to. However, it is possible that the same sort of semantic differences found between to and mato are valid when they occur as auxiliaries. In (87) and (88), mato occurs in realis clauses with a progressive reading:

\footnotetext{
7 The semantic distinction that exists with to and mato as verbs could not be established for to and mato as auxiliaries.
}
\begin{tabular}{llllll} 
E=mato & los & pan & pa & \(e=\) ga & nou, \\
3SG.s=IPFV & bathe & GO & GO & 3SG.S=IRR & be.finished
\end{tabular}
e=kat pa lwa mul=la.
3SG.S \(=\) CERT go removed skin-3SG.POSS
'He bathed on and on until it would be done, then he removed his skin.'
(88) Ur=mato suaru pan.
3PL.S=IPFV walk GO
'They are walking away.'

The imperfective auxiliaries cannot occur with stative verbs. However, recall that to can occur with stative verbs in clause-final particle position to mark a state as persistent, and with telic verbs to encode that a state ensues after the endpoint of the activity encoded by the telic verb (see 10.6.1). In (89), to occurs with the stative verb wia 'be good':
\begin{tabular}{llll} 
(89) & \begin{tabular}{l} 
Kane \\
but
\end{tabular} & \begin{tabular}{l} 
srago \\
things
\end{tabular} & \begin{tabular}{l} 
ntas \\
sea
\end{tabular}
\end{tabular} \begin{tabular}{l} 
aginta, \\
1PL.INCL.POSS
\end{tabular}
\begin{tabular}{lllll} 
tu=paam=ia & se & nmat & e=wia & to. \\
1SG.INCL.S=eat=3SG.OBJ & while tide & 3sG.S=be.good & STAT \\
'But as for our seafood, we eat it while the tide is favorable.' &
\end{tabular}

In (90), to occurs as a stative particle with the telic verb sasake 'sit down', but cannot occur with this verb as an imperfective auxiliary, as seen in (91):
(90) \(\mathrm{E}=\) sasake to

3SG.S=sit.down STAT
'He is sitting down.'
[elicited]
\begin{tabular}{|c|c|}
\hline * \(\mathrm{E}=\) to & sa \\
\hline 3SG.S=IPFV & sit.down \\
\hline 'He is sitting & \\
\hline
\end{tabular}

\subsection*{11.3.2.2 Imperfective: wane 'IPFV'}

The other marker of imperfective is the auxiliary wane. Similarly to to and mato, it occurs as a main verb and as a grammaticalised auxiliary and clause-final particle (see 10.6.1). As a main verb, wane 'lie' expresses the state of being in a lying or low position (such as sitting on the floor), and can be used with human and non-human subjects, including inanimates, as shown in (92) and (93):
(92) Brij na e=wane sua, ur=to pat=ia.
bridge DEM 3 SG.S=lie PRF 3 SG. \(S=I P F V\) make=3SG.OBJ
'This bridge which has been there, we were making it.'
\begin{tabular}{llll} 
Ur=patnatamol & mat & e=ga & wane=s. \\
3PL.S=make person & dead & 3SG.S=IRR & lie=3OBL
\end{tabular}
'They make dead people lie in it.'

As an auxiliary, it denotes the same aspectual values as to and mato (ie. progressive and habitual), while expressing the fact that the subject is in a lying or low position. In (94), the subject of the second clause performs the activity of telling stories in a sitting position:
\begin{tabular}{lllcll} 
Ur=wane & suma \(=\) g & Nafet, & ur=wane & traus & nakai. \\
3pl.S=lie & house=POSS.H & p.name & 3PL.S=IPFV tell & trad.story \\
'We are at Naviti's house, and we are telling traditional stories (sitting down).'
\end{tabular}

Verbs encoding an activity which entail a lying position like maturu 'sleep' must occur with wane when marked with the imperfective. With such verbs, the imperfective cannot be marked with to or mato, as shown by (95) and (96):
(95) E=wane maturu pog se e=lag maroa-ki-nia. 3PL.S=IPFV sleep night while 3PL.S=MAYBE think-TR-3SG.OBJ
'He was sleeping at night while maybe he missed her.'
(96)
\begin{tabular}{llllll} 
*E=to & maturu & pog & se & \(\mathrm{e}=\) lag & maroa-ki-nia. \\
3PL.S=IPFV & sleep & night & while & 3PL.S=MAYBE & think-TR-3SG.OBJ
\end{tabular}
'He was sleeping that night and maybe he missed her.'
[elicited]

\subsection*{11.3.3 Perfect}

Perfect is marked with the particle sua 'PRF' which occurs in the verb complex (see 9.4.2). A general, cross-linguistic definition of the perfect is that it denotes a previous situation which is still relevant at the time of reference (Comrie 1976:62). Another definition along the same lines is that a perfect presents a situation as a state, extending back in time from the contextual occasion and projected to continue in the future (Timberlake 2007:304). With such definitions, it is important to note that the focus is not so much on the completion of the denoted event but rather on the continued relevance of a previous, bounded, or completed, event. This is illustrated by (97), in which the speaker explains that he planted several types of crops in
preparation for the wedding of his son, and had already, previously, planted kava. The fact that the kava was already planted and growing is relevant at the time of reference, because while food crops such as yam have a yearly or biannual yield, kava needs to be in soil for several years to reach a satisfactory growth stage. The planting of the kava is relevant at the time the subsequent gardens were planted, as it shows that the wedding's preparations were organised in order, and its relevance is continuing in time as the hearer knows that planting kava before food crops will ensure that these items will be ready on time for the wedding. In (97), the clause denoting the planting of the kava is marked with sua while the other adjacent clauses are not:
\begin{tabular}{|c|c|c|c|}
\hline A=pat tera & nge, & \(\mathrm{a}=\) to & lao \\
\hline 1SG.S=make garden & DEF & 1SG.S=IPFV & plant \\
\hline a=lao & sua & nmaluku & skei, \\
\hline and 1sG.s=plant & PRF & kava & IN \\
\hline
\end{tabular}
a=lao nawi, a=lao nafnag tete.
1SG.S=plant yam 1SG.S=plant food some
'I made the garden, I planted for it (i.e. the wedding); and I had already planted kava, then I planted yam, I planted some other crops.'

While other elements of the verb complex are fixed in order, sua is attested to occur both before and after objects and obliques. As discussed below, this variation only occurs in the realis, in irrealis clauses the perfect must precede the object in transitive clause, or the oblique in the case of intransitive clauses with an oblique argument. Given the fact that Lelepa is leftheaded, it seems reasonable to hypothesise that when sua occurs before the object or oblique, it modifies the verb directly, rather than the whole clause, whereas in a post-object/oblique position it may modify the whole verb complex. The examples below show sua in both positions. When it occurs in some realis transitive clauses, sua occurs before the object as seen in (97) to (99):
(98) Male \(e=\) leyem \(^{8}\) sua natul-la,
once 3sG.S=lay PRF egg-3sG.POSS
\begin{tabular}{llll}
\(\mathrm{e}=\) rki & natul-la=s & lag, & "P̃a=to." \\
3sG.S=tell & egg-3SG.SP=3SG.OBJ & COMP & 2SG.S:IRR=stay
\end{tabular}
'Once he has laid his egg, he tells his egg, "stay.""
(99)
\begin{tabular}{lllll} 
Wara-e, & a=kat & rki & sua=ko=s & na-e \\
there-ADD & 1SG.S=CERT & tell & PRF=2SG.OBJ=3SG.OBJ & DEM-ADD
\end{tabular}
lag \(\quad \mathrm{e}=\mathrm{pi}\) nali tap aginta.
COMP 3sG.S=COP place sacred 1PL.INCL
'There, I already told you that it is our sacred place.'

In some realis intransitive clauses with an oblique argument, sua occurs before the oblique as in (100):
(100) Ur=munu sua ti pan pa enou, 1PL.EXCL.S=drink PRF tea GO GO 3SG.S=be.finished
ur=kut pa-ki Nagsumtas pa.
3PL.S=CERT go-TR p.name GO
'We had breakfast, and we went to Nagsumtas.'

However, there are instances in which sua occurs after the object in a realis clause, as in (101) and (102):
(101) Male tu=ga fa-ki skul panmei,
once 1PL.INCL.S=IRR go:IRR-TR church come
\(\begin{array}{lllll}\text { tu=pa-ki } & \text { na=to } & \text { suki-na } & \text { sua } & \text { panmei, } \\ \text { 1PL.INCL.S=go:TR } & \text { ART=stay } & \text { tight-NMLZ } & \text { PRF } & \text { come }\end{array}\)
tu=ga fanei faam wara.
1PL.INCL.S=IRR come:IRR eat:F here
'Once we go to the church and back, once we have gone to the wedding and back, we will come to eat here.'

\footnotetext{
8 The transitive verb leyem 'lay' is a borrowing from Bislama.
}
```

(102) A=to pat suk~suk srago laapa sua pan pa,
1SG.S=IPFV make RED~tight things many PRF GO GO
a=laka=e lag e=kat paatka.
1SG.S=see=3sG.OBJ COMP 3SG.S=CERT enough
'I had been preparing lots of things for a while, until I saw that it was enough.'

```

Elicited sentences such as (103) and (104) show that the position of sua is variable. The verb mипи 'drink' is intransitive and can take an oblique argument, which in these examples is realised with the NP \(t i\) 'tea'. The perfect can occur in a pre- and post-oblique position without a change in meaning. This suggests that the position of sua is in free variation with respect to oblique arguments:
```

(103) Ur=munu sua ti.
3PL.S=drink PRF tea
'They had breakfast.'
[elicited]
(104) Ur=munu ti sua.
3PL.S=drink tea PRF
`They had breakfast.'
[elicited]

```

However, in some transitive clauses, sua is restricted to occur before the object, as seen in the contrast between the elicited (105) and (106):
```

(105)
A=pau sua rarua.
1SG.S=weave PRF canoe
'I assembled the canoe.'
[elicited]
(106)
*A=pau rarua sua.
1SG.S=weave PRF canoe
'I assembled the canoe.'
[elicited]

```

While the textual data shows that sua has a variable position in some realis clauses, it is in preobject position in all examples of irrealis clauses in which it occurs. Thus it seems reasonable to posit that sua does not vary its position in irrealis clauses and always occurs pre-object, but the conditions for the variation in realis clauses have not been determined. Examples (107) and (108) shows that sua must occur in a pre-object position in irrealis clauses:
```

(107) Tu=ga fat suk~suk sua srago galaapa,
1PL.INCL.S=IRR make:IRR RED~tight PRF things IRR.be.many
$\mathrm{tu}=\mathrm{ga} \quad$ fa.
1PL.INCL.S=IRR go:IRR
'We will have prepared many things, then we'll go.'
(108) ${ }^{*} \mathrm{Tu}=\mathrm{ga}$ fat suk~suk srago galaapa sua,
1PL.INCL.S=IRR make:IRR RED~tight things IRR.many PRF
$\mathrm{tu}=\mathrm{ga} \quad$ fa.
1PL.INCL.S=IRR go:IRR
'We will have prepared many things, then we'll go.'

```

Note also that the homophonous form sua is an intransitive verb meaning 'go down, descend', as seen in (109) and (110):
(109) \(A=p a n\), male \(a=\) te=laapa mauna, ur=po sua. 1SG.S=go when 1sG.S=go.down SBST=be.many all 3PL.S=SEQ go.down 'I went, when I went down, many people, everyone was going down.'
(110) Ar=sua panei, ar=suaru panei panei panei paki... 3DU.S=go.down COME 3DU.S=walk COME COME COME to
kane \(\quad \mathrm{e}=\mathrm{pi} \quad \mathrm{a}=\tilde{m} a \mathrm{a} a=\tilde{m} a e\).
but 3sG.S=COP LOC=far.away LOC=far.away
‘They (two) came down, they (two) walked and walked, but it was really far away.'

While Thieberger notes, after Hopper and Traugott (1993:79), that it is not uncommon for terms meaning 'down' to be grammaticalised into completive/perfective markers in the world's languages (Thieberger 2006:266), Timberlake points out that perfects also historically derive from particles such as 'already' or verbs with meanings such as 'finish', 'arrive', and other similar meanings (Timberlake 2007:292). It is plausible that in Lelepa, the perfect has grammaticalised from the intransitive verb sua but that the process may still be ongoing, explaining its variable position.

\subsection*{11.4 Lack of tense category and lexical encoding of time}

Lelepa lacks a grammatical category for encoding tense, which certainly does not mean that it is not possible to encode temporal distinctions in the language. So-called tenseless languages
have been known for a long time and have a wide distribution cross-linguistically. Regarding Oceanic languages, the lack of a tense category is not uncommon (see Jauncey (2011) for Tamambo, Schneider (2010) for Abma, Thieberger (2006) for South Efate, Hyslop (2001) for Ambae). At the same time some Oceanic languages have an overt tense category (see Palmer (2009) for Kokota, Guérin \((2008 ; 2011)\) for Mavea). In the latter case, it is common for these languages to only encode a limited range of temporal values (present and future but not past for Kokota, future only for Mavea). Lelepa lacks grammatical tense while offering speakers the ability to locate events in time by using lexemes expressing temporal meanings. Such lexemes generally occur once at the beginning of a narrative to establish the temporal frame of the event. Alternatively, if the temporal frame needs to be changed in the course of a narrative or 'refreshed', these lexemes occur again. Table 11.3 presents these lexemes, which are all adverbs:
\begin{tabular}{|l|l|l|l|}
\hline Lexeme & Gloss & Temporal Reference & Word Class \\
\hline tuei & long ago & past & adverb \\
\hline slafea & before, initially & past & adverb \\
\hline nanou & yesterday & past & adverb \\
\hline nanos & before yesterday & past & adverb \\
\hline malange & then, at that time & past & adverb \\
\hline nagsange & then, at that time & past & adverb \\
\hline mesa & today & present & adverb \\
\hline malmauna & now & present & adverb \\
\hline matmai & day.after & future & adverb \\
\hline
\end{tabular}

Table 11.3. Lexemes used in lexical framing of time

In (111), slafea 'before' occurs at the start of a personal narrative in which the speaker relates his hunting practices as a younger man. The whole text relates events located before the time of speech, that is, in the past, and slafea occurs just once, establishing the temporal frame for the whole text. Note that no overt mood marker occurs, since the clause is in the realis mood:
(111) Slafea \(a=p i\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Slafea, \\
before
\end{tabular} & \[
\begin{aligned}
& \mathrm{a}=\mathrm{pi} \\
& 1 \mathrm{SG} . \mathrm{S}=\mathrm{COP}
\end{aligned}
\] & \begin{tabular}{l}
natam̃ol \\
person
\end{tabular} & \begin{tabular}{l}
skei \\
INDEF
\end{tabular} & na REL & \[
\begin{aligned}
& \mathrm{a}=\mathrm{to} \\
& 1 \mathrm{SG} . \mathrm{S}=\mathrm{IPFV}
\end{aligned}
\] & \[
\begin{aligned}
& \text { pa-ki } \\
& \text { go-TR }
\end{aligned}
\] \\
\hline Wan if & \[
\begin{aligned}
& \mathrm{a}=\mathrm{pa}-\mathrm{ki} \\
& \text { 1SG.S=go-TR }
\end{aligned}
\] & namlas, bush & \begin{tabular}{l}
mala \\
when
\end{tabular} & & a=tum̃alua 1sG.S=leave & naure, island \\
\hline \[
\begin{aligned}
& a=m s u g \\
& 1 \mathrm{sG} . \mathrm{S}=\mathrm{ca}
\end{aligned}
\] & koria dog & \[
\begin{aligned}
& \mathrm{a}=\text { palse } \\
& \text { 1SG.S }=\text { p }
\end{aligned}
\] & le & & \begin{tabular}{l}
Fate. \\
p.name
\end{tabular} & \\
\hline
\end{tabular}
'Before, I was a man who used to go to the bush. If I went to the bush, when I left the island, I took dogs, I paddled to Efate.'

In (112), malmauna 'now' establishes the temporal frame of the event so that the time of speech and the time of reference are the same:
\begin{tabular}{lll} 
(112) Konou, & a=plo & maroa \\
1SG & 1SG.S=STILL & \begin{tabular}{l} 
parkat=ia, \\
catch=3sG.OBJ
\end{tabular}
\end{tabular}
\begin{tabular}{llll}
\(\mathrm{a}=\mathrm{msau}-\) na & lag & \(\mathrm{a}=\mathrm{ga}\) & til=ia malmauna. \\
1SG.S=want-3SG.OBJ & COMP & 1SG.S=IRR & tell=3SG.OBJ now
\end{tabular}
'As for me, I still remember it, and I want to tell it now.'

Like malmauna in (112), mesa 'today' in (113) sets the event time and speech time in the present. It occurs twice, once to give the date of the day the utterance took place and subsequently to encode the temporal frame of the event:


In (114) and (115), matmai 'day.after' occurs and sets the time of reference ahead of time speech, in the future. Note that in both clauses in which matmai occurs, the irrealis marker ga also does:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline (114) & Matmai, day.after 'Tomorrow, & ten
SBST
those fren & ooss:N & nalia
place & nagrun
woman
ce will cor & \[
\begin{aligned}
& \mathrm{ur}=\mathrm{ga} \\
& \text { 3PL. } \mathrm{S}=\mathrm{IRR} \\
& \text { ne.' }
\end{aligned}
\] & fanmei. come:IRR & \\
\hline \multirow[t]{3}{*}{(115)} & \(\mathrm{E}=\mathrm{pi}\) & wago & wei & tu \(=\mathrm{ga}\) & fa & \(\mathrm{m}=\mathrm{ia}\) & matmai & na-e. \\
\hline & 3sG.s=COP & pig & TOP & 1PL.INCL. & \(=\) IRR ea & IRR \(=3\) SG. OBJ & day.after & DEM-ADD \\
\hline & \multicolumn{8}{|l|}{'This is the pig we will eat tomorrow.'} \\
\hline
\end{tabular}

These examples have shown that the language uses lexemes to set the temporal frame of an event, but does not use tense as a grammatical category. The examples also suggest that some of these lexemes occur with the realis (slafea 'before', malmauna 'now', mesa 'today') and others with the irrealis (matmai). However, some of these adverbs are not constrained to a particular mood. In (116), malmauna 'now' occurs in an irrealis clause which denotes an event located in the near, immediate future:
\begin{tabular}{lllll} 
(116) & Go malmauna & a=ga & traus=ia & tapla. \\
and now & 1SG.S=IRR & tell=2SG.OBJ & like.this
\end{tabular}

In (117), mesa 'today' occurs twice, first in a realis clause, then in an irrealis clause which encodes an event located in the near future:


In (118) matmai occurs in a realis clause. This example is taken from a personal narrative relating an event located in the past. In this occurrence, matmai does not set the temporal frame of a future event in relation to the time of speech, but locates an event as following a preceding one, while both events are in the past.
\begin{tabular}{llllllll} 
E=to pan pa, matmai & e=mro palse llu pan pa & laka=e. \\
3sG.S=IPFV GO GO day.after & 3SG.S=again paddle return & GO GO & see=3DG.OBJ \\
'He stayed for a while, the next day he paddled again to go see it.'
\end{tabular}

In addition to the lexemes in table 11.3, other temporal expressions can be used to set the temporal frame of a particular event. Such temporal expressions are NPs like wik nepa 'last
week' as in (119) or \(\tilde{p o g i}=n\) mesa 'tonight' as in (120). Others are wik. fao 'next week', wik na 'this week', ntau nepa 'last year', ntau fao 'next year', ntau na 'this year', amongst others.
(119) Rarua na Tafman \(\mathrm{e}=\mathrm{pat}=\mathrm{ia}\) e=maora wik nepa.
canoe REL p.name 3sG.S=make=3sG.OBJ
3SG.S=break week last
'As for the canoe that Tafman made, it broke last week.'
(120) Ur=kut taplange to lag, "man! Kinta p̃ogi=n mesa,
3PL.S=CERT like.this STAT COMP EXPL 1PL.EXCL night=POSS:NH today
tu=ga fa-ki sei pa na-e?"

1PL.INCL=IRR go:IRR-TR where GO DEM-ADD
'We were like this and said, "Damn! As for us tonight, what are we gonna do?""
(lit. where are we going to go?)

\section*{Chapter 12 - Coordination and subordination}

\subsection*{12.1 Introduction}

This chapter discusses how NPs and clauses combine. Following Haspelmath (2007), I use the label coordinator to refer to morphemes performing coordinating functions. Coordinators mark the following relationships: conjunctive ( \(g_{0}\) 'and'), disjunctive (kite 'or'), adversative (kane 'but'), sequential (nina 'then') and simultaneous (se 'while'). Conversely, I use the term subordinator to refer to overt markers of subordination. The complementisers lag, se and takanei introduce complement clauses, and the relativiser \(n a\) is restricted to relativisation. In addition, there are a number of subordinators introducing adverbial clauses: nlakan introduces reason clauses, mala time clauses and lag purpose clauses, in addition to its complementiser function. Coordination is discussed in 12.2, and 12.3 addresses how coordination and subordination can be distinguished. The later sections are dedicated to subordination: complement clauses (12.4), adverbial clauses (12.5), and relative clauses (12.6).

\subsection*{12.2 Coordination}

\subsection*{12.2.1 Asyndetic coordination}

In asyndetic coordination, no overt coordinator occurs and the coordinands are simply juxtaposed (Haspelmath 2007:7). In Lelepa, this type of coordination conjoins both NPs and clauses. Asyndetic coordination of NPs is conjunctive, whereas asyndetic coordination of clauses can be conjunctive or sequential. Other types of relationships such as disjunctive and adversative coordination are not attested in asyndetic constructions. In (1), four NPs introduced by the prepositional verb taos 'like' are conjoined together with asyndetic coordination:
(1) Nafnag taos nati, poti, maniok, nanua;
food like banana ladyfinger tapioca coconut
\begin{tabular}{lll} 
srago & taplange & taos \(=\) ia \\
things & like.this & like \(=3\) sG.OBJ
\end{tabular}
tu=po to laka=e maket malmauna.

1PL.INCL.S=SEQ IPFV see=3SG.OBJ market now
'Food such as banana, ladyfinger banana, maniok, coconuts; things like this that we find at the market now.'

In (2), asyndetic coordination is used to conjoin several clauses. A comma occurs at the end of these clauses to indicate an intonation break. Note that the coordinator go 'and' occurs to link the third and fourth clause. In this example, asyndetic coordination is conjunctive, as it lists different activities that are part of a job described by the speaker:
(2) \(A=\) to kuk, \(a=\) to was, \(a=\) to wus leta pa-ki postofis, 1SG.S=IPFV cook 1SG.S=IPFV wash 1SG.S=IPFV take letter go-TR post.office
go a=to pa-ki stoa, a=to pagtof agnem nafnag. and 1SG.S=IPFV go-TR shop 1SG.S=IPFV buy 1PL.INCL.POSS food 'I used to cook, I used to wash, I used to take letters to the post office, and I used to go to the shops, I used to buy our own food.'

In contrast, asyndetic coordination in (3) marks sequentiality between the first two clauses: the event denoted by the first clause is set to occur before the one denoted by the second clause. Note that the final clause presents a different formulation of the event denoted by the second clause, and is not in a sequential relationship with the preceding ones:
(3) kur=ga mro lko faatu nap̃a-na, kur=ga salea-ki-nia, 2PL.S=IRR AGAIN tie stone neck-3SG.POSS 2PL.S=IRR float-TR-3SG.OBJ
kur=ga fa taroaki-nia lau.
2PL.S=IRR go:IRR throw-3SG.OBJ seawards
'Tie a stone to his neck, put him in the sea, throw him in the sea.'

\subsection*{12.2.2 Conjunctive coordination with go 'and'}

The coordinator go 'and' is used to conjoin NPs, clauses and sentences. In textual data, it functions mostly as a clause conjoiner, while only a few occurrences of \(g_{o}\) link coordinate NPs. In (4), go links the NPs taatia naara 'their grandmother' and terua kike 'the two little ones':
(4) Ur=to se, taatia naara go te=rua kiki ur=sfa. 3pL.S=stay while mat.grandmother 3pL.POSS and SBST=two be.small 3pL.S=run 'They stayed, then their grandmother and the two little ones ran.'

When more than two NPs are conjoined, the coordinator generally does not occur between each NP, but only once. It can occur before the last NP, as in (5), or before an earlier NP, as in (6):
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathrm{E}=\) pseiki-nia lag & \(\mathrm{A}=\mathrm{moso}\) & A=guna, go \(\mathrm{A}=\) llapa, & & \\
\hline 3SG.S=show-3SG.OBJ & COMP & LOC=p.name LOC=p.name & and & LOC=p.name \\
\hline ntaafa nag-ra & \(\mathrm{e}=\) tugor \(=\) & & & \\
\hline hill ASS-3PL & \(3 \mathrm{SG} . \mathrm{S}=\mathrm{bloc}\) & \(\mathrm{k}=3 \mathrm{PL} . \mathrm{OBJ}\) & & \\
\hline 'It shows that as for M & so, Nguna, & , and Lelepa, their hills are block & king & \\
\hline
\end{tabular}
(6) Taos naa... nam̃ap̃e, nakafka, mago, madari, aranis, like HESIT tree sp. tree sp. tree sp. tree sp. tree sp. go namali, napkoro, noatkus taplange. and tree sp. tree sp. fruit like.this
'Thus... Tahitian chestnuts, Malay apples, mangoes, mandarins, oranges, and great hog plums, bush nuts, fruits like this.'

The referents of NPs conjoined with go are alike in some respects; for instance they may all be human, or non-human, or inanimate. This is seen (5) in which the conjoined NPs refer to places, and in (6) in which they refer to different sorts of fruit. This is well attested in languages of the world and referred to as natural coordination. It contrasts with accidental coordination which refers to the coordination of conjuncts which are not alike or unexpectedly coordinated (Haspelmath 2007:23). In Lelepa, natural conjunction can be asyndetic as in (1) or marked with go as in (4). However, accidental coordination can only be marked with go, as seen in the contrast between (7) and (8):
\begin{tabular}{lllll} 
A=tua & Naomi & memis & go & wago. \\
1PL.S=give & p.name & knife & and & pig \\
'I gave Naomi a knife and a pig.' & & \\
[elicited] & & &
\end{tabular}
*A=tua \(\quad\) Naomi \(\quad\) memis \(\quad\) wago.
1pl.s=give p.name knife
'I gave Naomi a knife and a pig.'
[elicited]

As a clause and sentence conjoiner, go marks sequentiality and thematic unity. That is, clauses talking about the same theme can be conjoined with \(g o\). In (9), go links clauses referring to sequential events, and marks the fact that the eating event will take place before the dancing event:
(9) \(\mathrm{Ur}=\mathrm{ga}\) faam pkout go ur=ga sale natmate.

3PL.S=IRR eat:F completely and 3PL.S=IRR dance peace.ceremony
'They would finish eating and they would dance at the peace ceremony.'

Similarly in (10), go links two clauses denoting two events in a sequence:
\begin{tabular}{lllll}
\begin{tabular}{l} 
E=til=ialag \\
3sG.S=say=3sG.OBJ
\end{tabular} & \begin{tabular}{l}
\(\mathrm{e}=\mathrm{ftag}\) \\
COMP
\end{tabular} & \begin{tabular}{l} 
pa-ki \\
3sG.S=ask
\end{tabular} & \begin{tabular}{l} 
Ifira, \\
go-TR
\end{tabular} & p.name
\end{tabular}

In contrast, clauses in (11) and (12) are conjoined with go to mark thematic unity. In these examples, the speakers talk about particular themes and add information to these by using \(g o\) :
(11) Ur=psruki nafsana laapa kasu nge go ur=mato naure to. 3pL.S=speak language many too.much DEF and 3pL.s=stay.long island STAT 'They spoke too many languages and lived on the island.'
(12)
\begin{tabular}{lllll}
\(\mathrm{E}=\mathrm{pi}\) & tena & au=ga & fa & raika \\
3SG.S=COP & SBST.DEM & 1PL.EXCL.S=IRR & go:IRR & spearfish
\end{tabular}
go \(a u=g a \quad\) fai kaafe.
and 1PL.EXCL.S=IRR pack:IRR crab
'So that we would go spearfishing and collect crabs.'

\subsection*{12.2.3 Conjunctive coordination with naaram 'and'}

Naaram 'and' is restricted to coordinating NPs with animate referents, particularly humans and higher animates. \({ }^{1}\) Naaram is not used to coordinate clauses. In (13) and (14), it conjoins NPs whose referents are human:

\footnotetext{
\({ }^{1}\) Higher animates include domesticated animals (animals raised for consumption as well as pets) and animals occurring as characters in traditional stories, which are generally treated as humans.
}
(13) Nagrun naaram nanoai! Ur=panei panei palgat=ia. woman and man 3pl.s=come come open=3sG.OBJ 'Women and men! Many came to open it.'
\begin{tabular}{lllllll}
\(\tilde{\text { Pa }}=\) lopa & mamei & nag & naaram & tetei & nag, & ar=panmei. \\
2SG.S=see & father & 2SG.POSS & and & mother & 2SG.POSS & 3DU.S=come
\end{tabular}
'Look at you father and mother, they (two) came.'

In (15), naaram is used to conjoin personal names whose referents are human:
(15) \(\mathrm{Te}=\mathrm{rua}\) nge, \(\mathrm{ar}=\mathrm{pi}\) kapenta rua na ar=atlake=s, SBST=two DEF 3DU.S=COP carpenter two REL 3DU.S=start=3OBL
e=pi John Kalorua naaram Tom Kalori 3sG.S=COP p.name p.name and p.name p.name
'As for these two, they were the two carpenters who started it, it was John Kalorua and Tom Kalori.'

In (16), the referents of both conjoined NPs refer to two stones, which are inanimates. However, these stones are culturally important, have their own traditional story and are known to have supernatural powers. In the text from which (16) is extracted, they are depicted as human-like beings involved in activities such as walking, fighting and raising pigs. They are treated as humans and conjoined with naaram. Additional evidence for this treatment is seen in the use of the possessive enclitic \(=g\) 'POSS.H', which denotes a human possessor:
\(\begin{array}{llllll}\text { (16) } & \mathrm{E}=\mathrm{pi} & \text { na-fsa-na } & \text { matua=g } & \text { Mautariu naaram } & \text { Puma. } \\ \text { 3sG.S=COP } & \text { N.SPEC-speak-NMLZ be.old=POSS.H } & \text { p.name } & \text { and } & \text { p.name } \\ & \\ & \text { 'This is the story of Matariu and Puma.' } & & & \end{array}\)

While example (6) above showed that conjoining NPs with inanimate referents can be done with \(g o\), elicitation has revealed that inanimates cannot be conjoined with naaram. In (17), naaram is used to coordinate higher animates, while in (18) coordinating animates and inanimates with naaram is ungrammatical:

*A=tua Naomi toa, waago, naaramnamit.
1sG.S=give p.name chicken pig,
'I gave Naomi a chook, a pig, and a mat.'
[elicited]

In (19), grammaticality is re-instated by substituting naaram with go:
A=tua \(\quad\) Naomi \(\quad\) toa, \(\quad\) waago,
1SG.S= give \(\quad\) p.name chicken pig \(\quad\)\begin{tabular}{l} 
namit. \\
'I gave Naomi a chook, a pig, and a mat.'
\end{tabular}

Finally, (20) shows that it is ungrammatical for naaram to coordinate inanimates:
\begin{tabular}{lllllll} 
*P̃a=magnou pagtof poti & gaskei & naaram & les & gaskei. \\
2SG.S=1sG.ben pay & banana & IRR.INDEF & and & pawpaw & IRR.INDEF \\
'Buy me a bunch of bananas and a pawpaw.' & & & & \\
[elicited]
\end{tabular}

Note that there is a single exception to this in the textual data, as seen in (21). In this example, the referents of both coordinated NPs are inanimates. The speaker is talking about the past when people could only go to the mainland using canoes, and that it was difficult in the context of going to the market in town to sell market produce. He then explains that nowadays this does not happen as people use speedboats and trucks. A possible explanation for this exception is that although trucks and speedboats are inanimates, they contrast with canoes as they can move at speed and make noise, similarly to higher animates:


\subsection*{12.2.4 Disjunctive coordination with kite 'or'}

The disjunctive coordinator kite 'or' is used to coordinate NPs and clauses, and does not have restrictions based on animacy or humanness of referents. In (22), the NPs coordinated with kite have referents which are both inanimate and abstract:
(22) Sufate \(e=\) mour, ur=mas palse tp̃a=e pa-ki Fate pan pulp̃og, south.wind 3SG.S=blow 3PL.S=must paddle face=3sG.OBJ to p.name GO morning
malsau kite p̃og.
dawn or night
'The South Wind blew, they had to paddle to Efate facing it in the morning, at dawn or at night.'

Kite is also used to coordinate NPs with inanimate, non-abstract referents such as in (23):
\begin{tabular}{llclll}
\begin{tabular}{llll} 
Ur=lop̃a=e & se & srago & nge \\
3PL.s=see=3SG.OBJ & COMP
\end{tabular} & \begin{tabular}{l} 
e=tau \\
things
\end{tabular} & DEF & 3PL.s=stay
\end{tabular}\(\quad\)\begin{tabular}{l} 
we! \\
EMPH
\end{tabular}
taos painape, nati memi, mago, kite namali.
like pineapple banana ripe mango or tree.sp
'They saw that... the things down there! Their smell was wafting up into the air, like pineapples, ripe bananas, mangoes, or great hog plums.'

Finally, (24) shows that kite is also used to coordinate NPs with human referents:
\begin{tabular}{lllll} 
Nan-m̃a, & nan-ma & kite & ta-ma & skei, \\
offspring-2SG.POSS & \begin{tabular}{l} 
offspring-2SG.POSS
\end{tabular} & or & friend-2SG.POSS & INDEF
\end{tabular}
\begin{tabular}{lllll} 
taos=ia & wan & e=ga & trabol & nmatunagaskei, \\
like=3SG.OBJ if & isG.S=IRR & be.in.trouble something IRR.INDEF \\
'Your child, your child or one of your friends, like if he's in trouble with something,'
\end{tabular}

When kite is used to coordinate more than two NPs, it does not need to occur between each NP, but is only before the final one, as in (25):


Examples (26) to (28) show kite coordinating clauses. In (26), it links two subordinate clauses introduced by the complementiser lag. Note that the matrix clause is negated, as well as the second subordinate clause. Both negated clauses are recognizable by the fact that they carry the negator \(t i\) ' NEG ', while the first subordinate clause does not:
(26)
\begin{tabular}{lllll} 
Kane malange & ur=panei & kasem & taafa, \\
but then & 3pL.S=come & to & inlandwards
\end{tabular}
\begin{tabular}{llllllll}
\(\mathrm{a}=\mathrm{ti}\) & tae & lag & ur=po & pre & taikiki & naara & nge=s \\
1SG.S=NEG & know & COMP & 3PL.S=SEQ & bathe & young.sibling & 3PL.POSS & DEF=3OBL
\end{tabular}
kite ur=ti pre=a=s mau.
or 3PL.S=NEG bathe=3SG.OBJ=3OBL NEG2
'But at the time they arrived inland, I don't know whether they then bathed their brother there or if they didn't bathe him there.'

In (27), Kite coordinates two clauses with the verb sla 'carry':
(27)
\begin{tabular}{llllll}
\begin{tabular}{llll} 
Tu=pan, wan \\
1PL.INCL.S=go
\end{tabular} & \begin{tabular}{l} 
e=pi \\
if
\end{tabular} & \begin{tabular}{l} 
wago, \\
3sG.S=COP
\end{tabular} & pig & & \\
tu=sla & wala & kite & tu=sla & sisi, & \\
1PL.INCL.S=carry & spear & or & 1PL.INCL.S=carry & rifle
\end{tabular}
'We go, if it is a pig, we carry a spear or we carry a rifle, we kill it with the thing we carried.'

In (28), kite coordinates two clauses denoting two alternative possibilities to answer the question posed in the example:
\begin{tabular}{llllllll} 
(28) & Kano & nge & e=to & uta & wara & to, kite & \(e=\) pueli? \\
man & DEF & 3SG.S=IPFV & landwards & here & STAT or & 3SG.S=not.be.here
\end{tabular}
'Is the man here on the shore, or is he not here?'

Kite is also attested as a tag question marker, as in (29). In this example it has a similar function to the English tags 'or what?'/'or not?' used at the end of questions. In this function, kite gives the hearer the opportunity to agree or disagree with the proposition contained in the question:
\begin{tabular}{llllllll} 
A=ga & lag & tla & lwa=e & kal & kas & wa-s & kite \(?\) \\
1SG.S=IRR & MAYBE & lever & removed=3SG.OBJ & digging.stick & wood DEM-PROX & or \\
'Should I lever it out with this wooden stick or what?' & & &
\end{tabular}

\subsection*{12.2.5 Adversative coordination with kane 'but'}

The main function of kane is to coordinate clauses in an adversative relationship. Additionally, it also marks a clause presenting a change in the discourse's topic. Adversative coordination
can be defined as expressing an opposition between two states of affairs, in contrast to disjunctive coordination which presents an alternative between two states of affairs or referents. In (30), kane opposes the past, when times were hard, with the present, which is seen as easier:
\begin{tabular}{lllllll}
\begin{tabular}{lllll} 
Malange, \\
then
\end{tabular} & \begin{tabular}{l}
\(\mathrm{e}=\mathrm{pi}\) \\
3 SG.S=COP
\end{tabular} & \begin{tabular}{l} 
mala \\
time
\end{tabular} & \begin{tabular}{l} 
kasua, \\
hard
\end{tabular} & & \\
kane & malmauna & \begin{tabular}{l}
\(\mathrm{e}=\) po
\end{tabular} & pi & mala & wia & na. \\
but & now & \(3 \mathrm{SG}=\) SEQ & COP & time & be.good & DEM
\end{tabular}
'Then, those were hard times, but now these are easy times.'

In (31), kane opposes two states of affairs: one denoting that the prawns are in a particular location ('here' in the narrative), and the other denoting that the prawns are not in that location:
\[
\begin{array}{llllllll}
\text { A=to } & \text { plaga } & \text { ura } & \text { agnou } & \text { skei } & \text { a=trus=ia } & \text { to wara } & \text { to, }  \tag{31}\\
\text { 1SG.S=IPFV } & \text { look.for } & \text { prawn } & \text { 1SG.POSS } & \text { INDEF } & \text { 1SG.S=leave=3SG.OBJ } & \text { stay here } & \text { STAT } \\
& & & & & \\
\text { kane } & \text { e=kat } & \text { pueli. } & & \\
\text { but } & \text { 3SG.S=CERT } & \text { not.be.there } & & \\
\text { 'I am looking for my prawns that I left here, but they're gone.' }
\end{array}
\]

In (32), the speaker uses kane to oppose two states of affairs: a previous one, in which he has forgotten the name of the girl he is talking about, and the current one in which he remembers her name and gives it in the narrative:
\begin{tabular}{llll}
\begin{tabular}{lll} 
Grunkiki \\
girl
\end{tabular} & \begin{tabular}{l} 
nge, \\
DEF
\end{tabular} & \begin{tabular}{l} 
a=tap̃argor \\
1SG.S=forget
\end{tabular} & \begin{tabular}{l} 
nagi-na, \\
name=3SG.POSS
\end{tabular} \\
\begin{tabular}{llll} 
kane & nagi-na & e=pi & Tuaraka \\
but & name-3SG.POSS & 3sG.S=COP & p.name
\end{tabular} \\
'As for the girl, I forgot her name, but her name was Tuaraka.'
\end{tabular}

Kane also changes the topic of discourse. \({ }^{2}\) Consider (33) which gives the first three sentences of a narrative. There is no opposition between these three distinct states of affairs; however, in the second and third sentences the speaker changes the topic of his narrative. The first sentence opens the narrative. Kane occurs at the start of the second sentence to allow the

\footnotetext{
\({ }^{2}\) Here, topic does not refer to the information structure category of topic discussed in 7.6.
}
speaker to talk about something different. In the third sentence kane occurs again to signal another change, this time to go back to the narrative:
\begin{tabular}{llllll} 
A=ga & mnag & sraus & nafsana & matua & skei. \\
1SG.S=IRR & 2SG.BEN & repeat & language & be.old & INDEF
\end{tabular}
\begin{tabular}{llllll} 
Kane & nagi & konou & \(\mathrm{e}=\mathrm{pi}\) & John & Naviti. \\
but & name & 1SG & 3SG.S=COP & p.name & p.name
\end{tabular}
Kane nafsana matua nge, te=rua nge,
but language be.old DEF SBST=two DEF
\begin{tabular}{lllll} 
nagi-ra & \(\mathrm{e}=\mathrm{pi}\) & laua & naaram & ofa. \\
name-3PL.POSS & 3sG.S=COP & cardinal.fish & and & hero
\end{tabular}
'I am going to tell you an old story. By the way my Name is John Naviti. And also regarding this story, as for these two, their names were Cardinal Fish and Heron.'

\subsection*{12.2.6 Sequential coordination with nina 'then'}

The coordinator nina links clauses denoting chronologically ordered events. It occurs in two positions: clause-finally before a pause as in (34), or clause initially after a pause as in (35):
\begin{tabular}{llll} 
Ar=pa-ki & uta & panei & nina \\
3DU.S=go-TR & landwards & COME & then
\end{tabular}
\begin{tabular}{lllllll} 
ar=kat & mato & nlaka=n & nrau & nge & nina, \\
3DU.S=CERT & stay.long
\end{tabular} trunk=POSS:NH \begin{tabular}{lllll} 
tree.sp & DEF & then
\end{tabular}
'They (two) got ashore okay, they (two) went to the Dragon Plum tree next, and the rat climbed up.'
\begin{tabular}{llll} 
E=laka=e, & \(\mathrm{e}=\) palake=s, & nina & \(\mathrm{e}=\) sfa. \\
3SG. \(S=\) see=3SG.OBJ & 3sG.S=afraid=3OBL & then & 3SG.S=run
\end{tabular}
'She saw it, she was afraid of it, then she ran.'

These examples also show that nina interacts differently with intonation contours. In (34), it is part of the intonation contour of the first clause. In contrast, in (35) it is part of the intonation contour of the second clause. A third pattern is also possible, in that nina is part of its own intonation contour, as seen in (36):
\begin{tabular}{llllll} 
E=pam̃osko=s & maata & nge & e=to & nous & to. \\
3SG.S=find=3SG.OBJ & snake & DEF & 3sG.S=stay & wild.cane & STAT
\end{tabular}
\begin{tabular}{llll} 
Nina, & \(\mathrm{e}=\) lag & \(\mathrm{e}=\) ga & pat=ia \\
then & 3SG.S=say & 3SG.S=IRR & hit=3SG.OBJ
\end{tabular} 'He found out that the snake was in the wild cane. Then, he said that he would kill it.'

Nina can also have a more specific sequential function and link two clauses in a cause-effect relationship, as in (37):
\[
\begin{array}{llll}
\text { E=p̃a } & \text { pra } & \text { rarua } & \text { naara, }  \tag{37}\\
\text { 3sG.S=hit } & \text { split } & \text { canoe } & \text { 3PL.POSS }
\end{array}
\]
\begin{tabular}{lllllll} 
nina ntas & e=kat & to pura rarua & taplange & panei. \\
then sea & 3SG.S=CERT IPFV full canoe like.this & COME \\
'He broke open their canoe, then seawater was filling up their canoe.'
\end{tabular}

\subsection*{12.2.7 Simultaneity coordination with se 'while'}
\(S e\) is a clause conjoiner which denotes a range of relationships. Its main function is to link two clauses denoting simultaneous events, but it can also denote adversative and sequential meanings. However, it is consistently glossed 'while' and the particular distinctions it encodes in each occurrence are given in the translation. Recalling Haspelmath's (2007:23) views on natural and accidental conjunction, simultaneity coordination with se is interesting as it appears that it can encode both natural and accidental coordination, in contrast with other coordinators such as naaram which tend to concentrate on natural coordination. An example of simultaneity and natural coordination is given in (38). In this example the speaker talks about a hunting party he joined with other men. There are three clauses denoting simultaneous events: the speaker's hunting partners go into the forest first, and while he follows them he hides the path they are taking by cutting branches and leaving them behind:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline (38) & Go and & naara 3pL & \[
\begin{aligned}
& \text { ur=to } \\
& \text { 3pL.S=stay }
\end{aligned}
\] & \begin{tabular}{l}
pea, \\
FIRS
\end{tabular} & & & \\
\hline & se while & \begin{tabular}{l}
konou \\
1pL
\end{tabular} & \[
\begin{aligned}
& \mathrm{a}=\mathrm{raki} \\
& \text { 1SG.S=follow }
\end{aligned}
\] & go and & \[
\begin{aligned}
& \mathrm{a}=\mathrm{ta} \\
& 1 \mathrm{sG} . \mathrm{S}=\mathrm{cut}
\end{aligned}
\] & \begin{tabular}{l}
gor \\
block
\end{tabular} & \begin{tabular}{l}
napua \\
road
\end{tabular} \\
\hline
\end{tabular}
'And they stay first, while I follow and hide our road (by cutting branches and leaving them on the path).'

Similarly in (39) and (40), se coordinates two clauses denoting simultaneous events in natural conjunction:
\begin{tabular}{lll} 
Marka & ur=mato & psruki, \\
old.man & 3pL.S=stay.long & speak
\end{tabular}
kenem ur=to takorog se ur=psruk~sruki pan pan pa,
1PL.EXCL 1PL.EXCL.S=IPFV listen while 3PL.S=RED~speak GO GO GO 'The old men were speaking, we were listening while they spoke and spoke on and on,'
\begin{tabular}{lllllll}
\begin{tabular}{l} 
Mala \\
when
\end{tabular} & \begin{tabular}{l} 
koria \\
dog
\end{tabular} & \begin{tabular}{l} 
ur=pueli, \\
3PL.S=not.be.there
\end{tabular} & \begin{tabular}{l} 
tu=suara \\
1PL.INCL.S=walk
\end{tabular} & \begin{tabular}{l} 
se \\
while
\end{tabular} & 1PL.INCL.S=IPFV lakorog
\end{tabular}

Another example of natural coordination is given in (41). In this example, two copular clauses are linked with se:
(41) \(\mathrm{E}=\mathrm{pi}\) nausausa kiki wan se \(\mathrm{e}=\mathrm{pi}\) nam̃uru pa. 3SG.S=COP narrow.place be.small STAT while 3SG.S=COP deepness GO 'It is a small and narrow place while at the same time it is very deep.'

In contrast, se can also perform accidental conjunction and link two coordinands that are not part of a single conceptual whole. In (42), the two clauses linked by se denote simultaneous events and are in accidental conjunction, as the sitting event and the fact that night comes are not conceptually linked with each other:
\begin{tabular}{lllll} 
E=sasake=s & se & n-malogo & \(e=k a t\) & malogo \\
3sG.s=sit=3OBL & while \(\quad\) NMLZ-be.dark & 3sG=CERT & be.dark \\
'She sat on it while the night fell.' & & &
\end{tabular}

In addition to simultaneity, other uses of se include sequential and adversative coordination. In (43), it links two clauses denoting events in a sequence. The first event is the turning of the canoe, and the second is the drilling of it:
(43) Mala e=nou tapla,
when 3SG.S=be.finished like.this
\begin{tabular}{lllllll}
\(a=\) to & rwa & rarua & se & a=parus=ia & pa & \(e=\) nou. \\
\(1 S G=\) push & turn & canoe & while & 1SG.S=drill=3SG.OBJ & GO & 3SG.S=be.finished
\end{tabular} 'When it is finished like this, I turn the canoe over and I drill it until done.'

Similarly, in (44), the reading provided by se is not one of simultaneous coordination, but of sequentiality:
\[
\begin{array}{llllll}
\text { A=ga } & \text { laka=e } & \text { se } & \text { a=ga } & \text { kat } & \text { pa. }  \tag{44}\\
\text { 1SG.S=IRR } & \text { see=3SG.OBJ } & \text { while } & \text { 1SG.S=IRR } & \text { CERT } & \text { go } \\
\text { 'I will look at it then I will go.' } & & &
\end{array}
\]

Se can also take an adversative reading similar to kane 'but' (see 12.2.5). In (45), the referent of the subject proclitics \(a=\) '1sG.S' is a young woman sent by her parents to meet her prospective husband. Once she finds out that the husband is not a man but a giant snake, she tells her parents that she is not interested in marrying him:
\begin{tabular}{lllll} 
A=pan & se & \(\mathrm{e}=\mathrm{pi}\) & maata, & \(\mathrm{a}=\) mal-ki=nia \\
1SG.S=go & while & 3SG.S=COP & snake & 1SG.S=not.want-TR-3SG.OBJ
\end{tabular} 'I went but it's a snake, I don't want him.'

In (46), a father asks his son if he is serious about going to a foreign country when he doesn't know the language spoken there. Note that in this example, both simultaneous and adversative readings are appropriate, as shown with the alternative translations:
(46) Nag ku=titae nafsana mau se ku=lag pa=fa?
2SG 2SG.S=NEG know language NEG2 while 2SG.S=say 2SG.S:IRR=go:IRR
'You don't know the language but you say you will go?'
'You don't know the language and at the same time you say you will go?'

In (46), the subject of plaga 'look for' is looking for his prawns, but they are nowhere to be found. Note that se is repeated, with a clear rise in pitch on the second occurrence of se, followed by a sharp fall, possibly to add a dramatic effect to the narrative:
\[
\begin{array}{lllllll}
\text { E=plaga=s } & \text { se } & \text { se... } & \text { ura } & \text { nge } & \mathrm{e}=\text { kat } & \text { pueli. }  \tag{47}\\
\text { 3SG.S=look.for=3SG.OBJ } & \text { while } & \text { while } & \text { prawn } & \text { DEF } & \text { 3SG.S=CERT } & \text { not.be.here }
\end{array}
\]
'He looked for them but... the prawns were gone.'

Finally, a common use of se is to occur in very short clauses containing the verb to 'stay'. The function of these clauses is to create a transition inside a narrative. Essentially, this use is sequential and more or less equivalent to nina, but differs in that the coordinator is the whole short clause rather than just se. Such clauses can be seen as fillers: they do not introduce new information or refresh older information. Instead, they signal that new information will be
added in the following clause, acting like a transitional step allowing a new development in a narrative. They have distinct intonation patterns as they occur in their own intonation contour which ends with a rise in pitch. This use of se is illustrated in (48) and (49) below:
\begin{tabular}{llll} 
Ar=rog=ea & lag & nap̃a-ra & \(e=p t u n u=s\). \\
3DU.S=feel=3sG.OBJ & COMP & neck-3PL.POSS & 3sG.S=sore=3OBL
\end{tabular}

Ar=to se, ar=kraksuksuk.
3DU.S=stay while 3DU.S=ready
'They (two) felt sad about it. Then (lit. they stayed and), they (two) got ready.'
(49)
\begin{tabular}{|c|c|c|c|c|}
\hline Go and & \begin{tabular}{l}
maata \\
snake
\end{tabular} & \[
\begin{aligned}
& \mathrm{e}=\text { panei } \\
& \text { 3sG.S=come }
\end{aligned}
\] & \[
\begin{aligned}
& \text { natul=la } \\
& \text { egg=3sG.POSS }
\end{aligned}
\] & \begin{tabular}{l}
\(\mathrm{e}=\) pueli, \\
3SG.S=not.be.there
\end{tabular} \\
\hline e=to & se, & \(\mathrm{e}=\) pkas \(=\mathrm{ra}\) & & \\
\hline 3SG.S=stay & while & 3SG.S=chase & 3PL.OBJ & \\
\hline
\end{tabular}

\subsection*{12.3 Distinguishing coordination from subordination}

I follow Haspelmath (2007:47) who contrasts coordination and subordination (or dependency) in terms of symmetry and asymmetry: coordinate structures are symmetrical and there is no hierarchical relationship between their constituents, while subordinate structures are asymmetrical and contain a head and a dependent. In a subordinate structure, I refer to the head as the main or matrix clause, and to the dependent as the subordinate clause. Lelepa subordinate clauses include complement clauses (12.4), adverbial clauses (12.5), and relative clauses (12.6).

Haspelmath (2007:46-47) points out that it can be difficult to distinguish coordination and subordination in individual languages. In Lelepa, the internal syntax of coordinate and subordinate clauses is identical, but they can be distinguished according to the coordinator or subordinator occurring with them. Table 12.1 presents the coordinators and subordinators and shows that no form marks both coordination and subordination. Thus, when either form occurs, there is no ambiguity as to whether it marks coordination or subordination:
\begin{tabular}{|lc|ll|}
\hline \multicolumn{2}{|c|}{ Coordinators } & \multicolumn{2}{c|}{ Subordinators } \\
\hline go & 'and' & lag & 'COMP', 'PURP' \\
naaram & 'and' & se & 'COMP' \\
Kite & 'or' & takanei & 'how' \\
kane & 'but' & nlakan & 'because' \\
se \(e_{1}\) & 'while' & mala & 'when' \\
& & wan & 'if \\
& & na & 'REL' \\
\hline
\end{tabular}

Table 12.1. Coordinators and subordinators

Another criterion is that certain types of subordinate clauses can be subject to specific constraints on their inflectional features, whereas this is not the case with coordinated clauses. For instance, purpose clauses must be in the irrealis (see 12.5.1).

In (50) and (51), the clauses following go 'and' and lag 'PURP' have a number of similarities: they have the same verb fai 'pack:IRR', take an object and are in the irrealis. However, there is no ambiguity between coordination and subordination between these two examples as \(g o\) in (50) is a coordinator conjoining two clauses and lag 'PURP' in (51) is a subordinator introducing a purpose clause:
(50) Kane malange \(\mathrm{e}=\mathrm{pi}\) mala=n nmat rer nge,
but then 3SG.S=COP time=POSS:NH tide king.tide DEF
\begin{tabular}{llllll} 
au=ga & siwo & go & au=ga & fai & kaafe. \\
1PL.EXCL.S=IRR & collect.seafood & and & 1PL.EXCL.S=IRR & pack:IRR & crab
\end{tabular}
'But then it was the time of the king tides, we would collect seafood from the reef and gather crabs.'
(51) Nina, e=pu rog nge kat panei pa-ki tan
then 3SG.S=pull food.basket DEF CERT come go-TR down
\begin{tabular}{lllll} 
lag & e=ga & fai & nmarta-na & nge. \\
PURP & 3SG.S=IRR & pack:IRR & guts-3SG.POSS & DEF
\end{tabular}
'Then, she pulled the food basket down in order to pack her guts.'

However, there are three types of ambiguities that can occur between coordination and subordination. First, ambiguities arise between the two homonymous forms se, 'while' and \(s e_{2}\) ‘COMP’ which link clauses only. \(S_{e_{1}}\) is a coordinator marking simultaneity (see 12.2.7), while \(s_{2}\) is a complementiser borrowed from Bislama and in free variation with the native complementiser lag (see 12.4.2). Ambiguities can be resolved by comparing coordination with \(s e_{1}\) and subordination with \(s e_{2}\). In coordination, any verb can occur in the coordinated clauses, in contrast with subordination and particularly complementation, which can only be done with
a limited number of complement-taking predicates (see table 12.2). However, some verbs can occur in both constructions, as lopa 'see' in (52) and (53), in which lopa occurs with the same subject and object proclitic. The distinction can be done by investigating context and particularly whether the object enclitic on lopa has a referent in discourse or not. When the object enclitic has a referent, this is a case of coordination, as in (52). In contrast, if the enclitic has no referent in discourse as in (53), se marks subordination, since transitive verbs in a matrix clause take a third person singular object enclitic which does not have a referent in discourse. The function of this enclitic is to index the complement clause (see 12.4.1):

(53) Go kanokik nge e=lopa=e se ur=pa punua=ra tapla, and boy DEF 3SG.S=see=3SG.OBJ COMP 3PL.S=hit dead=3PL.obj like.this
e=kai.
3SG.S=cry
'And the boy saw that they killed them like this, he cried.'

The second type of ambiguity comes from the subordinators lag 'COMP' and lag 'PURP' which can mark complement and purpose clauses. Note that this is not an issue in distinguishing coordination and subordination but in contrasting two distinct subordinating functions. In complementation, the verb of the matrix clause needs an object marker to index the complement clause, while this is not the case with adverbial clauses. In addition, complement clauses immediately follow the verb of the matrix clause, while adverbial clauses are adjuncts occurring outside of the basic clause, following clause-final particles or other adjuncts. In (54), the verb msau 'want' is a complement-taking predicate taking an object suffix. This suffix does not have a referent in discourse but indexes the following complement clause:
(54) E=msau-na lag e=ga tuagoto pa-ki Artok.

3SG.S=want-3SG.OBJ COMP 3SG.S=IRR cross go-TR p.name
'I wanted to go across to Artok.'

In contrast, lag introduces a purpose clause in (55). This adverbial clause occurs after the clause-final particle \(p a^{\prime}\) 'GO' in the extended clause, which is not a position complement clauses
occur in. Note also that the verb of the main clause lkot 'tie' hosts the object \(=i a\) ' \(3 \mathrm{sG} . \mathrm{OBJ}\) ' enclitic which refers to a character from the narrative this example is extracted from:
\begin{tabular}{lllllll} 
Ar=lkot=ia & tapla pan pan pa lag & e=kasua & tapla & to. \\
3DU.S=tie=3SG.OBJ & like.this GO GO & GO PURP & 3SG.S=be.strong & like.this & STAT \\
'They tied him up & like this on and on so that it would be strong like this.'
\end{tabular}

Finally, the third issue to consider when distinguishing coordination and subordination arises because complementisers and relativisers are optional (see 12.4.2 and 12.6). When these optional subordinators are left out, ambiguities between asyndetic coordination and subordination may arise. However, such ambiguities can be resolved by using context and intonation. In (56), we know from context that the object enclitic on lop̃a 'see' refers to a participant in a narrative, while the pause between the two clauses (marked by a coma) indicates that each clause occurs in its own intonation phrase. This indicates that the two clauses are coordinate rather than subordinate:
\[
\begin{array}{lll}
\tilde{\mathrm{P}} a=l o \tilde{p} a=e, & \tilde{p} a=\text { kat } & \text { pa! }  \tag{56}\\
\text { 2SG.S=see=3SG.OBJ } & \text { 2SG.S=CERT } & \text { go } \\
\text { 'You will see it, and you will go!' } &
\end{array}
\]

In contrast, in (57) the object enclitic occurring on lopa 'see' has no referent in the narrative. Also note that the whole example is uttered in a single intonation phrase. This shows that (57) is a single clause with a matrix and a complement clause, even though no complementiser occurs:
\[
\begin{array}{llll}
\text { A=lopa } a=\mathrm{e} & \mathrm{ku}=\text { lao } & \text { martinik } & \text { na. }  \tag{57}\\
\text { 1SG.S=see=3SG.OBJ } & \text { 2SG.S=plant } & \text { yam.sp } & \text { DEM } \\
\text { 'I see that you planted this martinik yam.' } &
\end{array}
\]

\subsection*{12.4 Complement clauses}

\subsection*{12.4.1 Defining Lelepa complement clauses}

There are two main criteria for recognising complement clauses in Lelepa:
1. If the verb of the matrix clause is transitive, ambitransitive, or ditransitive, it must take a third person singular object marker indexing the complement clause. In contrast, intransitive verbs do receive any marking to index the complement clause.
2. The complementisers lag, se and takanei immediately follow the object marker occurring on the verb of the matrix clause.

I follow Noonan's (2007:52) definition of complementation as "the syntactic situation that arises when a notional sentence or predication is an argument of a predicate". By this definition, it is expected that complement clauses share properties with other types of arguments (subjects, object and obliques). Recall from 7.4.1 that subjects are obligatorily realised with proclitics and optionally realised with a co-referential NP, while objects and obliques are realised either with an enclitic or an NP, but not by both. Complement clauses differ from objects and obliques in that they are realised both as full constituents (the complement clause itself) and with third person singular object enclitics. These enclitics occur on the verb of the matrix clause and their form depends on verb class: Class 1 transitive and ambitransitive verbs take the third singular object markers \(=i a,=e,=a\) or \(-n a\), while Class 2 transitive and ditransitive verbs take the third singular object enclitic \(=s\). These enclitics do not have a referent in discourse, but function to index the following complement clause. In (58), the verb of the main clause laka 'see' hosts the object enclitic \(=e^{\text {' } 3 \text { SG.OBJ' and is followed by a }}\) complement clause introduced by lag 'COMP'. Note that there is no third person singular participant in this example that \(=e\) can refer to. In addition, there is no participant in discourse that \(=e\) indexes to. The object enclitic on laka is thus regarded as indexing the complement clause itself:
\begin{tabular}{llllll} 
(58) & Ku=laka=e & lag & te=laapa aginta & ur=panmei, & ur=laelae. \\
2sG.S=see=3SG.OBJ & COMP & SBST=many & 1SG.INCL.POSS & 3PL.S=come & 3PL.S=happy \\
'You saw that lots of us came, they were happy.'
\end{tabular}

In (59), the verb of the matrix clause is the ditransitive paoseki 'ask'. It takes a third plural object enclitic, the referent of which is the participant asked, as well as the object enclitic \(=s\) '3SG.OBJ' which has no referent but indexes the following complement clause:
\begin{tabular}{lllll} 
E=paoseki-ra=s & lag & naara & ur=ga & fanmei. \\
3SG.S=ask-3PL.OBJ=3SG.OBJ & COMP & 3PL & 3PL.S=IRR & come:IRR \\
'He asked them to come.' & & & & \\
[elicited] & & & &
\end{tabular}

The second criterion states that the complementisers lag, se and takanei immediately follow the verb of the matrix clause, which takes a third person object marker. This seen in (58), (59) and (60) to (62):
(60) Konou \(a=\) maroa-ki-nia lag \(a=g a \quad\) fa.

1sG 1SG.S=think-TR-3SG.OBJ COMP 1SG.S=IRR go:IRR
'I thought that I would go.'
\begin{tabular}{llllll} 
e=lopa \(=\) e & se & np̃ou & grunkik & e=kat & pa-ki
\end{tabular} liga.
\begin{tabular}{lllll} 
(62) & \begin{tabular}{l} 
Ur=lo \\
3pL.S=look
\end{tabular} & \begin{tabular}{l} 
suk=ia \\
tight=3SG.OBJ
\end{tabular} & takanei & \(\mathrm{e}=\) how
\end{tabular}
'They watched closely how he was doing it.'

The complementisers can be omitted and so are regarded as optional. In contrast, the object enclitics are obligatory. Example (63) shows a complementation structure without complementiser. The verb of the matrix clause hosts a third person singular object enclitic which has no referent in discourse. In addition, the entire clause in (63) is uttered in a single intonation phrase. Thus it is regarded as a complementation structure rather than two separate clauses:
\begin{tabular}{llll} 
A=lopa \(a=e\) & ku=lao & martinik & na \\
1SG.S \(=\) see \(=\) 3sG.OBJ & 2SG.S=plant & yam.sp & DEM \\
'I see that you planted martinik yam.' & &
\end{tabular}

\subsection*{12.4.2 The complementisers lag, se and takanei}

The most straightforward way to recognise a complementation structure is the presence of a complementiser. Three complementisers are found in the language: lag 'COMP', se 'COMP' and takanei 'how'. Takanei is a fairly specialised form which tends to occur with propositional attitude predicates (see 12.4.3.2) and achievement predicates (see 12.4.3.8). Note this form also functions as a question word interrogating the manner an event is performed, as seen in (64):
(64) \(A=\) tae slae \(=\) ko, takanei?

1sG.S=able help=2sG.OBJ how
'I can help you, how?'

Lag and se are in free variation and optional. In (65) and (66), they occur in turn with the main clause verb lopa 'see'. No change in meaning is notable between the main clauses in both examples:
\begin{tabular}{lllll} 
Go tapla, & ur=lopa=e & lag & ur=mal-ki-nia. \\
and & like.this & 3PL.S=see=3SG.OBJ & COMP & 3PL.S=not.want-TR-3SG.OBJ \\
'And thus, they saw that they didn't want it.'
\end{tabular}
\begin{tabular}{lllll} 
E=lop̃a=e & se & e=pi & grunkiki & wia. \\
3SG.S=see=3sG.OBJ & COMP & 3sG.S=COP & girl & be.good \\
'He saw that she was a nice girl.' & & &
\end{tabular}

However, in (67), no complementiser occurs, but this example is still analysed as a subordinate structure with a matrix and a complement clause:
(67)
\begin{tabular}{llllll} 
Pa=mas & laka=e & neika & e=ga & fanei & panei, \\
2SG.S:IRR=must & see=3SG.OBJ & fish & 3SG.S=IRR & come:IRR & COME \\
'You'll have to watch for the fish coming your way,' & &
\end{tabular}

An alternative analysis of (67) would posit two main clauses, with lopa 'see' and sara 'run' as the verbs of these clauses. However, prosody provides clues regarding the structural status of this example. Coordinate clauses occur in their own intonation phrase, with subordinate clauses included in the same intonation phrase as matrix clauses. An intonation phrase is a phonological unit generally separated from other intonation phrases by pauses. However, in fast speech these pauses can be difficult to assess as they can be greatly reduced. The other clue allowing the recognition of intonation phrase boundaries is pitch. A final high or low pitch indicates the end of an intonation phrase. In the spectrogram of (67), the clause is uttered as a single intonation phrase, because there are pauses at the start and the end of the soundwave, and a fall in pitch at the end. For these reasons (67) is analysed as a single clause:

Fig. 12.1. Intonation pattern of a subordinate clause
SL1-20080415Spearfishing-SUKnar_65400_67700


In contrast, (68) shows two main clauses realised as distinct intonation phrases. As seen in the spectrogram associated with (68), the presence of a pause between the two clauses is difficult to assess. However, there is a significant rise in pitch as the end of the first clause, followed by a pitch reset at the start of the second one. This shows that pitch changes are more reliable evidence than pauses in fast speech. In addition to prosodic evidence, context shows that the object enclitic \(=e\) ' 3 sG.s' has a referent in discourse. Thus (68) is analyzed as two clauses rather than as a single one:
\[
\begin{array}{ll}
\text { (68) } & \text { Ur=lop̃a=e, } \quad \text { ur=saprae }=\text { s. } \\
\text { 3PL.S=see }=\text { 3SG.S } & \text { 3PL.S=surprise }=3 \text { SG.OBJ } \\
\text { 'They saw it, they were surprised with it.' }
\end{array}
\]

Fig. 12.2. Intonation pattern of two juxtaposed clauses
SL1-20060402TomsenFrance-TNls_264990_266760


Note that purpose clauses are introduced by the subordinator lag 'PURP' which is homophonous with the complementiser lag 'COMP'. In 12.3, it was shown that complement and purpose clauses have different positions, the former occurring in the basic clause and the latter in the extended clause. However, when no clause-final particle occurs to mark the end of the basic clause (see 7.1.2), it can be difficult to distinguish whether lag is a complementiser or a subordinator of purpose. The verb til 'tell' in (69) occurs in a complementation structure, since its object enclitic has no referent in discourse and thus indexes the complement clause. In contrast, lo parkat 'look after' in (70) is not a CTP because its object enclitic refers to nalwaa 'arrow', and lag functions as a purpose subordinator:
\(\begin{array}{llllllll}\text { (69) } & \text { Natusina } & \text { nge } & \mathrm{e}=\text { til=ia } & \text { lag } & \mathrm{e}=\mathrm{pi} & \text { naara } & \text { wei } \\ \text { story } & \text { DEF } & \text { 3SG. } \mathrm{S}=\text { tell=3SG.OBJ } & \text { COMP } & \text { 3SG.S=COP } & \text { 3PL } & \text { TOP } & \text { DEF }\end{array}\) 'The story tells that it was them.'
(70) Mala mutuama nge e=lopa nalwaa nge, when ogre DEF 3SG.S=see spear DEF
\begin{tabular}{llll} 
e=kat & malua & lo & parkat=ia \\
3SG.S=CERT & later & look & catch=3SG.OBJ
\end{tabular}
\begin{tabular}{llllll} 
lag & natlak & ur=ga & plaga & nalwaa & nge. \\
PURP & owner & 3PL.S=IRR & look.for & spear & DEF
\end{tabular}
'When the ogre saw the arrow, he looked after it later on, as the owners would look for the arrow.'

\subsection*{12.4.3 Complement-taking predicates}

Complement-taking predicates (CTPs) are predicates taking a whole clause as one of their arguments. Noonan (2007:120-145) proposes a typology of complement-taking predicates based on the semantics of those predicates. This section uses Noonan's typology to classify Lelepa CTPs. In table 12.2, Noonan's classification is compared with the complement-taking predicates found in the language. While a number of Noonan's categories have corresponding Lelepa predicates, there are also a few categories which are not attested as CTPs in the language. This is not surprising as these are cross-linguistic categories rather than languagespecific ones. For instance, the category of negative CTPs is rare (Noonan 2007:144), as negation tends to be expressed using negation particles rather than complementation structures (see 12.4.3.8). \({ }^{3}\) Also, some predicates in Lelepa can express several different categories. For example, lag 'say' expresses utterance as well as phasal predicates, and lopa 'see' can express both acquisition of knowledge and immediate perception predicates.

\footnotetext{
\({ }^{3}\) Interestingly however, negative CTPs are found in Fijian (Noonan 2007:144), also an Oceanic language.
}
\begin{tabular}{|c|c|}
\hline Complement-taking predicates typology (Noonan 2007) & Lelepa predicates \\
\hline Utterance predicates & \begin{tabular}{l}
lag 'say' \\
til 'say' \\
rkei 'say; tell' \\
poaselki 'ask'
\end{tabular} \\
\hline Propositional attitude predicates & \begin{tabular}{l}
maroaki 'think' \\
maroa masko 'be sure (think + clear) sralesko 'believe' \\
pilesko 'be true' \\
tae 'know'
\end{tabular} \\
\hline Knowledge and acquisition of knowledge predicates & \begin{tabular}{l}
sralesko 'believe' \\
pamosko 'find' \\
pisi ' watch carefully' \\
löna 'see’ \\
laka 'see'
\end{tabular} \\
\hline Fearing predicates & mtouki ' fear' mtak 'be afraid' malier 'be ashamed' palake 'be afraid' \\
\hline Desiderative predicates & msau 'want' maroaki 'hope (thinks)' \\
\hline Phasal predicates (aspectuals) & atlake 'start' \\
\hline Immediate perception predicates & \begin{tabular}{l}
rogo 'hear' \\
\$pisi 'watch carefully' \\
lopa 'see' \\
laka 'see'
\end{tabular} \\
\hline Achievement predicates & lo parkat 'look after' pi ‘COP’ \\
\hline & \\
\hline Pretence predicates & \multirow{6}{*}{Not expressed by a complementation structure} \\
\hline Commentative predicates & \\
\hline Manipulative predicates & \\
\hline Modal predicates & \\
\hline Negative predicates & \\
\hline Conjunctive & \\
\hline
\end{tabular}

Table 12.2. Lelepa CTPs in a typological perspective

\subsection*{12.4.3.1 Utterance predicates}

Utterance predicates that take complements are expressed with lag 'say', til 'say, tell' and rki 'say; tell'. The construction with lag 'say' is of particular interest as it is the only complementation structure in which the verb of the matrix clause and the complementiser cannot co-occur. Lag 'say' and lag 'COMP' cannot be doubled as seen in (71), probably because the complementiser has not fully grammaticalised from the verb. When lag occurs, it is either as a verb or a complementiser. In (72) and (73), it occurs as a verb:
(71) So... \(e=k a t \quad\) lag (*lag) \(e=p i \quad\) natrausina mau wei nge. So 3SG.S=CERT say COMP 3SG.S=COP story all TOP DEF 'So... it means that it is the whole story.'
(72) Kane natusina nge e=lag
but story DEF 3SG.S=say
ur=tagto ntal nge na \(\quad \mathrm{e}=\) liko \(=\mathrm{s} \quad\) panei. 3pL.S=cut rope DEF REL 3sG.S=hang=3OBL COME 'But the story says that they cut the rope he hung from.'
(73) Namuan \(e=\) lag Sebas \(e=p a-k i \quad\) Vila. p.name 3SG.S=say p.name 3SG.S=go-TR p.name 'Namuan said that Sebas went to Vila.' [elicited]

In contrast, in (74) and (75) lag occurs as a complementiser. The examples show the utterance predicates \(t i l\) 'say' and \(r k i\) 'tell' occurring as CTPs:
(74)


Note that with \(r\) rki in (75), the object suffix -ra '3PL.OBJ' refers to the recipient, while the object enclitic \(=s\) ' \(3 \mathrm{SG} . \mathrm{OBJ}\) ' is acting as a cross-reference device for the complement clause:
\begin{tabular}{lclll} 
E=rki-ra=s & lag & ur=su & pa-ki & lau. \\
3SG.S=tell-3PL.OBJ=3SG.OBJ & COMP & 3PL.S=go.down & go-TR & seawards \\
'He told them to go down to the beach.' & & &
\end{tabular}

\subsection*{12.4.3.2 Propositional attitude predicates}

These predicates allow speakers to express beliefs and opinions. In Lelepa, they are expressed by a variety of constructions, from simple verbs such as tae 'know' maroaki 'think' and sralesko 'believe' in (76) - (78), to serial verb constructions such as maroa masko 'think clear > be sure' in (79):
\begin{tabular}{llllll} 
E=ti & tae=a & takanei & e=ga & tuagoto & mau. \\
3SG.S=NEG & know=3SG.OBJ & how & 3sG.S=IRR & cross & NEG2 \\
'He didn't know how he would go across.' & & &
\end{tabular}
(77)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Malange then} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{a}=\text { to } \\
& 1 \mathrm{SG} . \mathrm{S}=\mathrm{IPFV}
\end{aligned}
\]} & \multirow[t]{2}{*}{maroa-ki-nia think-TR-3SG.OBJ} & \multicolumn{2}{|l|}{laga=ga fat} & \multirow[t]{2}{*}{naloana
make:IRR} & \multirow[b]{2}{*}{preparation} \\
\hline & & & COMP & 1SG.S=IRR & & \\
\hline \multicolumn{7}{|l|}{nag-na.} \\
\hline \multicolumn{7}{|l|}{ASS-3SG.POSS} \\
\hline \multicolumn{7}{|l|}{'Then I was thinking that I would do the preparations for it.'} \\
\hline
\end{tabular}
(78) \(\mathrm{A}=\mathrm{sralesko}_{\mathrm{s}} \mathrm{s}\) lag kano neto \(\mathrm{e}=\mathrm{p} a \quad\) fterki nae.
1sG.S=believe=3SG.OBJ COMP man DEM 3sG.S=hit woman 3sG.POSS 'I believe that this man hits his wife.' [elicited]
(79) \(A=\) maroa \(\tilde{m}\) asko=s lag kaonsela \(\mathrm{e}=\mathrm{ga}\) lao, ur=ga foto=s. 1SG.S=think clear=3SG.OBJ COMP counsellor 3SG.S=IRR stand 3PL.S=IRR vote=3OBL 'I am sure that the counsellor will stand (for the elections), and that they will vote for him.' [elicited]

\subsection*{12.4.3.3 Knowledge and acquisition of knowledge predicates}

With such predicates, speakers express their knowledge and beliefs, or how they acquired a particular belief or piece of knowledge. The verb sralesko 'believe' classified as a propositional attitude predicate is also used with knowledge predicates, as seen in (80). Other verbs used are paĩosko 'find', Lpisi 'watch carefully; realise', lopa and laka 'see':


In (81), pam̃osko 'find' functions as an acquisition of knowledge predicate:
(81) Nina, \(k u=\) pam̃osko \(=s\) lag maata na \(e=t o=s\) to
then 2SG.S=find=3SG.OBJ COMP snake REL 3SG.S=stay=3OBL STAT
\(\mathrm{e}=\mathrm{pi} \quad\) maata tap aginta.
3SG.S=COP snake taboo 1PL.INCL.POSS
'Then, you found that the snake which stayed there was our taboo snake.'

Similarly, in (82), lpis 'notice; realise' also functions as an acquisition of knowledge predicate.
Note that when functioning as a CTP, lpis has the meaning 'realise', as in (82):
(82) Rev.Murray \(\mathrm{e}=\mathrm{lag}, \quad\) "oh!", p.name 3sG.s=say oh
\(\mathrm{e}=\mathrm{lpis}=\mathrm{ia} \quad\) lag \(\mathrm{e}=\mathrm{pi} \quad\) nmatuna wia skei. 3SG.S=watch.carefully=3sG.OBJ COMP 3SG.S=COP something be.good INDEF 'The Reverend Murray said, "Oh!", he realised that it was something good.'

In contrast, lpis has the meaning 'notice' when it functions as a verb in a simple clause, as in (83):
(83) \(\mathrm{E}=\mathrm{pan}, \mathrm{e}=\mathrm{lpis}\) nlak nkas na \(\mathrm{e}=\) to mlatig-ki nauraen taare. 3SG.S=go 3SG.S=notice stump tree REL 3SG.S=stay close-TR sand be.white 'He goes, then he notices a tree stump close to the beach.'

Interestingly, while verbs of seeing function as immediate perception CTPs (Noonan 2007:142), in Lelepa laka 'see' and lopa 'see' express immediate perception and acquisition of knowledge when functioning as CTPs. The latter is shown shown in (84) and (85):
(84) Ur=laka \(=\mathrm{e}\)

3PL. \(\mathrm{S}=\) see \(=3 \mathrm{SG} . \mathrm{OBJ}\)
\begin{tabular}{llllllll} 
lag & ur=ga & mro ti & pam̃osko & mala & kasua & nge & mau, \\
COMP & 3PL.S=IRR & AGAIN NEG find & time & be.hard & DEF & NEG2
\end{tabular}
nlakan trak \(\mathrm{e}=\mathrm{kat}\) laapa.
because truck 3SG.S=CERT be.many
'They saw that they wouldn't have such hard times again, because there are many trucks.'
(85) Ur=ga fanei pa-ki na-lotu-na, ur=ga susu, 3PL.s=IRR come:IRR go-TR N.SPEC-pray-NMLZ 3PL.S=IRR be.dressed
\begin{tabular}{lll} 
ur=ga & fat & traose, \\
3PL.S=IRR & make:IRR & trousers
\end{tabular}
\begin{tabular}{lllll} 
go & tapla & ur=lopa=e & lag & ur=mal-ki-nia. \\
and & like.this & 3PL.S=see=3SG.OBJ & COMP & 3PL.S=not.want-TR-3SG.OBJ
\end{tabular}
'They would embrace Christianity, they would wear clothes, they would wear trousers, and thus they realised that they didn't want this.'

Similarly to (85), lopa does not express immediate perception in (86). However, it also differs from (85) in that it does not express knowledge or acquisition of knowledge, but expresses the speaker's opinion, or what he thinks has happened:
\begin{tabular}{llll} 
A=lop̃a=e & lag & \(\mathrm{e}=\) pag & rarua. \\
1SG.S=see=3SG.OBJ & COMP & 3SG.S=climb & canoe
\end{tabular}
'It seems like he got on the canoe (lit. I saw that he got on the canoe).' [elicited]

In contrast, (87) expresses immediate perception, but not in a complementation structure. Rather, it is an example of paratactic complementation (Noonan 2007:120-145):


\subsection*{12.4.3.4 Fearing predicates}

These predicates are used to express fears that a particular event may happen. Verbs used in these predicates are mtonki 'fear', mtak 'be afraid of, malieri' 'be ashamed of and palake 'be afraid of. While mtouki and mtak appear to have similar meanings, mtouki is used when there is fear of danger, as in (88) and (89), while mtak is used when there is a more abstract fear, such as fear of social disapproval, as in (90):
(88) Ur=to mtouki-nia lag \(\mathrm{e}=\mathrm{pi}\) nalia tap.

3PL.S=IPFV fear-3SG.OBJ COMP 3SG.S=COP place be.taboo
'They were afraid that it was a taboo place.'
(89) Naomi e=mtouki-nia lag \(\mathrm{e}=\mathrm{ga}\) fnot.
p.name 3SG.S=fear-3SG.OBJ COMP 3SG.S=IRR go.away:IRR
'Naomi is afraid to go.' (Something dangerous is making her afraid to come, such as dogs, snakes, dangerous people, etc)
[elicited]
(90) Naomi \(e=m\) tak lag \(e=g a \quad\) fnot.
p.name 3SG.S=be.afraid COMP 3SG.S=IRR go.away:IRR
'Naomi is afraid to go.' (There is nothing dangerous, but she is afraid to appear in front of particular people)
[elicited]

The verb malieri 'be ashamed' has a meaning close to mtak, as seen in (91). Note that mtak and malier are intransitive and do not take an object. When occurring as CTPs, they do not take an object or oblique enclitic to index the complement clause either, in contrast to transitive verbs which function as CTPs:
\begin{tabular}{lllll} 
Naomi \(\quad\) e=malieri lag & e=ga & fanei. & \\
p.name \(\quad\) 3sG.S=be.ashamed & COMP & 3sG.S=IRR & come:IRR \\
'Naomi is ashamed to come.' & & & \\
[elicited] & & &
\end{tabular}

\subsection*{12.4.3.5 Desiderative predicates}

These predicates express desires. The most common verb used in these constructions is msau 'want', while maroaki 'think about' is used with a meaning close to English 'hope'. Subordinate clauses with msau as a CTP are in the irrealis, and msau takes the suffix -na which is a lexically conditioned allomorph of the third person singular object enclitic (see 9.4.3.3.3). Msau is exemplified in (92) and (93), and maroaki in (94):

(94) Nous \(e=f a g\), \(e=m a r o a-k i-n i a \quad e=g a \quad\) fkas maata nge. wild.cane 3SG.S=burn 3SG.S=think-TR-3SG.OBJ COMP 3SG.S=IRR chase:IRR snake DEF 'The wild cane was burning, he hoped this would chase the snake.'

\subsection*{12.4.3.6 Phasal predicates (aspectuals)}

These predicates denote the different phases of an event, such as its inception, completion, and termination. In Lelepa, only the inception phase of an event can be expressed by a CTP, with the verb atlake 'start'. When it does not function as a CTP, atlake is an intransitive verb. As seen in (95), atlake does not take an enclitic to index the complement clause when it occurs as a CTP:
\begin{tabular}{llllll} 
(95) Mala tu=atlake & lag & tu=ga & fau & namit, \\
when \(\quad\) 1PL.INCL.s=start & COMP & 1PL.INCL.s=IRR & weave:IRR mat \\
'When we start to weave mats,'
\end{tabular}

\subsection*{12.4.3.7 Immediate perception predicates}

Such predicates express that the subject of the matrix clause directly perceives the event expressed by the complement clause. This is done in the language with the polysemous verb rogo 'hear; feel', and with verbs of seeing such as lpis 'watch', laka 'see' and lopa 'see'. Note that in (97) the native complementiser lag occurs while in (98) the borrowed complementiser se occurs instead:
\begin{tabular}{llll} 
Pa \(=\) laka \(=e\) & lag & narua & \(e=\) put=ia, \\
2SG.S:IRR=see=3sG.OBJ & COMP
\end{tabular} \begin{tabular}{l} 
current \\
'You will see that the current pulls it,'
\end{tabular}
(97) \(\mathrm{Ar}=\) paam=ia se \(\mathrm{ar}=\mathrm{rog}=\mathrm{ea}\) lag \(\mathrm{e}=\mathrm{kase}\) wia we! 3DU.S=eat=3SG.OBJ while 3DU.S=feel=3SG.OBJ COMP 3SG.S=be.sweet be.good EMPH 'They ate it and they felt that it was really delicious!'
(98) \(\mathrm{E}=\mathrm{rog}=\mathrm{ea}\) se nanua skei \(\mathrm{e}=\mathrm{roa}\) nat ntan tapla nina, 3SG.S=feel=3SG.OBJ COMP coconut INDEF 3SG.S=fall throw ground like.this then 'He heard that a coconut fell hard on the ground like this, then,'

\subsection*{12.4.3.8 Achievement predicates}

These predicates allow the speaker to express the manner in which an achievement is realised. These predicates are typically introduced by takanei 'how' rather than with the other complementisers. In (99), the CTP lo parkat 'manage' takes a complement clause introduced with takanei:
(99) Ur=pitlak naara komiti naara na ur=to lo parkat=ia 3PL.S=have 3PL.POSS committee 3PL.POSS REL 3PL.S=IPFV look catch=3SG.OBJ
takanei ur=to tp̃oki=ra panei.
how 3PL.S=IPFV send=3PL.OBJ COME
'They had their own committee which managed how they used to send them here.'

Example (100) shows that the copula can express achievement predicates. In this example the variant form kanei 'how' occurs:

\footnotetext{
E=lagpi kanei a=to lao
3SG.S=MAYBE COP how 1SG.S=IPFV spear fish
neika.
}
'It may be how I spear fish.'

\subsection*{12.4.3.9 Categories not expressed by CTPs}

Table 12.2 showed that some CTPs in Noonan's typology are not present in Lelepa: pretence, commentative, manipulative, modal, achievement, negative, and conjunctive predicates. However, the language has other constructions which are semantically equivalent. Some of these are briefly exemplified below. For instance, the function of commentative predicates is to express a judgment on the proposition contained in the complement clause (Noonan 2007:127-128). In Lelepa positive and negative judgments can be expressed using a serial verb construction involving the intransitive 10 'see' as the main verb, and either wia 'good' (for a positive judgment) or \(s a\) 'bad' (for a negative judgment) as manner modifiers. In (101), the speaker expresses a positive judgment. Note that the SVC is transitivised to accommodate an object, which denotes the object of the speaker's judgment:

> (101) Konou a=lo 1SG 1SG-ki kanokik 1SG-e=look good-TR boy

Modal predicates express epistemic and deontic modality, and particularly moral obligation, moral necessity and ability (Noonan 2007:137-138). These are expressed in Lelepa by preverbal elements: auxiliaries and modality particles (see 10.3, 11.2). In (102), ability is expressed with auxiliary tae 'able':
\begin{tabular}{llllll} 
(102) \begin{tabular}{l} 
Kenem \\
1PL.EXCL
\end{tabular} ur=ti tae & 1pL.EXCL.s=NEG & psa-ki & lnglis & mau. & \\
1Pan & speak-TR & English & NEG2 \\
'We couldn't speak English.' & & & &
\end{tabular}

\subsection*{12.5 Adverbial clauses}

To define adverbial clauses in the language, I follow the functional definition given by Thompson, Longacre and Hwang (2007:237), who characterise adverbial clauses as "mechanisms whereby one clause can be said to modify another in a way similar to the way in which an adverb modifies a proposition." In Lelepa, there are five types of adverbial clauses occurring in the extended clause (see 7.1.2) and introduced by dedicated subordinators:
- Purpose clauses introduced by lag 'PURP'
- Reason clauses introduced by nlakan 'because'
- Conditional clauses introduced with wan (lag) 'if (maybe)'
- Time clauses introduced with mala 'when'
- Manner clauses introduced with takanei 'how'

These five subordinators are not optional, in contrast to complementisers. Thus they are regarded as sufficient evidence to recognise adverbial clauses. In addition, they provide a straightforward means to classify adverbial clauses according to their semantic role. Note that some subordinators result from the grammaticalisation of other lexemes. For instance, the noun mala 'time' has grammaticalised as a subordinator for time clauses, and takanei 'how' introducing manner clauses is also attested as a question word interrogating the manner an event occurred. Similarly, nlak \(a=n\) 'stump=POSS:NH' is a noun that has grammaticalised into nlakan 'because' which introduces reason clauses. Its basic meaning has been extended to express the reason for an event to occur. \({ }^{4}\)

\subsection*{12.5.1 Purpose clauses}

They express the purpose for the event expressed in the main clause. Purpose clauses are postposed to the matrix clause and introduced by lag 'PURP'. When flagging a purpose clause, the subordinator lag is translated as 'to' or 'in order to'. Also note that purpose clauses are always in the irrealis. Distinguishing purpose clauses from complement clauses can be difficult, since they are formally identical and \(\operatorname{lag}\) also functions as a complementiser (see 12.4). However, as shown in 12.3 , there are two main tests for distinguishing them. First, the verb occurring before a complement clause takes an enclitic which has no referent in discourse but indexes the complement clause. Second, adverbial clauses occur at the margins of clauses, after clause-final particles signalling the end of the basic clause (see 7.1.2). In contrast, complement clauses immediately follow the verb of the matrix clause. Additionally, while purpose clauses are always in the irrealis, complement clauses can be either in the realis or irrealis, according to the mood restrictions assigned to each CTP. Finally, the semantics of the subordinate clause are important. If the clause introduced by lag has a purposive meaning, it is not a complement clause. In (103) and (104), there is no ambiguity that the clauses introduced by lag are purpose

\footnotetext{
\({ }^{4}\) Note that there are several Vanuatu languages that use a grammaticalised form of the word meaning 'stump' as a subordinator for reason clauses. See for instance South Efate (Nicholas Thieberger (2011-05-05) Dictionary of South Efate (http://paradisec.org.au/SELexicon/index-english/main.htm). In addition, this is also present in Bislama with the word stamba 'trunk, stump' also used to express reason. The fact that it is present in several Vanuatu languages suggests that Bislama borrowed it from its substrate rather than the opposite.
}
clauses rather than complement clauses as they follow the clause-final particles pan 'GO' and panei 'COME':
\begin{tabular}{lll} 
E=kat & sua & pan \\
3SG.S=CERT & go.down & GO
\end{tabular}
\begin{tabular}{llllll} 
lag & e=ga & fanei & pa-ki & sum̃a=n & kia-ra. \\
PURP & 3SG.S=IRR & come:IRR & go-TR & house=POSS:NH & LOCAL-3PL.POSS \\
'He went down in order to come to their house.' &
\end{tabular}
(104) A=mnag slat=ia panei lag \(\tilde{p} a=m u n u=s\). 3SG.S=2SG.BEN carry=3SG.OBJ COME PURP 2SG.S:IRR=drink=3OBL 'I brought it for you in order for you to drink it.'

In (105), lag occurs twice. In the first occurrence, it functions as a complementiser after the CTP lake \(a=e\) 'see \(=3\) SG.OBJ', while in the second occurrence it introduces a purpose clause. Note that the object enclitic \(=e\) ' \(3 \mathrm{SG} . \mathrm{OBJ}\) ' on laka 'see' does not have a referent in the discourse, showing that laka functions as a CTP. Also, note that wia 'be good' is not a CTP:
\begin{tabular}{lllllll} 
A=laka=e & lag & warei & \(e=\) wia & lag & a=ga & lao
\end{tabular}\(\quad\) luku=s..

\subsection*{12.5.2 Reason clauses}

Reason clauses express the reason why the event in the main clause is performed. They are introduced with nlakan 'because'. In contrast to purpose clauses, reason clauses have no restrictions regarding their position, as they can be either preposed or postposed to the main clause, as seen in the examples below. In addition, there is no mood restriction with reason clauses which either realis or irrealis. In (106) and (107), the reason clauses are in the realis and postposed to the main clause:

(107)
\begin{tabular}{lllll}
\begin{tabular}{l} 
E=lage= ga
\end{tabular} & fat & kastom & pa-ki & misi \\
3SG.S=say & 3SG.S=IRR & make:IRR & custom & go-TR
\end{tabular}\(\quad\)\begin{tabular}{l} 
missionary
\end{tabular}
'He said that he would do a reconciliation ceremony with the missionary because he killed that one.'

Example (108) shows a reason clause in the irrealis and postposed to the main clause:
```

Ar=pan pa,
3DU.S=go GO

```
ar=puria pa nlakan ar=ga tao nap̃as nge naara.
3DU.S=light.earth.oven GO because 3DU.S=IRR bake meat DEF 3PL.POSS
'They went on, they lit the earth oven because they would roast their meat.'

In contrast, example (109) shows a reason clause preposed to the main clause:
(109) Nlakan e=sop̃alua wia tapla, nafnaga nag-na e=pa-ki tan. because 3sG.S=grow be.good like.this food ASS-3SG.POSS 3SG.S=go-TR down 'Because it grew again properly like this, its edible part is down deep.'

Example (110) shows a conditional clause embedded in a reason clause. In this case, the two subordinators follow each other, with the conditional subordinator wan 'if' following the reason subordinator nlakan:
\(\begin{array}{llllllll}\text { (110) } & \text { Konou } & \text { a=tapla } & \text { to, } \quad \text { a=ga } & \text { mas } & \text { pa } & \text { lwa } & \text { namulu-go, } \\ \text { 1SG } & \text { 1SG.S=like.this } & \text { STAT } 1 \text { SG.S=IRR } & \text { must } & \text { go } & \text { remove } & \text { skin-1SG.POSS }\end{array}\)
\begin{tabular}{llllllll} 
nlakan & wan & a=ga & ti & pa & lwa & namulu-go & mau, \\
because & if & 1SG.S=IRR & NEG & go & removed & skin-1SG.POSS & NEG2
\end{tabular}
a=ga matua sa, a=ga mat na.
1SG.S=IRR be.old very 1SG.S=IRR be.dead DEM
'I am like this, I will have to remove my skin, because if I don't remove my skin, I will be very old, I will die.’

\subsection*{12.5.3 Conditional clauses}

Conditional clauses are introduced with the conditional subordinator wan lag 'if (maybe)', or simply with wan 'if'. Recall that lag 'MAYBE' also occurs as a modality particle within the verb complex, marking an event as hypothetical (see 11.2.5.1). Thus it is possible that when it follows the subordinator wan 'if', lag adds a semantic element expressing a hypothetical state of
affairs, which is not surprising considering that lag also marks hypothetical clauses, although in a different position, inside the verb complex (see 9.3.3). Note, however, that lag never occurs by itself to introduce a conditional clause, which shows that wan, rather than lag, is the subordinator. Other properties of conditional clauses are that they are preposed to the main clause and can be realis or irrealis.

Examples (111) and (112) are all introduced by wan lag, with the conditional clauses in the irrealis. There is a correlation between the occurrence of wan lag and irrealis mood, as there are no examples in the corpus of wan lag introducing a conditional clause in the realis:


In (113) to (115), conditional clauses are introduced by wan only. In this situation, the clauses can be in the irrealis as seen in (113) and (114), or in the realis as in (115):
(113) Gaio, wan \(a=\) ga llu pan, \(a=\) malo pag plen. okay if 1SG.S \(=I R R\) return GO 1SG.S=not.want climb plane 'Fine, if I go back, I don't want to get on a plane.'
(114) Kane wan \(\tilde{p} a=f e s=i a, ~ \tilde{p} a=l o\) natpat nan.
but if 2SG.S:IRR=dig.with.hands=3SG.OBJ 2SG.S:IRR=look catch thorns 'But if you dig it with your hands, beware of thorns.'
(115) Wan ar=pam̃osko natul toa mla, \(\mathrm{ar}=\) pla=e panei. if 3sG.S=find egg fowl be.wild 3sG.S=pick=3sG.OBJ COME 'If they found wild fowl eggs, they picked and brought them.'

Subordinate clauses can be embedded within each other, as seen previously in (110). In (116), a purpose clause introduced with \(\operatorname{lag}\) is embedded within a conditional clause. In this situation, the conditional clause functions as the main clause with regards to the purpose clause. This is shown by the fact that the purpose clause is postposed to the conditional clause, as we have seen in 12.5 .1 that purpose clause are postposed to their main clause:
(116) Wan ku=pan lag falea tapla, naoko namta=n falea, if 2SG.S=go PURP 2SG.S:IRR=enter cave like.this mouth eye=POSS:NH cave
\(k u=l o p ̃ a\) faatu skei \(n=e=t o\) faatu skei \(e=\) roa to namta to. 2SG.S=see stone INDEF REL=3SG.S=stay stone INDEF 3 SG. \(S=\) fall stay eye STAT 'It you go to enter the cave, right at the entrance of the cave, you see a stone there, a stone fell down by the entrance.'

\subsection*{12.5.4 Time clauses}

Time clauses locate the event expressed in the main clause in time. They are introduced by the subordinator mala 'when', a noun which has grammaticalised to take the additional function of subordinator. In (117) we see mala functioning as a noun. It heads a subject NP and is modified by the possessive nae ' 3 sG.POss'. As a noun, mala is glossed 'time':
\begin{tabular}{|c|c|c|c|c|c|}
\hline E=to pan & pan pa & e=nou, & mala & nae & e=nou, \\
\hline 3SG.S=stay GO & GO GO & 3sG.S=be.finished & time & 3sG.POSs & 3sG.S=be.finished \\
\hline e=kat & pa. & & & & \\
\hline 3SG.s=CERT & GO & & & & \\
\hline
\end{tabular}

In the following examples, mala is shown functioning as a subordinator, and glossed 'when'. Time clauses can be either preposed or postposed to the main clause. In examples (118) to (120), the time clauses are preposed to the main clause:
(118) Mala mutuama nge e=lop̃a nalwaa nge,
when ogre DEF 3SG.S=see arrow DEF
\begin{tabular}{llll} 
e=kat & malua & lo & parkat=ia \\
3SG.S=CERT & later & look & catch=3SG.OBJ
\end{tabular}
lag natlak ur=ga plaga nalwaa nge.
PURP owner 3PL.S=IRR look.for arrow DEF
'When the ogre saw the arrow, he looked after it later on, as the owners would look for the arrow.'
(119) Mala koria e=rñaki, tu=tae lag koria e=rñaki wago,
when dog 3sG.S=bark 1PL.INCL=know COMP dog 3sG.S=bark pig
kite \(\mathrm{e}=\mathrm{rmaki}\) plok.
or 3sG.s=bark bullock
'When the dogs bark, we know they bark at a pig, or they bark at a bullock.'
(120) Mala misi Peter Milne e=panei pa-ki A=guna, A=guna, when missionary p.name p.name 3 SG.S=come go-TR LOC=p.name LOC=p.name
\(\begin{array}{llll}\text { ur=ti pi } & \text { te=lotu rogo } & \text { mau. } \\ \text { 3pL.S=NEG } & \text { COP } & \text { SBST=pray } & \text { feel }\end{array}\) NEG2
'When the missionary Peter Milne came to Nguna, in Nguna, they hadn't tried Christianity yet.'

In (121) and (122), the time clauses are postposed to the main clause. In (121), there are two occurrences of mala. In the first one, mala is a noun heading an object NP, and it is modified by the indefinite determiner skei. In the second occurrence however, mala is a subordinator introducing an adverbial time clause.
\begin{tabular}{llllll} 
(121) \begin{tabular}{l} 
Go \\
and
\end{tabular} & \begin{tabular}{l} 
a=mro \\
1SG.S=AGAIN
\end{tabular} & \begin{tabular}{l} 
to \\
stay
\end{tabular} & \begin{tabular}{l} 
pa-ki \\
go-TR
\end{tabular} & \begin{tabular}{l} 
mala \\
time
\end{tabular} & \begin{tabular}{l} 
skei, \\
INDEF
\end{tabular} \\
mala & a=kat & panei & pi & eldar.
\end{tabular}
(122) OK, tenge \(\mathrm{e}=\) lag pi namtapaga \(=\mathrm{n}\) stori agnou,

OK SBST.DEF 3SG.S=MAYBE COP end=POSS:NH story 1SG.POSS
mala \(\mathrm{a}=\) mato nfano naara to.
when 1sG.s=stay.long country 3PL.POSS STAT
'OK, this is probably the end of my story, when I lived in their country.'

\subsection*{12.6 Relative clauses}

\subsection*{12.6.1 Properties of relative clauses}

For a general definition of relative clauses (RCs), I follow Andrews (2007b:206) who defines them in terms of their semantic function: "a relative clause (RC) is a subordinate clause which delimits the reference of an NP by specifying the role of the referent of that NP in the situation described by the RC." In this description of RCs, \(\mathrm{NP}_{[\mathrm{MOD}]}\) refers to the matrix NP modified by the RC and \(\mathrm{NP}_{[R E L]}\) to the relativised NP . \(\mathrm{NP}_{[\mathrm{REL}]}\) surfaces as a pronominal copy in the RC when in argument position, but if \(\mathrm{NP}_{[R E L]}\) is an adjunct, no pronominal copy surfaces within the RC . In the examples below, \(\mathrm{NP}_{\text {[MOD] }}\) is underlined while \(\mathrm{NP}_{[\text {REL] }}\) is in bold letters. In Lelepa, RCs have the following properties:
- They modify nouns and occur in final position in the NP (see fig. 5.1, 5.4.5).
- The head noun must occur and is indexed within the RC using a pronominal copy when \(\mathrm{NP}_{[\text {[REI }]}\) is an argument. If, in contrast, \(\mathrm{NP}_{[\text {REII }]}\) is an adjunct, the head noun occurs but is not indexed within the RC (see 12.6.2.5).
- RCs are structurally identical to main clauses, with the only restriction that the subject of the RC can only be realised by a subject proclitic, and not by a co-referential NP.
- They are optionally introduced by the relativiser na 'REL'.

While the relativiser is optional, a pronominal copy of the relativised argument is obligatory in the RC, thus Lelepa uses a pronoun-retention strategy. This strategy is widespread across languages, and in a WALS sample of 112 languages, 55 languages use pronoun retention, which represents the most common strategy across the sample (Comrie and Kuteva 2013). Lelepa RCs are post-nominal, which is typical in Oceanic languages (Lynch, Ross and Crowley 2002:43), and the dominant pattern across languages (Dryer 2013b). The properties of Lelepa RCs can be observed in (123):
- The relative clause (in bold) is introduced by the relativiser na and modifies the relativised participant (underlined) nafnag 'food',
- nafnag is indexed within the RC with the object enclitic =ia '3sG.OBJ',
- The RC specifies referent of nafnag 'food': the food in question is not any food but that which will be eaten at the wedding's preparations.
- This example also shows that RCs can have subordinate clauses. Here, the RC has an adverbial clause of time introduced by mala 'when'.
\(\begin{array}{lllllll}\text { (123) } & \begin{array}{l}\text { E=ga } \\ \text { 3SG.S=IRR }\end{array} & \text { fi } & \text { nafnag } & \text { food } & \text { na } & \text { tu=ga }\end{array} \quad\) faam=ia
mala naloana \(=\mathrm{n}\) na-ftauri-na nge.
time preparations=POSS:NH N.SPEC-get.married-NMLZ DEF
'It will be the food we will eat during the wedding's preparations.'

Note that the relativiser na 'REL' is potentially ambiguous with the demonstrative \(n a\) 'DEM' as they are homophonous. The vowel of the relativiser is commonly truncated before a vowelinitial subject proclitic, in which case the relativiser is reduced and forms a phonological word with the subject proclitic and the following morpheme. However, this does not happen with the demonstrative \(n a\) which receives stress. A RC with a reduced relativiser is shown in (124), and an NP with the demonstrative na is shown in (125):
(124)
\(\mathrm{A}=\mathrm{pa}\) laka napuka n-e=laotu len wia.
1SG.S=go see Gyrocarpus REL-3SG.S=stand.up be.straight be.good
'I went and saw a Gyrocarpus which stood up straight nicely.'
\(\begin{array}{llllll}\text { (125) } & \text { Moa, nasifara wei } \\ \text { well banana.sp TOP } & \text { DEM } & \text { a=tun=ia } & \text { 1SG.S=bury=3SG.OBJ } & \text { STAT } & \text { warampa. } \\ \text { 'Well, this banana, I buried it there.' }\end{array}\)

\subsection*{12.6.2 Functions of \(\mathbf{N P}_{\text {[REL] }}\)}

The NP modified by the relative clause (or \(\mathrm{NP}_{[\mathrm{MOD}]}\) ) can be a subject, object, complement of a copular clause, or an oblique in the matrix clause. While it is common cross-linguistically to allow any NP in the matrix clause to be relativised, there are restrictions on the form of \(\mathrm{NP}_{[R E L]}\) which occurs within the RC. In Lelepa, \(\mathrm{NP}_{[\text {REL }]}\) can be subject, object, oblique, possessor or adjunct in the RC , as will be seen below. Oceanic languages tend to allow \(\mathrm{NP}_{[R E L]}\) to bear most syntactic functions inside the RC (Lynch, Ross and Crowley 2002:43), thus Lelepa is typical in that respect. Since Keenan and Comrie (1977) work on relativisation, it is well known that languages with gapping strategies tend to allow the common NP to bear syntactic functions higher in the Accessibility Hierarchy (AH) (e.g. subjects), rather than lower ones such as possessors. Conversely, in languages using the pronominal retention strategy such as Lelepa, \(\mathrm{NP}_{\text {[REL }]}\) can bear functions lower down the AH (e.g. obliques and possessors). It is also important note that Lelepa allows adjuncts to be relativized using a gapping hierarchy (see 12.6.2.5). The AH is represented as follows (adapted from Keenan and Comrie 1977:66):
\[
\text { subject }>\text { direct object }>\text { indirect object>oblique> possessor>adjuncts }
\]

It implies that languages which allow the common NP to bear a given function in the hierarchy also allow the common NP to bear the higher functions. That is, it predicts that a language which relativises on possessors also relativises on all other positions. This prediction is verified for Lelepa, which allows relativisation on possessors and adjuncts as well as on all the higher functions.

\subsection*{12.6.2.1 \(\mathrm{NP}_{[\text {REL }]}\) is subject}
\(\mathrm{NP}_{\text {[REL] }}\) can be a subject. When this occurs, a subject proclitic in the RC is co-referential with the matrix NP (i.e. \(\left.\mathrm{NP}_{[\mathrm{MOD}]}\right)\). In (126), \(\mathrm{NP}_{[\mathrm{MOD}]}\) and \(\mathrm{NP}_{[\text {REL] }]}\) are both subjects. No relativiser occurs but the \(\mathrm{NP}_{\text {[REL] }}\) is encoded with the subject proclitic \(e=\) ' 3 SG.. \(\mathrm{S}^{\prime}\) inside RC:
\begin{tabular}{lllllll} 
kane & fterki & nge & \(\quad \mathrm{e}=\) panmei & \(\mathrm{e}=\mathrm{pi}\) & tetei & nae. \\
but & woman & DEF & 3sG.S=come & 3sG.S=COP & mother & 3sG.POSS \\
'But the woman who came was her mother.'
\end{tabular}

In (127), the NP in which the relative clause occurs is a left-dislocated subject. \(\mathrm{NP}_{[\text {RELI }}\) is a subject in the RC, as it is encoded with the subject proclitic \(e=\) ' 3 sG.s':
(127) Taikiki agnou na e=mato Malakula to,
young.sibling 1sG.s.POSS REL 3SG.S=stay.long p.name STAT
nae \(\mathrm{e}=\) sor nmaluku.
3sG 3SG.S=sell kava
'As for my younger brother who lives in Malakula, he sells kava. [elicited]

In (128), \(\mathrm{NP}_{\text {[MOD] }}\) is an object in the matrix clause and \(\mathrm{NP}_{\text {[RELI }}\) is a subject in the RC:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ur=self & nmal nkas tete & na & e=roa & wane & napua. \\
\hline 3pl.s=beside & trunk tree some & REL & 3sG.S=fall & & \\
\hline \({ }^{\text {'They were ne }}\) & to some tree trunk & whic & fell down & he & \\
\hline
\end{tabular}

In (129), \(\mathrm{NP}_{\text {[MOD] }}\) is a secondary object in the matrix clause and \(\mathrm{NP}_{\text {[RELI }}\) is a subject in the RC:
(129) Ur=ti tua=e nalia na \(\mathrm{e}=\mathrm{pi}\) nalia wia wa-n mau. 3pl.s=NEG give=3sG.OBJ place REL 3sG.S=COP place be.good DEM-DIST NEG2 'They didn't give him the place which was that good place.'

In (130) the \(\mathrm{NP}_{\text {[MOD] }}\) wara skei 'place INDEF \(>\) a place' is a secondary object in the matrix clause. In the RC, \(\mathrm{NP}_{[\text {REL }}\) is a subject encoded with the subject proclitic \(e=\) ' 3 SG.S', while the suffix nia '3SG.OBj' indexes the following complement clause (see 12.4.1) rather than being coreferential with \(\mathrm{NP}_{\text {[MODI }}\). The interesting feature here is that the RC shows a case of relativisation that involves long-distance dependency, as \(\mathrm{NP}_{\text {[REL] }}\) occurs as a pronominal copy \(e=‘ 3\) SG. \(s\) ' in a complement clause embedded within the RC itself:
```

(130)

Ur=tua=e	wara	skei
3PL.s=give=3sG.OBJ	place	INDEF

```
na ur=mtouki-nia lage=pi nalia tap.
REL 3PL.S=fear-3SG.OBJ COMP 3sG.S=COP place be.taboo
'They gave him a place that they feared was a taboo place.'

Certain languages allow relativisation on subjects by gapping while they use pronoun retention to relativise on positions lower down the AH (Comrie and Tatteva 2013). In Lelepa however, given that subject proclitics are obligatory, \({ }^{5}\) and that no other obligatory free form indexing the common NP occurs in the language, if \(\mathrm{NP}_{\text {[REL }]}\) is a subject, it must be encoded by a subject proclitic.

\subsection*{12.6.2.2 \(\mathrm{NP}_{[\mathrm{REL}]}\) is object}
\(\mathrm{NP}_{\text {[REL] }}\) can be an object in the RC, in which case it is encoded with a bound object marker. In (131), the NP modified by the RC is a left-dislocated subject and \(\mathrm{NP}_{[\text {REL }]}\) is an object in the RC , as it is encoded with = ia '3sG.OBJ':
(131) Grun wa-n \(k u=\) pat=ia pan pa, e=kat pa-ki sei pa? woman DEM-DIST 2SG.S=make=3SG.OBJ GO GO 3SG.S=CERT go-TR where GO 'That woman you were with for a while, where did she go?'

In (132), both \(\mathrm{NP}_{\text {[MODJ }}\) and \(\mathrm{NP}_{\text {[REL] }}\) are objects. Like (130), this is another case of long-distance dependency in relativisation, as \(\mathrm{NP}_{[\text {RELI }}\), which is encoded with the object enclitic \(=i a\) ' \(3 \mathrm{SG} . \mathrm{OBJ}\) ', occurs in a complement clause embedded in the relative clause:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (132) & \(\mathrm{Ku}=\) kano pa & pat & nmatuna nge & nag & ku=msau-na & lag \\
\hline & 2SG.S=cannot go & make & thing DEF & 2SG & 2SG.S=want-3SG.OBJ & COMP \\
\hline & pa=fa & pat & & & & \\
\hline & 2SG.S:IRR=go:IRR & make & =3sG.OBJ & & & \\
\hline & 'You couldn't go & do this & thing that you wa & ted to & do.' & \\
\hline
\end{tabular}

In (133), \(\mathrm{NP}_{[\mathrm{MOD}]}\) is an oblique in the matrix clause while \(\mathrm{NP}_{[R E L]}\) is an object in the RC:
(133)
\begin{tabular}{|c|c|c|c|c|c|}
\hline A=pa-ki & skul & skul & nge & na & ur=tfag=ia. \\
\hline 1SG.S=go-TR & school & school & DEF & L & 3PL.S=build=3sG.OBJ \\
\hline 'I went to sch & the & chool th & buit & & \\
\hline
\end{tabular}

\footnotetext{
\({ }^{5}\) Recall that they can be dropped in limited structural context such as coordination (see 10.1.2).
}

We have seen that in RCs that are monotransitive, \(\mathrm{NP}_{[\mathrm{REL}]}\) can be an object. If the RC is ditransitive, \(\mathrm{NP}_{\text {[REL] }}\) can also be a secondary object, in which case it is encoded with \(=s\) '3SG.OBJ' in the RC. In (134), the relativised argument neik.a 'fish' is a left-dislocated object, as seen by the fact that it is encoded with \(=i a^{\prime} 3 \mathrm{SG} . \mathrm{OBJ}\) ' in the matrix clause. In the relative clause however, \(\mathrm{NP}_{[\mathrm{REL}]}\) is a secondary object encoded by \(=s\) ' \(3 \mathrm{SG} . \mathrm{OBJ}\) '. It follows the primary object Tomseni 'p.name':
(134) Neika \(k u=t u a \quad\) Tomseni \(=s\), nae \(\mathrm{e}=\) sor=ia pa-ki Tafman.
fish 2SG.s=give p.name=3SG.OBJ 3sG 3SG.S=sell=3SG.OBJ go-TR p.name
'As for the fish you gave Thompson, he sold it to Tafman.'
[elicited]

\subsection*{12.6.2.3 \(\mathrm{NP}_{[\mathrm{REL}]}\) is oblique}
\(\mathrm{NP}_{\text {[REL] }}\) can be an oblique, in which case it is encoded by the oblique enclitic \(=s\) ' 3 OBL' in the RC. In (135), \(\mathrm{NP}_{[\mathrm{MOD}]}\) is a subject in the matrix clause while \(\mathrm{NP}_{[R E L]}\) is an oblique encoded with \(=s\) '3OBL' in the RC:


In (136), \(\mathrm{NP}_{\text {[MOD] }}\) is an object in the matrix clause and \(\mathrm{NP}_{[\mathrm{REL}]}\) is an oblique in the RC :
(136) \(\mathrm{Ku}=\) sor neika na \(\quad\) ku=tagau=s pa-ki Thompson. 2SG.S=sell fish REL 2SG.S=fish=3OBL go-TR p.name
'You sold the fish you caught to Thompson.' [elicited]

In (137), \(\mathrm{NP}_{[\mathrm{MOD}]}\) is a secondary object in the matrix clause and \(\mathrm{NP}_{[\mathrm{REL}]}\) is an oblique in the RC :
(137) \(\mathrm{Ku}=\) tua Thompson neika na \(\mathrm{ku}=\) tagau \(=\mathrm{s}\).

2SG.S=give p.name fish REL 2SG.S=catch=3OBL
'You gave Thompson the fish you caught.'
[elicited]

In (138), \(\mathrm{NP}_{\text {[MOD] }}\) is a complement of the copula \(p i{ }^{\text {'COP' }}\) in the matrix clause and \(\mathrm{NP}_{[\mathrm{REL}]}\) is an oblique in the RC. This is an instance of locative relativisation, in which the matrix NP is semantically a locative, while \(\mathrm{NP}_{[\mathrm{REL}]}\) is also treated as a locative oblique in the RC :
\begin{tabular}{llllll} 
(138) Wara e=pi & \(\underline{\text { nalia }}\) na tu=ga & fat & naftaurina=s \\
here 3SG.S=COP place REL & 1PL.INCL.S=IRR & make:IRR & wedding=3OBL \\
'Here is the place in which we'll have the wedding.' & &
\end{tabular}

In (139), both \(\mathrm{NP}_{[\mathrm{MOD}]}\) and \(\mathrm{NP}_{[\text {REL }]}\) are obliques. In Lelepa, locatives are generally treated as obliques, except when they occur as object of transitive verbs like pa-ki 'go-TR' or wuru 'pass'. Like in (138), both \(\mathrm{NP}_{[\mathrm{MOD}]}\) and \(\mathrm{NP}_{[\text {REL }]}\) are semantically locatives, and they are treated as obliques in relativisation:
\begin{tabular}{llll} 
E=oufaki=nia & warange & na ur=to & pat nsalena=s. \\
3SG.S=bury=3sG.OBJ & there & REL \(\quad\) 3PL.S=IPFV & make dance.ceremony=3OBL \\
'She buried her there, where they had the dance ceremony.'
\end{tabular}

\subsection*{12.6.2.4 \(\mathbf{N P}_{[\text {REL }]}\) is possessor}
\(\mathrm{NP}_{\text {[REL] }}\) can be a possessor in the RC , which is one of the lowest position in the AH . In Lelepa, this is indicated by the fact that \(\mathrm{NP}_{[\mathrm{REL}]}\) is encoded by a possessive pronominal within the RC . There are several possessive constructions in the languages (see chapter 6) which can have a pronominal or nominal possessor (see 6.3 and 6.4 respectively). Given that Lelepa RCs use a pronoun retention strategy, the possessive constructions occurring in RCs have a pronominal possessor which can be either free or bound, rather than a possessor encoded by a noun or a full pronoun. In (140), \(\mathrm{NP}_{[\mathrm{MOD}]}\) is the object NP nate skei 'a man' in the matrix close, while \(\mathrm{NP}_{\text {[REL }]}\) is a pronominal possessor in the RC , encoded with the free possessive pronominal nae '3SG'. In this example, the speaker explains a traditional practice in which hunters obstruct the paths they take in the bush with branches, as this will prevent them from worrying about personal problems, or loved ones such as their wives:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline (140) & Nkas tree & nge DEF & \[
\begin{aligned}
& \mathrm{e}=\mathrm{kat} \\
& 3 \mathrm{SG} . \mathrm{S}=\mathrm{CERT}
\end{aligned}
\] & tarp̃agor cover & namaetona anger & \begin{tabular}{l}
nge \\
DEF
\end{tabular} & mpan, GO & \\
\hline & \begin{tabular}{l}
kite \\
or \\
‘The
\end{tabular} & nate person ood co & skei nagrun NDEF woman ers the anger, or & nae 3sG.Poss (protects) a & \[
\begin{aligned}
& \text { e=tina } \\
& \text { 3sG.S=pregnar } \\
& \text { a man whose wi }
\end{aligned}
\] & \begin{tabular}{l}
to, STAT \\
is pre
\end{tabular} & \begin{tabular}{l}
se \\
while gnant, w
\end{tabular} & \(\mathrm{tu}=\mathrm{mau} \quad\) pan. 1PL.INCL=all go while we all go.' \\
\hline
\end{tabular}

In (141), \(\mathrm{NP}_{[\mathrm{MOD}]}\) is subject in the matrix clause and \(\mathrm{NP}_{[R E L]}\) is possessor in the RC . In contrast with (140), the possessor is encoded with a bound pronominal, in this case the possessorindexing suffix -na '3SG.POSS':
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{(141)} & Taos tena & na & tu=to & pag & nag-na & to & malmauna \\
\hline & like SBST.DEM & REL & 1PL.INCL.S=stay & inside & ASS-3SG.POSS & STAT & now \\
\hline & \(\mathrm{e}=\mathrm{mro}\) & fanp̃ & & & & & \\
\hline & 3sG.S=AGAIN & be.dif & ferent & & & & \\
\hline & 'Thus this one in & hich w & e are now is differ & ent agai & .' (lit. this one W & dee st & in the inside of) \\
\hline
\end{tabular}

\subsection*{12.6.2.5 \(\mathrm{NP}_{[\mathrm{REL}]}\) is adjunct}

Some examples in the corpus seem to show that the language allow \(\mathrm{NP}_{[\mathrm{REL}}\) to be adjunct as well. However, in such cases, the language employs the gapping strategy instead of the pronominal copy strategy, which is used on all higher functions. In (142), ntau 'year' is relativized but no pronominal copy shows up in the RC. In contrast, in the following clause nali 'place' is relativized but in this instance the pronominal copy strategy is used with \(=s\) '3OBL' occurring in the RC:
\(\begin{array}{lllllll}\text { (142) } & \begin{array}{l}\text { Go } \\ \text { and }\end{array} & \text { ntau } & \text { na } & \text { REL } & \text { a=to } & \text { 1SG.S=IPFV }\end{array} \begin{aligned} & \text { psa } \\ & \text { speak }\end{aligned} \quad \begin{aligned} & \text { pseiki, } \\ & \text { show }\end{aligned}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline nali & \(\mathrm{a}=\) to & psa & pseiki=s & \(\mathrm{e}=\mathrm{pi}\) & wara. \\
\hline place & 1SG.S \(=\) IPFV & speak & show=3OBL & 3sG.S=COP & here \\
\hline
\end{tabular}

While it appears unusual that the gapping strategy is used for a low-end function such as adjunct, this is consistent with the properties of Lelepa grammatical relations. Recall from p.264, table 7.6 that an adjunct is never realized as a pronominal, thus it is expected that no pronominal copy surfaces in the RC when \(\mathrm{NP}_{[R E L]}\) is an adjunct.

\section*{Bibliography}

Abercrombie, David., 1967, Elements of general phonetics. Edinburgh: Edinburgh University Press.

Aikhenvald, Alexandra Y., 2006, Serial verbs constructions in typological perspective. In A. Y. Aikhenvald and R.M.W. Dixon, eds., Serial verb constructions: a cross-linguistic typology. Explorations in linguistic typology, 1-68. Oxford: Oxford University Press.

Aikhenvald, Alexandra Y., 2007, Typological distinctions in word formation. In T. Shopen, ed., Vol.III:1-65.

Aikhenvald, Alexandra Y. and R.M.W. Dixon, eds., 2006, Serial verb constructions: a cross-linguistic typology. Explorations in linguistic typology. Oxford: Oxford University Press.

Aissen, Judith, 2003, Differential object marking: iconicity vs. economy. Natural language and linguistic theory 21:435-483.

Alsina, Alex, Joan Bresnan and Peter Sells, 1997, Complex predicates. Stanford: CSLI Publications.

Amberber, Mengistu, Brett Baker and Mark Harvey, 2010, Complex predicates: cross-linguistic perspectives on event structure. Cambridge: Cambridge University Press.
Ameka, Felix K., Alan Dench and Nicholas Evans, eds., 2006, Catching language: the standing challenge of grammar writing. Berlin, New York: Mouton de Gruyter.

Andrews, Avery, 2007a, The major functions of the noun phrase. In T. Shopen, ed., Vol.I:132223.

Andrews, Avery, 2007b, Relative clauses. In T. Shopen, ed., Vol.III:206-236.
Arka, I Wayan, 2005, The core-oblique distinction in some Austronesian languages of Indonesia and beyond. Ms.http://chl.anu.edu.au/linguistics/projects/iwa/Arka-CoreObliquePaperAndTables.pdf (Accessed 17 December, 2013).

Bertinetto, Pier Marco, 1997, Il dominio tempo-aspettuale: demarcazioni, intersezioni, contrasti. Torino: Rosenberg \&Sellier.
Binnick, Robert I. 2012, Introduction. In R. I. Binnick, ed., The Oxford bandbook of tense and aspect. Oxford: Oxford University Press.
http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780195381979.001.000
1/oxf ordhb-9780195381979-e-0. (Accessed January 20, 2014).

Binnick, Robert I., ed., 2012, The Oxford bandbook of tense and aspect. Oxford: Oxford University Press. http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780195381979.001.000 1/oxfordhb-9780195381979 (Accessed January 20, 2014).

Blevins, Juliette, 1995, The syllable in phonological theory. In Goldsmith, ed., 204-206.
Blevins, Juliette, 2004, The mystery of Austronesian final consonant loss. Oceanic linguistics 43:179-184.

Blust, Robert, 2009, The Austronesian languages. Canberra: Pacific Linguistics.
Bossong, Georg, 1991, Differential object marking in Romance and beyond. In D. Wan-ner and D. Kibbee, eds., New analyses in Romance linguistics: selected papers from the XVIII linguistic symposium on Romance languages, Urbana-Champaign, April 7-9, 1988, John Benjamins, Amsterdam, pp. 143-170.

Bowden, John, 2001, Taba: description of a South Halmahera language. Canberra: Pacific Linguistics.
Bresnan, Joan, and Sam A. Mchombo, 1987, Topic, pronoun and agreement in Chichewa. Language, 63(4):741-782.

Bril, Isabelle, 2002, Le nêlêmwa (Nouvelle-Calédonie), analyse syntaxique et sémantique. Paris: Peeters.
Bril, Isabelle, 2007, Nexus and juncture types of complex predicates in Oceanic languages: functions and semantics. Language and Linguistics 8(1):267-310.

Catford, John C., 1977, Fundamental problems in phonetics. Edinburgh: Edinburgh University Press.

Catford, John C., 1988, A practical introduction to phonetics. Oxford: Oxford University Press.
Chikobava, Arnold S., 1942, The problem of ergative construction in Caucasian languages: stabile and labile variants of this construction. Izvestija IYaIMK, XII. Tbilisi (in Georgian).

Clements, George N., 1990, The role of the sonority scale in core syllabification. In J.C. Kingston and M.E. Beckman, eds., 283-333.

Codrington, R. H., 1885, The Melanesian languages. Oxford: Clarendon Press.
Comrie, Bernard, 1976, Aspect: an introduction to the study of verbal aspect and related problems. Cambridge: Cambridge University Press.

Comrie, Bernard, and Tania Kuteva, 2013, Relativization on obliques. In: M.S. Dryer and M. Haspelmath, eds., The world atlas of language structures online. Leipzig: Max Planck institute for evolutionary anthropology. http://wals.info/chapter/123 (Accessed March 18, 2010).

Connell, Bruce, 1987, Temporal aspects of labiovelar stops. Work in Progress 20:53-60.
Connell, Bruce, 1991, Phonetic aspects of the Lower Cross languages and their implications for sound change. PhD thesis, Edinburgh University.

Connell, Bruce, 1994, The structure of labial-velar stops. Journal of Phonetics 22:441-476.
Corbett, Greville G., 2006, Agreement. Cambridge: Cambridge University Press.
Crowley, Terry, 1982, The Paamese language of Vanuatu. Canberra: Pacific Linguistics.
Crowley, Terry, 1985, Common noun phrase marking in Proto Oceanic. Oceanic linguistics 24(1\&2):135-193.

Crowley, Terry, 1991, Parallel development and shared innovation: some developments in central Vanuatu inflectional morphology. Oceanic linguistics 30:179-222.

Crowley, Terry, 1996, Inalienable possession in Paamese grammar. In H. Chappell and W. B. McGregor, eds., The grammar of inalienability: a typological perspective on body part terms and the part-whole relation. Berlin, New York: Mouton de Gruyter.

Crowley, Terry, 1998a, An Erromangan (Sye) grammar. Oceanic linguistics special publication no. 27. Honolulu: University of Hawai'i Press.

Crowley, Terry, 1998b, A salvage sketch of Nāti (southwest Malakula, Vanuatu). In D. T.
Tryon, ed., Papers in Austronesian linguistics no5, 101-148. Canberra, Pacific Linguistics.
Crowley, Terry, 1999, Ura: A disappearing language of southern Vanuatu. Canberra: Pacific Linguistics.

Crowley, Terry, 2002, Serial verbs in Oceanic, a descriptive typology. Oxford: Oxford University Press.

Crowley, Terry, 2006, Naman: A vanishing language of Malakula (Vanuatu). Canberra: Pacific Linguistics.

Davis, Karen, 2003, A grammar of the Hoava language, Western Solomons. Canberra: Pacific Linguistics.
Demolin, Didier, 1991, Les consonnes labio-vélaires du mangbétu. Pholia 6:67-90.
De Swart, Henriëtte, 1998, Aspect shift and Coercion. Natural language and linguistic theory 16:347-385.

Dimock, Laura G., 2009, A grammar of Nahavaq (Malakula, Vanuatu). PhD thesis, Victoria University of Wellington.

Dixon, Robert M. W., 1972, The Dyirbal language of North Queensland. Cambridge: Cambridge University Press.

Dixon, Robert M. W., 1977a, A grammar of Yidin. Cambridge: Cambridge University Press.

Dixon, Robert M. W., 1977b, Where have all the adjectives gone? Studies in languages 1(1):19-80.
Dixon, Robert M. W., 1982, Where have all the adjectives gone, and other essays in syntax and semantics. Berlin, New York: Mouton de Gruyter.

Dixon, Robert M. W., 1988, A grammar of Boumaa Fijian. Chicago, London: The University of Chicago Press.

Dixon, Robert. M. W. and Alexandra Y. Aikhenvald, 2002, Word: a typological framework. In R. M. W. Dixon and A. Y. Aikhenvald, eds., Word: a cross-linguistic typology. Cambridge: Cambridge University Press, 1-41.

Dryer, Matthew S., 2007a, Word order. In T. Shopen, ed., Vol.I:61-131.
Dryer, Matthew S., 2007b, Clause types. In T. Shopen, ed., Vol.I:224-275.
Dryer, Matthew S., 2007c, Noun phrase structure. In T. Shopen, ed., Vol.II:151-205.
Dryer, Matthew S., 2013a, Indefinite articles. In Dryer, Matthew S. \& Haspelmath, Martin, eds., The world atlas of language structures Online. Leipzig: Max Planck institute for evolutionary anthropology. http://wals.info/chapter/38, (Accessed 31 January, 2014).

Dryer, Matthew S., 2013b, Order of relative clause and noun. In Dryer, Matthew S. \& Haspelmath, Martin, eds., The world atlas of language structures online. Leipzig: Max Planck institute for evolutionary anthropology. http://wals.info/chapter/90 (Accessed 25 March, 2014).

Durie, Mark, 1988, Verb serialization and "verbal-prepositions" in Oceanic languages. Oceanic linguistics. 27(1):1-23.

Early, Robert, 1993, Nuclear layer serialization in Lewo. Oceanic linguistics. 32(1):65-93.
Early, Robert, 1994, A Grammar of Lewo. PhD thesis, The Australian National University.
Enfield, Nick, 2006, Heterosemy and the grammar-lexicon trade-off. In Ameka, Felix K., Alan Dench and Nicholas Evans, eds.

Enfield, Nick J., 2007, A grammar of Lao. Berlin, New York: Mouton de Gruyter.
Ertheshik-Shir, Nomi, 2007, Information structure: the syntax-discourse interface. Oxford: Oxford University Press.

Evans, Bethwyn, 2003, A study of valency-changing devices in Proto Oceanic. Canberra: Pacific Linguistics.

Evans, Nicholas D., 1995, A grammar of Kayardild. Berlin, New York: Mouton de Gruyter.
Evans, Nicholas D., 2002, The true status of grammatical object affixes: evidence from Bininj-Gun-wok. In N. Evans and H-J. Sasse, eds., Problems of polysynthesis, 15-50. Berlin: Akademie Verlag GmbH.

Evans, Nicholas D., 2003. An interesting couple: the semantic development of dyad morphemes. Institut für sprachwissenshaft, Universitat zü Koln. Arbeitspapier (Neue Folge, Nr. 47).
Foley, William A., 2007, A typology of information packaging in the clause. In T. Shopen, ed., Vol.I:362-446.

Foley, William A., and Robert D. (Jr.) Van Valin, 1984, Functional syntax and universal grammar. Cambridge : Cambridge University Press.
Fox, Charles E., 1955, A dictionary of the Nggela language (Florida, British Solomon Islands). Auckland: Unity Press.

François, Alexandre. 2000. Dérivation lexicale et variations d'actance : petits arrangements avec la syntaxe. Bulletin de la société linguistique de Paris XCV(1):15-42.
François, Alexandre, 2001, Contraintes de structure et liberté dans l'organisation du discours: Une description du mwotlap, langue océanienne du Vanuatu. PhD thesis, Université Paris-IV Sorbonne.
http://alex.francois.free.fr/data/AlexFrancois These DescriptionMwotlap.pdf (Accessed 04 September, 2013).
François, Alexandre, 2002, Araki : a disappearing language of Vanuatu. Canberra, Pacific Linguistics.

François, Alexandre, 2003, La sémantique du prédicat en Mwotlap (Vanuatu). Leuven, Paris: Peeters. François, Alexandre. 2006. Serial verb constructions in Mwotlap. In A. Y. Aikhenvald and R.M.W. Dixon, eds., Serial verb constructions: a cross-linguistic typology. Explorations in linguistic typology, 223-238. Oxford: Oxford University Press.
Garanger, José, 1972, Archéologie des Nouelles-Hebrides. Paris: ORSTOM
Givón, Talmy, 1978, Definiteness and referentiality. In J. Greenberg, ed., Universals of buman language, Vol.IV, 292-330. Stanford: Stanford University Press.
Givón, Talmy, 2001a., Syntax: an introduction. Vol.I. Amsterdam, Philadelphia: John Benjamins publishing company.
Givón, Talmy, 2001b., Syntax: an introduction. Vol.II. Amsterdam, Philadelphia: John Benjamins publishing company.
Goldsmith, John A., ed., 1995, The handbook of phonological theory. Oxford, Cambridge, MA: Blackwell.

Guérin, Valérie M. P. R., 2007, Definiteness and specificity in Mavea. Oceanic linguistics. 46(2):538-553.

Guérin, Valérie M. P. R., 2008, Discovering Mavea: grammar, texts and lexicon. PhD thesis, University of Hawai'i.

Guérin, Valérie M. P. R., 2011, A grammar of Mavea, an Oceanic language of V anuatu. Oceanic linguistics special publication no. 39. Honolulu: University of Hawai'i Press.

Hale, Kenneth, 1973, Deep-surface canonical disparities in relation to analysis and change: An
Australian example. In T. A. Sebeok, ed., Current trends in linguistics, Vol. 11. Diachronic, areal and typological linguistics, 401-458. The Hague: Mouton.

Haggard, Mark, 1973, Abbreviations of consonants in English pre- and post-vocalic clusters. Journal of Phonetics 1:9-25.

Hardcastle, William J. and Peter Roach, 1977, An instrumental investigation of coarticulation in stop consonant sequences. W ork in Progress, phonetics laboratory, University of Reading. 1:27-44.

Haspelmath, Martin, 1993, A grammar of Lezgian. Berlin: Mouton de Gruyter.
Haspelmath, Martin, 2005, Argument marking in ditransitive alignment types. Linguistic discovery 3(1):1-21. http://wwwstaff.eva.mpg.de/~haspelmt/DitransitiveAlignment.pdf (Accessed 20 January, 2014).

Haspelmath, Martin, 2007, Co-ordination. In T. Shopen, ed., Vol.III:1-51. Haspelmath, Martin, 2011, On S, A, P, T and R as comparative concepts for alignment typology. Linguistic Typology 15:535-567

Haspelmath, Martin, 2012, Argument indexing: a conceptual framework for the syntactic status of bound person forms. https://www.academia.edu/1208796/Argument indexing_A conceptual framework for the syntactic status of bound person forms (Accessed 07 February, 2014).

Hayes, Bruce, 1995, Metrical stress theory: principles and case Studies. Chicago: The University of Chicago Press.

Hockett, Charles F., 1948, Potawatomi III: the verb complex. International journal of American linguistics 14(3):139-149.

Hopper, Paul J. and Sandra A. Thompson, 1980, Transitivity in grammar and discourse. Language 56(2):251-299.
Hopper, Paul J. and Elizabeth C. Traugott, 1993, Grammaticalization. Cambridge: Cambridge University Press.

Hyslop, Catriona, 2001, The Lolovoli dialect of the North-East Ambae language, Vanuatu. Canberra: Pacific Linguistics.

Jauncey, Dorothy G., 2011, Tamambo, the language of west Malo, Vanuatu. Canberra: Pacific Linguistics.

Keenan, Edward L. and Bernard Comrie, 1977, Noun phrase accessibility and Universal Grammar. Linguistic Inquiry 8(1):63-99.

Kehrein, Wolfgang, 2006, Complex Segments. In K. Brown and R. Wiese, eds., Encyclopedia of Language and linguistics, 2nd Ed. pp. 705-709. Oxford: Elsevier.

Kenstowicz, Michael, 1994, Phonology in generative grammar. Cambridge, Mass. and Oxford: Blackwell.

Kibrik, Aleksandr E., Sandro V. Kodzasov, Irina P. Olovjannikova, and Dzhalil' S. Samedov,1977, Opyt struk.turnogo opisanija arčinskogo jazyka. Tom 1. Leksika. Fonetika [A structural description of Archi. Volume 1. Vocabulary. Phonetics]. Moscow: Moscow State University.

Kingston, John C, and M. E. Beckman, eds., 1990, Papers in laboratory phonology I: Between the grammar and physics of speech. Cambridge: Cambridge University Press.

Lacrampe, Sébastien, 2009, Possession in Lelepa, a language of central Vanuatu. MA thesis, The University of the South Pacific.

Lacrampe, Sebastien, 2012, Simplifying a system: A story of language change in Lelepa, Vanuatu. In M. Ponsonnet, L. Dao and M. Bowler, eds., The 42nd Australian Linguistic Society Conference Proceedings - 2011 (Canberra, 1-4 Dec 2011), 223-244. Canberra: ANU Research Repository https://digitalcollections.anu.edu.au (Accessed 04 September, 2013).

Ladefoged, Peter, 2001, A course in phonetics, \(4^{\text {th }}\) edn. Boston: Heinle and Heinle Thomson learning.

Ladefoged, Peter and Ian Maddieson, 1996, The sounds of the world's languages. Malden, MA, Oxford, Carlton: Blackwell Publishing.

Lambrecht, Knud, 1994, Information structure and sentence form. Cambridge: Cambridge University Press.

Lemaréchal, Alain, 1989, Les partie du discours. Sémantique et syntaxe. Paris: Presses Universitaires de France.

Li, Charles N., and Sandra A. Thompson, 1974, Co-verbs in Mandarin Chinese: Verbs or Prepositions? Journal of Cbinese linguistics 2(3): 257-278.

Lichtenberk, Frantisek, 1983, A grammar of Manam. Oceanic linguistics special publication no.
18. Honolulu: University of Hawai'i Press.

Lichtenberk, Frantisek, 1985, Possessive constructions in Oceanic languages and Proto-
Oceanic. In A. Halim, L. Carrington and S.A. Wurm, eds., Papers from the third international conference on Austronesian linguistics, Vol. I: Currents in Oceanic, 93-140.

Canberra: Pacific Linguistics.
Lichtenberk, Frantisek, 1991, Semantic change and heterosemy in grammaticalization.
Language. 67(3):475-509.
Lichtenberk, Frantisek. 2001. On the morphological status of thematic consonants in two Oceanic languages. In J. Bradshaw and K. L. Rehg, eds., Issues in Austronesian morphology: A focusschrift for Byron W. Bender, 123-147. Canberra: Pacific Linguistics.

Lord, Carol, 1973, Serial verbs in transition. Studies in African linguistics. 4(3), 269-296.
Lord, Carol, 1993, Historical change in serial verb constructions, typological studies in language No. 26.
Amsterdam: John Benjamins publishing company.
Lynch, John, 1973, Verbal aspects of possession in Melanesian languages. Oceanic linguistics. 12:69-102.

Lynch, John, 1975, Oral/nasal alternation and the realis/irrealis distinction in Oceanic languages. Oceanic linguistics. 14:87-99.

Lynch, John, 1978, A grammar of Lenakel. Canberra, Pacific Linguistics.
Lynch, John, 2000, A grammar of Anejom. Canberra, Pacific Linguistics.
Lynch, John, 2001, Article accretion and article creation in Southern Oceanic. Oceanic linguistics. 40(2):224-246.

Lynch, John, Malcolm Ross and Terry Crowley, 2002, The Oceanic languages. Richmond, Surrey: Curzon Press.

MacDonald, Daniel D., 1889, Three New Hebrides languages (Efatese, Eromangan, Santo).
Melbourne: Edgerton and Moore.
Maddieson, Ian, 1993, Investigating Ewe articulations with electromagnetic electrography.
UCL A working papers in phonetics. 85:22-53.
Maddieson, Ian and Peter Ladefoged, 1989, Multiply articulated segments and the feature hierarchy. UCL A working papers in phonetics. 72:116-138.

Malchukov, Andrej, Martin Haspelmath and Bernard Comrie, 2007, Ditransitive constructions: a typological overview. Ms.
http://email.eva.mpg.de/~haspelmt/DitransitiveOverview.pdf (Accessed 25 August, 2014).

Margetts, Anna, 1999, Valence and transitivity in Saliba, an Oceanic language of New Guinea. Max Planck institute series in psycholinguistics. Nijmegen: Max Planck institute.

Merlan, Francesca \& Jeffrey Heath, 1982, Dyadic kinship terms. In J. Heath, F. Merlan and A. Rumsey, eds., The languages of kinship in Aboriginal Australia, 107-24. Sydney: University of Sydney.

Miller, Graham, 1945, Havannah Harbour, West Efate. Ms.
Moyse-Faurie, Claire, 1983, le drehu, langue de Lifou. Paris : SELAF.
Næss, Áshild \& Brenda Boerger, 2008, Reefs-Santa Cruz as Oceanic: evidence from the verb complex. Oceanic linguistics 47(1)185-212.

Noonan, Michael, 2007, Complementation. In T. Shopen, ed., Vol.III:52-150.
Painter, Colin, 1978, Implosives, inherent pitch, tonogenesis, and laryngeal mechanisms. Journal of Phonetics 6:249-274.

Palmer, Bill, 2009, Kokota. Oceanic linguistics special publication no. 35. Honolulu: University of Hawai'i Press.

Palmer, Frank R., 1986. Mood and modality. Cambridge: Cambridge University Press.
Parker, Stephen G, 2002, Quantifying the sonority bierarchy. PhD thesis, University of Massachusetts http://scholarworks.umass.edu/dissertations/AAI3056268 (Accessed 04 September 2013).

Pawley, Andrew, 1973, Some problems in Proto Oceanic grammar. Oceanic linguistics 12:103188.

Pawley, Andrew, 2001, Proto Polynesian *-Cia In J. Bradshaw and K. L. Rehg, eds., Issues in Austronesian morphology: A focusschrift for Byron W. Bender, 193-216. Canberra: Pacific Linguistics.

Payne, Thomas E., 2007, Describing morphosyntax. Cambridge: Cambridge University Press.
Persson, Gunnar, 1988, Homonymy, polysemy, and heterosemy: three types of lexical ambiguity in English. Paper read to Third international symposium on lexicography, University of Copenhagen: May 1 - 16, 1986.

Ray, Sidney H., 1926, A comparative study of the Melanesian Island languages. Cambridge: Cambridge University Press.

Riemer, Nick, 2010, Introducing semantics. Cambridge: Cambridge University Press.

Ross, Malcolm D., 1998a, Proto-Oceanic adjectival categories and their morphosyntax. Oceanic linguistics. 37(1):85-119.

Ross, Malcolm D., 1998b, Proto-Oceanic *i, *qi and *-ki. Unpublished ms, Research school of Pacific and Asian Studies, The Australian National University, Canberra.

Ross, Malcolm D., 1998c, Proto-Oceanic phonology and morphology. In M.D. Ross, A.K. Pawley and M. Osmond, The lexicon of Proto Oceanic, Vol.I: material culture, 15-35. Canberra: Pacific Linguistics.

Ross, Malcolm D., 2004a, The morphosyntactic typology of Oceanic languages. Languages and linguistics 5(2):491-541.

Ross, Malcolm, 2004b, Demonstratives, local nouns and directionals in Oceanic languages: a diachronic perspective. In G. Senft, ed., Deixis and demonstratives in Oceanic languages. Canberra: Pacific Linguistics.

Sasse, Hans-Jurgen, 2002, Recent activity in the theory of aspect: accomplishments, achievements, or just non-progressive state? Linguistic Typology 6:199-271.

Schachter, Paul and Timothy Shopen, 2007, Part-of-speech systems. In T. Shopen, ed., Vol.I:160.

Schneider, Cynthia, 2010, A grammar of Abma: a language of Pentecost Island, Vanuatu, Canberra: Pacific Linguistics.

Schütz, Albert, 1968, A pattern of morphophonemic alternation in Nguna, New Hebrides. In A. Capell, G. J. Parker, A. J. Schütz, eds., Papers in linguistics of Melanesia no.1, A-15:4147. Canberra: Pacific Linguistics.

Schütz, Albert, 1969, Nguna Grammar. Oceanic linguistics special publication no. 5. Honolulu: University of Hawai'i Press.

Senft, Gunter, 2008, Serial verb constructions in Austronesian and Papuan languages. Canberra: Pacific Linguistics.

Shopen, Timothy, ed., 2007a, Language typology and syntactic description. Vol.I, Clause structure. Cambridge: Cambridge University Press.

Shopen, Timothy, ed., 2007b, Language typology and syntactic description. Vol.II, Complex constructions. Cambridge: Cambridge University Press.

Shopen, Timothy, ed., 2007c, Language typology and syntactic description. Vol.III, Grammatical categories and the lexicon. Cambridge: Cambridge University Press.

Siewierska, Anna, 2004, Person. Cambridge: Cambridge University Press.
Smith, Carlotta, 1997, The parameter of aspect. \(2^{\text {nd }}\) edition. Dordrecht: Kluwer.

Sperlich, Wolfgang B., 1991, Namakir: a description of a Central Vanuatu language. PhD thesis, The Australian National University.
Sproat, Richard, and Chilin Shih, 1991, The cross-linguistic distribution of adjective ordering restrictions. In C. Georgopoulos et al., Interdisciplinary approaches to language: essays in bonour of S. Y. Kuroda. Springer publishing company.
Svenonius, Peter. 2008. The position of adjectives and other phrasal modifiers in the decomposition of DP. In L. McNally and C. Kennedy, eds., Adjectives and Adverbs: Syntax, Semantics, and Discourse. Oxford: Oxford University Press.

Teodorescu, Alexandra, 2006, Adjective ordering restrictions revisited. In D. Baumer, D. Montero and M. Scanlon, eds., Proceedings of the \(25^{\text {th }}\) West Coast conference on formal linguistics. 399-407. Somerville, MA: Cascadilla Proceedings Project.

Thieberger, Nicholas, 2006, A Grammar of South Efate: an Oceanic language of Vanuatu. Oceanic linguistics special publication no. 33. Honolulu: University of Hawai'i Press.

Thieberger, Nicholas, 2007, The demise of serial verbs in South Efate. In J. Siegel, J. Lynch and D. Eades, eds., Language description, bistory and development: linguistic indulgence in memory of Terry Crowley. 237-251. Amsterdam, Philadelphia: John Benjamins publishing company.

Thieberger, Nicholas, 2012, Mood and transitivity in South Efate. Oceanic linguistics 51(2):387401.

Thompson, Sandra A., Robert E. Longacre \& Shin Ja J. Hwang, 2007, Adverbial clauses. In T. Shopen, ed., Vol.III:237-302.

Timberlake, Alan, 2007, Aspect, tense, mood. In T. Shopen, ed., Vol.III:280-333.
Tryon, Darrell T., 1967, English-Dehu dictionary. Canberra: Pacific Linguistics.
Tryon, Darrell T., 1986, Stem-initial consonant alternation in the languages of Epi, Vanuatu: a case of assimilation? In P. Geraghty, L. Carrington and S.A. Wurm, eds., FOCAL II: papers from the fourth international conference on Austronesian linguistics, 239-258. Canberra: Pacific Linguistics.

Vanuatu National Statistics Office, 2009, 2009 national census of population and housing. Port-Vila: Ministry of finance and economic management.

Van Valin, Robert D. (Jr.), 1993, A synopsis of role and reference grammar. In R. D. Van Valin, ed., Advances in role and reference grammar. Current issues in linguistic theory 82:1164. Amsterdam, Philadelphia: John Benjamins publishing company.

Walsh, David S., 1982, Variation in verb-initial consonants in some eastern Oceanic languages.
In A. Halim, L. Carrington and S.A. Wurm, eds., Papers from the third international conference on Austronesian linguistics, Vol. I: Currents in Oceanic, 231-242. Canberra: Pacific Linguistics.

Waterhouse, J. H. L., 1928, A Roviana and English dictionary. Sydney: Epworth.
Zhiqun Xing, Janet, 2013 In Z. Jing-Schmidt, ed., Increased empiricism, recent advances in Chinese linguistics, 223-246. Amsterdam, Philadelphia: John Benjamins publishing company.

\section*{Appendix: Texts}

\section*{Text 1: When Thompson went to France}

\author{
Author: Thompson Namuan
}

Date recorded: April 2, 2006
Place recorded: Lelepa, Sailapa.
In this personal narrative, Thompson Namuan talks about his trip to France in the sixties, to work as a homekeeper.
(1) konou, nagi konou Thompson.

1SG name 1SG p.name
Me, my name is Thompson.
(2)
\begin{tabular}{lllll} 
A=msau-na & lag & a=ga & magmu & til=ia \\
1SG.S=want-3SG.OBJ COMPL & 1SG.S=IRR & 2PL.BEN & tell=3SG.OBJ & COMPL
\end{tabular}
\begin{tabular}{lll} 
mala & \(\mathrm{n}-\mathrm{a}=\) pa-ki & Franis. \\
time & REL-1SG.S=go-TR & p.name \\
I want to tell you about the time I went to France
\end{tabular}
(3) Malange \(a=p a-k i \quad\) Franis \(a=t o ~ w o k ~ w u r u ~ V i l a ~ p a n ~ p a, ~\) then 1SG.S=go-TR p.name 1SG.S=IPFV work pass p.name GO GO At the time I went to France, I used to work in Port-Vila...
(4)
\begin{tabular}{llllll}
\begin{tabular}{lll} 
kasem \\
to
\end{tabular} & \begin{tabular}{l} 
naleati \\
day
\end{tabular} & \begin{tabular}{lll} 
skei \\
INDEF
\end{tabular} & \begin{tabular}{l} 
kenem \\
1PL.EXCL.S
\end{tabular} & \begin{tabular}{l} 
tat \\
pat.great.uncle
\end{tabular} & \begin{tabular}{l} 
Masok \\
p.name
\end{tabular} \\
ar=towok & wuru & aaa... & & \\
1DU.EXCL.S \(=\) IPFV & work & pass & HESIT & \\
until one day, my paternal great-uncle Masok and I, we were working at...
\end{tabular}
(5)


Meanwhile, Mr. Tekrons wanted somebody to go with him, to go to France with him for his benefit.
(7) Mameia=g kaltalu e=panei pan pa e=rki konou=s
father=POSS:H p.name 3sG.S=come GO GO 3sG.s=tell 1sG=3sG.OBJ
Kaltalu's father came and told me.
(8) A=lag, "ae, konou \(a=m s a u-n a \quad\) laga=ga fa."

1SG.S=say hey 1SG 1SG.S=want-3SG.OBJ COMPL 1SG.S=IRR go:IRR
I said, "hey, I want to go."
(9) \(E=\) to se, mala skimau nge \(e=m s u g\) lwa konou.

3SG.S=stay while time be.same DEF 3SG.S=take removed 1SG
Then, at that time he took me away.
(10) \(\mathrm{E}=\mathrm{rki} \quad\) masta \(=\mathrm{n} \quad\) LaSmeti=s,

3sG.s=tell boss=POSS:NH p.name=3sG.OBJ
He told the boss of LaSMET,
(11) e=msug konou ar=kat pa-ki bellevue pa.

3SG.S=take 1SG 1DU.EXCL.S=CERT go-TR p.name GO
then he took me and we (two) went to Bellevue.
(12) a=to mato \(=\mathrm{s}\) to pan pa,
\(1 \mathrm{SG} . \mathrm{S}=\mathrm{IPFV}\) stay.long \(=3 \mathrm{OBL}\) STAT GO GO
\(e=\) magnou pat paspot agnou,
3SG.S=1SG.BEN make passport 1SG.POSS
I was living there on and on, he made my passport for me,
(13) \(\mathrm{e}=\) pat sragmauna pa \(\mathrm{e}=\) nou pkout, \(\mathrm{e}=\) lag,

3SG.S=make everything GO 3SG.S=be.finished completely 3SG.S=say
"malmauna pa=fa-ki naure pa \(=\) rki mamei nago=s."
now 2SG.S:IRR=go:IRR-TR island 2SG.S:IRR=tell father 2SG.POSS=3SG.OBJ
He did everything until it was finished, then he said, "now go to the island and tell your father."
(14)
\begin{tabular}{llll} 
A=panei & rki & mamei & agnou=s, \\
1sG.S=come & tell & father & 1 SG.POSS=3sG.OBJ
\end{tabular}

I came to tell my father,
(15)
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
mamei \\
father
\end{tabular} & \begin{tabular}{l}
agnou \\
1 SG.POSS
\end{tabular} & \[
\begin{aligned}
& \text { e=lag, } \\
& 3 \text { SG.S=say }
\end{aligned}
\] & \begin{tabular}{l}
"ae, nag \\
hey 2SG
\end{tabular} & \[
\begin{aligned}
& \mathrm{ku}=\text { tae } \\
& 2 \mathrm{sG} . \mathrm{s}=\mathrm{know}
\end{aligned}
\] \\
\hline \(\mathrm{a}=\mathrm{sei}\) & lag & pa=fa-ki & wara-e & pa? \\
\hline LOC-who & COMPL & 2 SG.IRR \(=\) go-TR & there-ADD & GO \\
\hline konou, & \(\mathrm{a}=\mathrm{ti}\) & pa-ki & wara-e & mau." \\
\hline 1SG & 1SG.S=NEG & go-TR & there-ADD & NEG2 \\
\hline
\end{tabular}
my father said, "hey, do you know where you'll go? As for me, I didn't go there."
(16) a=lag, te=ñol, a=ga fa.

1SG.Ssay SBST=just 1SG=IRR go:IRR
I said, "that's fine, I'll go."
(17)
\begin{tabular}{lcllll} 
E=lag, & "nag & ku=ti & tae & na-fsa-na & mau \\
3SG.S=say & \(2 S G\) & 2SG.S=NEG & know & ART-speak-NMLZ NEG2 & while \\
ku=lag & pa=fa?" & & & \\
2SG=say & 2SG.IRR=go:IRR & & &
\end{tabular}

A=lag, "e=pi te=mol."
1SG.S=say 3 SG.S=COP SBST=just
He said, "you don't know the language, and you say you will go?" I said, "that's fine."
(18) \(A=\) pan pan pan pa kasem naure tapla,

1SG.S=go GO GO GO to island like.this
ur=pat na-fsa-na laapa=s,
3PL.S=make ART-speak-NMLZ be.many=3OBL
konou \(a=\) maroa-ki-nia lag \(a=g a \quad\) fa
1SG 1SG.S=think-TR-3SG.OBJ COMPL 1SG.s=IRR go:IRR
I went on and on to the island, they talked a lot about it, I thought I'd go.
(19) \(\mathrm{A}=\mathrm{to}=\mathrm{s}\) pa, kat pa-ki Vila pan pan pa,

1sG.S=stay \(=3\) OBL GO CERT go-TR p.name GO GO GO
\(\mathrm{a}=\) pag plen \(\mathrm{A}=\) vila,
1SG.S=climb plane LOC=p.name
I stayed there, then I went to Port-Vila, I got on a plane in Port-Vila,
(20)
\begin{tabular}{lllllll} 
e=msug & konou & pan & pan & pa & kasem & Nouméa, \\
3sG.S=carry & 1SG & GO & GO & GO & to & p.name
\end{tabular}
(21)
\begin{tabular}{lllll} 
a=maturu & Noumea & a=maturu & na-p̃ogi-na & skimau, \\
1SG.S=sleep & p.name & 1SG.S=sleep & ART-night-NMLZ & one \\
I slept in Noumea, I slept one night, & &
\end{tabular}
\(\left.\begin{array}{llll}\begin{array}{l}\text { ur=to } \\
\text { 1PL.EXCL.S=stay }\end{array} & \text { Noumea, } & \text { p.name } & \text { a=mro pag plen } \\
\text { 1SG.S=AGAIN climb }\end{array} \quad \begin{array}{l}\text { Noumea, } \\
\text { plane p.name }\end{array}\right]\)\begin{tabular}{lll} 
ur=sfa & raki & Franis. \\
\begin{tabular}{ll} 
1PL.EXCL.S=run & towards
\end{tabular} & \begin{tabular}{l} 
p.name
\end{tabular} \\
we stayed in Noumea, I got on a plane again in Noumea, we travelled towards France.
\end{tabular}
\begin{tabular}{llllll} 
Ur=tum̃alu & p̃ogi=n & Saapat, & ur=pan & pan & pa, \\
1PL.EXCL.S=leave & night=POSS:NH & Saturday & 3PL=go & GO & GO
\end{tabular}
aliati Mande,
be.day Monday
We left on Saturday night, we travelled on and on until the Monday,
(24) ur=mro sfa mande pan pan pa, e=mro malogo, 1PL.EXCL.S=AGAINrun monday GO GO GO 1SG.S=AGAIN be.dark we travelled again on Monday, until it was night again,
(25) Tusde gotfan ur=kasem aaa Paris.

Tuesday afternoon 1PL.EXCL.s=reach HESIT p.name
Tuesday afternoon we arrived in Paris.
(26) So malange \(a=k a t\) taplange pan pa \(a=\) skei-go. so then 1SG.S=CERT like.this GO GO 1SG.S=one-1SG.POSS So at that time, I was like that, I was by myself.
(27) \(\mathrm{A}=\mathrm{ti}\) tae psruki na-fsa-na=n Franis mau. 1SG.S=NEG can speak ART-speak-NMLZ=POSS:NH p.name NEG2 I couldn't speak French.
(28)
\begin{tabular}{llll} 
Malange & \(\mathrm{a}=\mathrm{psruki}\) & nafsana=n & kia-gta, \\
then & 1SG.S=speak & ART-speak-NMLZ=POSS:NH & LOCAL-1PL.INCL.POSS
\end{tabular}
go Bislama \(\mathrm{A}=\) vila, \(\mathrm{a}=\) mato to kasem malange. and Bislama LOC=p.name 1sG.S=stay.long STAT to then At that time, I spoke our language, and Bislama in Port-Vila, I remained thus until then.
(29) Okay, malange \(a=\) tum̃alu pan \(a=p u\) rarua kiki skei okay then 1SG.s=leave GO 1sG.s=pull canoe be.small INDEF
\begin{tabular}{lllllll} 
pi & tena & ur=ga & lo & tae & konou & nlakan \\
COP & SBST.DEM & 3PL.s=IRR & look & know & 1SG & because
\end{tabular}
warampa-n se, e=pitlak te=loa.
there.forward-DIST too 3SG.S=have SBST=be.black
OK, then I left, I got a little canoe so they could recognise me because there too, there are black people.
(30)
\begin{tabular}{lllll}
\begin{tabular}{ll} 
Misis & agnou
\end{tabular} & \begin{tabular}{l} 
e=lag, "wan \\
boss.wife
\end{tabular} & 1SG.POSS & 3SG.S=say if
\end{tabular}\(\quad\)\begin{tabular}{l} 
pa=fan, \\
2SG.S:IRR=go:IRR.
\end{tabular}
mastanag e=ga to raki-go."
boss 2SG.POSs 3SG.s=IRR stay follow-2SG.OBJ
My boss's wife said, "If you go, they will get out of the plane, you will follow, and your boss will wait for you."
(31) \(A=p a n\), mala \(a=s u a\), te=laapa \(u r=p o\) sua, 1SG.S=go when 1SG.S=go.down SBST=be.plenty 3pL=SEQ go.down
ur=to tum̃alua, tum̃alua pkout, konou \(a=\) po raki mau. 3pl.S=IPFV leave leave completely 1SG 1SG.S=SEQ follow LIM I went, when I went down, lots of people went down, they were leaving, they all left, then I just followed.
(32) Mala \(a=\) laotu plen tapla tu, time 1SG. \(5=\) stand plane like.this STAT
\begin{tabular}{lllll} 
a=lop̃a masta & e=mato & ske & nar-ra, \\
1SG.S=see & boss & 3SG.S=IPFV & hold.up & hand-3SG.POSS
\end{tabular}
\begin{tabular}{llll} 
a=ske & rarua & kiki & skei, \\
1SG.s=hold.up & canoe & be.small & INDEF
\end{tabular}
\begin{tabular}{llllll} 
a=pseiki-nia=s, & \(\mathrm{e}=\mathrm{lo}\) & tae & lag & \(\mathrm{e}=\mathrm{pi}\) & konou, \\
1SG.S=show-3SG.OBJ=3SG.OBJ & 3sG.S=look & know & COMPL & 3sG.S=COP & 1SG
\end{tabular}
\(\mathrm{e}=\mathrm{kat}\) to=s, \(\mathrm{e}=\mathrm{kat}\) to walof konou.
3sG.s=CERT stay=3OBL 3SG.S=CERT IPFV wave 1SG
When I was standing in the plane like this, I saw that the boss was holding up his hand, I held up a little canoe, I showed it to him, he recognised me, he stayed there, he was waving at me.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline (33) & \[
\begin{aligned}
& \mathrm{A}=\mathrm{pan} \\
& 1 \mathrm{SG} . \mathrm{S}=\mathrm{go}
\end{aligned}
\] & \begin{tabular}{l}
pan \\
GO
\end{tabular} & pa
GO & \begin{tabular}{l}
kasem \\
to
\end{tabular} & \begin{tabular}{l}
masta \\
boss
\end{tabular} & agnou, 1sG.Poss & \[
\begin{aligned}
& \mathrm{e}=\text { lag, } \\
& 3 \text { SG. } .5=\text { say }
\end{aligned}
\] \\
\hline & \multicolumn{7}{|l|}{\(\begin{array}{lll}\text { "malmauna } & \tilde{p} a=\text { lik o } & \text { konou, } \\ \text { now } & \text { 2SG.IRR=hold } & \text { 1SG }\end{array}\)} \\
\hline & pa \(=\) liko & su & suk & konou & nlakan & natam̃ol & ur=laapa." \\
\hline & 2SG.IRR=hold & d tig & RED & 1SG & because & people & 3PL=be.plenty \\
\hline & \multicolumn{7}{|l|}{I went to my boss, he said, "now, hold on to me, hold on to me tight, because there are a lot of people."} \\
\hline
\end{tabular}
(34)
\[
\begin{array}{ll}
\mathrm{Ar}=\mathrm{to}=\mathrm{s} & \text { taplange, } \\
\text { 1DU.EXCL. } . \mathrm{S}=\mathrm{stay}=3 \mathrm{OBL} & \text { like.this }
\end{array}
\]
\begin{tabular}{llllll} 
ar=magnou & plag & naala & agnou & pan & pa, \\
1DU.EXCL.S \(=\) 1SG.BEN & look.for & basket & 1SG.POSS & GO & GO
\end{tabular}
\(\begin{array}{ll}\text { ar=put=ia } & \text { tapla, } \\ \text { 1DU.EXCL.S=pull=3sG.OBJ } & \text { like.this }\end{array}\)
We stayed there like this, we went to get my luggage for me, we got it like this,
(35) ar=pan pa lao mato pano=n taxi. 1DU.EXCL.S=go GO stand STAT sign=POSS:NH taxi
then we went to wait at a taxi sign.
(36) Taxi skei \(e=\) panei \(e=m s u g\) kenem.
taxi INDEF 3sG.S=come 3sG.S=carry 1PL.EXCL.S
A taxi came and took us.
(37) \(\mathrm{ar}=\mathrm{pa}\) kasem warange \(\mathrm{e}=\mathrm{pi}\) fo oklok,

1DU.EXCL.S=go to there 3SG.S=COP four o'clock
af pas fo af pas faif,
half past four half past five
We got there it was four o'clock, half past four, half past five,
(38) taxi e=msug kenem, ur=sfa pan pan pa
taxi 3sG.s=carry 1PL.EXCL.S 1PL.EXCL.S=travel GO GO GO
kasem wara \(a=\) maturu \(=s, \quad e=p i \quad\) eit oklok.
to place 1SG.S=sleep=3OBL 3sG.S=COP eight o'clock
the taxi carried us, we travelled on and on to the place I slept at, it was eight o'clock.
(39) Tenge, \(a=\) maturu pan pa, p̃ulp̃og \(a=\) pula taplange, SBST.DEF 1sG.S=sleep GO GO morning 1SG.s=wake.up like.this
\(\begin{array}{llll}\text { a=lo } & \text { pa-ki } & \text { katam } & \begin{array}{l}\text { taplange, } \\ \text { 1SG.S=look }\end{array} \\ \text { go-TR } & \begin{array}{l}\text { outside }\end{array} & \begin{array}{l}\text { like.this }\end{array}\end{array}\)
\(\mathrm{e}=\mathrm{pi}\) malange taos=ia a=kat maroa-ki kia-gta.
3sG.S=COP then like=3SG.OBJ 1SG.S=CERT think-TR LOCAL-1PL.INCL.POSS That was it, I slept on and on, in the morning I woke up like this, I looked outside like this, it was then that I thought about home.
(40) Kane \(a=k a t\) ti tae takanei \(a=g a \quad\) fat=ia mau. but 1SG.S=CERT NEG know how 1SG.S=IRR make:IRR=3SG.OBJ NEG2 But I didn't know what I would do.

\section*{Text 2: Three naluokia}

\author{
Author: Eunice Touger
}

Date recorded: April 11, 2008
Place recorded: Mangaliliu
The naluokia are a form of oral tradition found in Lelepa and in the Nakanamanga speaking area. They are similar to proverbs in that they consist of short sentences and are often metaphorical. During my fieldwork I tried to record as many as possible because only a few people in the community know them. Here, Eunice presents three naluokia, and explains their meanings. The first one is about how to manage currents when planning a return canoe trip from Efate to Lelepa, the second one is about the difficulty of making decisions, and the final one points out that people are often attracted by new, shiny things and neglect what they have.
\(\begin{array}{llllll}\text { (1) } & \begin{array}{l}\text { Konou, } \\ \text { 1SG }\end{array} & \begin{array}{l}\text { nagi } \\ \text { name }\end{array} & \begin{array}{l}\text { konou } \\ \text { 1SG }\end{array} & \mathrm{e}=\mathrm{pi} & \text { 3sG.S=COP }\end{array} \quad \begin{aligned} & \text { Eunice. } \\ & \text { p.name }\end{aligned}\)
Me, my name is Eunice.
(2) Konou \(a=\) panei to Magallu to mala kiki,
1SG 1SG.S=come stay p.name STAT time be.small

I came to stay in Mangaliliu for a short time,
(3) \(a=m s o u-n a\)
\(\mathrm{a}=\mathrm{ga} \quad\) til
til
tell
naluokia \(\quad \mathrm{e}=\) tolu.
1SG.S=want-3SG.OBJ 1SG=IRR tell proverb 3SG.S=three I want to tell three naluokia.
(4)
\begin{tabular}{lllllll}
\begin{tabular}{lll} 
Naluokia \\
proverb
\end{tabular} & \begin{tabular}{l} 
fea, \\
be.first:IRR
\end{tabular} & \multicolumn{1}{c}{\begin{tabular}{l} 
natowia \\
elders
\end{tabular}} & \begin{tabular}{l} 
ur=til=ia \\
3PL.S=tell=3SG.OBJ
\end{tabular} & \begin{tabular}{l} 
lag, \\
say
\end{tabular} \\
"namta & nag & \begin{tabular}{l} 
e=ga
\end{tabular} & \begin{tabular}{ll} 
to & rarua
\end{tabular} & fea."
\end{tabular} As for the first naluokia, the old people said, "your eyes should be on the first canoe."
(5)
\begin{tabular}{ll} 
E=tapla & e=lag, \\
3sG. \(S=\) like.this & 3sG. \(S=\) say
\end{tabular}
\begin{tabular}{llllll} 
wan & ku=pa-ki & Fate, & ku=to & Fate & to, \\
if & 2SG.S=go-TR & p.name & 2sG.S=stay & p.name & STAT
\end{tabular}
ku=msau-na lag ña=fa-ki naure. 2SG=want-3SG.OBJ COMPL 2SG:IRR=go:IRR-TR island It is like this, it says that if you go to Efate, you stay on Efate, then you want to go back to the island.
(6) \(\mathrm{ku}=\mathrm{kat}\) msomso rarua nag,
2SG.S=CERT load canoe 2SG.POSS
\begin{tabular}{llll} 
ku=msau-na & lag & \(\tilde{p} a=\) fa-ki & naure, \\
2SG.S=want-3SG.OBJ & COMPL & 2SG.S:IRR=go:IRR-TR & island
\end{tabular}
se rarua skei \(\mathrm{e}=\mathrm{kat}\) pea mato palse pa.
while canoe INDEF 3sG.S=CERT first IPFV paddle GO

You have loaded your canoe, you want to go back to the island, but a canoe has gone first.
(7) Namta nag e=ga to rarua fea nge.
eye 2SG.POSS 3SG.S=IRR stay canoe be.first:IRR DEF
Your eyes should be on that first canoe.
(8) \(\tilde{\mathrm{P}} \mathrm{a}=\) laka=e lag narua \(\mathrm{e}=\mathrm{put}=\mathrm{ia}\),
\(2 \mathrm{SG} . \mathrm{S}: \mathrm{IRR}=\) see \(=3 \mathrm{SG} . \mathrm{OBJ}\) COMPL current \(3 \mathrm{SG} . \mathrm{S}=\) pull=3SG.OBJ
\(\begin{array}{llllll}\text { narua } & \text { nmat } & \mathrm{e}=\mathrm{put}=\mathrm{ia} & \text { pa } & \text { raki } & \text { Artok, } \\ \text { current } & \text { low.tide } & \text { 3SG.S=pull=3SG.OBJ } & \text { GO } & \text { towards } & \text { p.name }\end{array}\)
pa \(=\) ti palse raus-ia mau.
2SG.S:IRR=NEG paddle follow=3sG.OBJ NEG2
You will see that the current pulls it, the current of the low tide pulls it towards Artok, do not paddle following it.
(9) Nag p̃a=false rarua nag \(\quad\) pa...

2SG 2SG.S:IRR = paddle:IRR canoe 2SG.POSS 2SG.S:IRR
pa \(=\) fat rarua nag
2SG.S:IRR=make:IRR canoe 2SG.POSS
e=ga liko Mautariu kite Nagsumtas.
3SG.S=IRR hang p.name or p.name
You will paddle your canoe, you... you'll have your canoe pointing at Mautariu or
Nagsumtas.
(10) Kane wan ku=lag pa=false raus rarua fea nge,
but if 2SG.s=say 2SG.S:IRR=paddle:IRR follow canoe be.first:IRR DEF
narua nmat \(\mathrm{e}=\mathrm{ga}\) fu kumu ne rarua pa raki Artok pa. tide low.tide 3SG.S=IRR pull:IRR 2PL be.with canoe GO towards p.name GO But if you think that you will paddle following this first canoe, the low tide will pull you and your canoe to Artok.
(11) Naluokia ke-rua, natowia ur=til=ia lag naa...
proverb \(\quad\) ORD-two elders 3 3L. \(S=\) tell=3SG.OBJ say HESIT

\section*{e=pi \(\quad\) prlaka \(=\) n Saone.}

3sG.S=COP bird.sp=POSS:NH p.name
As for the second naluokia, the old people said... it is the buff-banded rail from Saone.
(12) lag \(\quad\) plaka \(=n\)

MAYBE k.o.bird=POSS:NH
Saonewa-n e=laotu naa...
p.name DEM-DIST 3SG.S=stand.up HESIT
\(e=\) marou, \(e=p a n \quad\) lag \(e=g a \quad\) fa munu,
3SG.S=be.thirsty
3SG.S=go PURP 3SG.S=IRR go:IRR drink
\begin{tabular}{llll} 
e=ga & fa & munu & naa... \\
3SG.S=IRR & go:IRR & drink & HESIT
\end{tabular}
e=ga fa munu nuwai.
3SG.s=IRR go:IRR drink water
The buff-banded rail from Saone was standing up... he was thirsty, he went to drink, to drink... to drink water.
(13) e=pan se se,

3SG.S=go while while
\(\mathrm{e}=\) pitlaka nuwai \(\mathrm{ar}=\mathrm{rua} \quad \mathrm{e}=\) sara.
3SG.S=have water 3DU.S=two 3SG.S=run
He went, and there were two rivers that were running.
(14) Nae, palaka=n Saone nge \(\mathrm{e}=\) laotu naa... m̃aleputa \(=\mathrm{n}\) napua. 3SG k.o.bird=POSS:NH p.name DEF 3sG.S=stand.up HESIT middle=POSS:NH road As for him, the buff-banded rail from Saone, he was standing up... in the middle of the road.
(15) \(\mathrm{E}=\) lag, "a=ga mun sei?" \(\mathrm{e}=\) lag, " \(\mathrm{a}=\mathrm{ga}\) munu sei?" 3SG.S=say 1SG.S=IRR drink where 3SG.S=say 1SG.S=IRR drink where
nlakan naa nuwai e=sara wuru naa narp̃an=an ar=rua. because HESIT water 3SG.S=run pass HESIT side=POSS:NH 3DU.S=two He said, "Where should I drink?" he said "where should I drink?" because... the rivers were running... on both sides.
\begin{tabular}{lll} 
E=to & maleputa=n & napua, \\
3sG.S=stay & middle=POSS:NH & road
\end{tabular}
e=to paapte taplange,
3SG.S=stay go.back.forth like.this
\(\begin{array}{lllll}\mathrm{e}=\text { lag, } & \text { "a=ga } & \text { munu } & \text { narp̃an } & \text { ke-rua," } \\ \text { 3SG.S=say } & \text { 1SG.S=IRR } & \text { drink } & \text { side } & \text { ORD-two }\end{array}\)
e=to lag e=ga fa munu narpan ke-rua pan pa,
3SG.S=IPFV say 3SG.S=IRR go:IRR drink side ORD-two GO GO
He was in the middle of the road, he was going back and forth like this, he said "I will drink on the other side," he was saying that he would drink on the other side on and on,
(17)
\begin{tabular}{lllll} 
nae & \(\mathrm{e}=\) pkate & marou & pan & pa, \\
3SG & 3SG.S=too.much & be.thirsty & GO & GO
\end{tabular}
\begin{tabular}{lllllll} 
naa & \(\mathrm{e}=\mathrm{kat}\) & mat wane naa naa napua. \\
HESIT & \(3 \mathrm{SG} . \mathrm{S}=\) CERT & die & lie & HESIT & HESIT road
\end{tabular}
he was too thirsty, and... he died... on the road.
(18)
\begin{tabular}{lll} 
e=lag & wan & naa... \\
3SG. \(5=\) say & if & HESIT
\end{tabular}
\begin{tabular}{lllll} 
ku=msau-na & lag & naa & \(\tilde{p} a=\) fat & nmatuna \\
2SG.S=want-3SG.OBJ & COMPL & HESIT & 2SG.S:IRR=make:IRR & thing
\end{tabular}
na-maroa-na nag e=ga kat skimau.
ART-think-NMLZ 2SG.pOSS 3SG.S=IRR CERT one
It says that if... you want to do something, you should have a single idea.
(19) \(\tilde{P} a=k a t\) pa pat nmatuna nge,

2SG.S:IRR=CERT go make thing DEF
pa \(=\) mro ti pat na-maroa-na nag galaapa mau.

2SG.S:IRR=AGAIN NEG1 make ART-think-NMLZ 2SG.POSS IRR.be.many NEG2
You will go to do this thing, do not think about too many things.
(20) Kane wan ku=pat na-maroa-na nag laapa,
but if 2SG.S=make ART-think-NMLZ 2SG.POSS be.many
But if you think about too many things,
(21) ku=kano pa pat nmatuna nge nag ku=msau-na lag 2SG.S=cannot go make thing DEF 2 SG 2 SG. \(\mathrm{S}=\) want-3SG.OBJ COMPL
\(\tilde{p} a=f a \quad\) pat \(=\mathrm{ia}\).
2SG:IRR=go:IRR make=3SG.OBJ
you cannot do this thing that you wanted to do.
(22) Natowia ur=psa tonaki=nia lag naa,
elders 3pL.S=speak put=3SG.OBJ say HESIT
"p̃laka \(=\) n \(\quad\) Saone wa-n."
k.o.bird=POSS:NH p.name DEM-DIST

The old people explained it by saying... "(it's) the buff-banded rail from Saone."
(23) Naluokia ke-tolu, natowia ur=til=ia lag, proverb ORD-three elders 3PL.S=tell=3sG.OBJ say
ku=paam nafnaga \(=n \quad\) mala wia,
2SG.S=eat food=POSS:NH time be.good
ku=tarp̃agor nafnaga \(=n \quad\) mala \(s a=s\).
2sG.s=forget food=POSS:NH time be.bad=3OBL
As for the third naluokia, the old people said, "you eat food from the good times, you forget food from the bad times."
(24) E=tapla, e=lag wan tu=pi nkarkik to, 3SG.S=like.this 3 SG.S=say when 1PL.INCL.S=COP child STAT
It is like this, it says that when we were kids,
(25)

(26) \(\mathrm{Tu}=\mathrm{sa}\)

1PL.INCL.S=be.bad
\begin{tabular}{ll} 
to, & ur \(=\) to \\
STAT & 3PL. \(S=I P F V\)
\end{tabular}
pagan kinta, feed 1PL.INCL
to lo parkat kinta pan pa,
IPFV look catch 1PL.INCL GO GO
\(\begin{array}{lllll}\text { mala } & \text { tu=panei } & \text { pi } & \text { pela } & \text { tapla, } \\ \text { when } & \text { 1PL.INCL.S=come } & \text { COP } & \text { big } & \text { like.this }\end{array}\)
\begin{tabular}{lll} 
tu=lop̃a & te= \(\tilde{p}\) ata & skei, \\
1PL.INCL.S=see & SBST=be.different & INDEF \\
tu=kat & raus=ra & pa. \\
1PL.INCL.S=CERT & follow=3PL.OBJ & GO
\end{tabular}

We were little (lit: we were bad), they used to feed us, look after us on and on, and when we became adults like this, we met other people, and we went with them.
(27)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Tu=kat } \\
& \text { 1PL.INCL.S=CERT }
\end{aligned}
\] & \multicolumn{2}{|r|}{\[
\begin{aligned}
& \text { raus-ra } \\
& \text { follow=3PL.OBJ }
\end{aligned}
\]} & \[
\begin{aligned}
& \text { pan } \\
& \text { GO }
\end{aligned}
\] & \multicolumn{2}{|l|}{\begin{tabular}{l}
tapla, \\
like.this
\end{tabular}} \\
\hline tu=kat & mato & mnaara & pat & srago & to, \\
\hline 1PL.INCL.S=CERT & stay & 3SG.BEN & do & thing & STAT \\
\hline tu \(=\) kat & ne=ra & & mato. & & \\
\hline
\end{tabular}

We went with them like this, we used to do things for them, we lived with them.
(28)
\begin{tabular}{llll}
\begin{tabular}{l} 
Tu=kat \\
1PL.INCL.S=CERT
\end{tabular} & \begin{tabular}{l} 
tarpagagor \\
forget
\end{tabular} & \begin{tabular}{l} 
te=matua \\
SBST=be.old
\end{tabular} & \begin{tabular}{l} 
aginta \\
1PL.INCL.POSS
\end{tabular} \\
naara ur=pea & to, & \\
3pL \(\quad\) 3PL.S= be.first \(\quad\) STAT & \\
We forgot our elders who were first, &
\end{tabular}
(29)
\begin{tabular}{lll} 
te \(=\) matua & aginta & skei \\
SBST=be.old & 1PL.INCL.POSS & INDEF
\end{tabular}
na ur=pea to lo parkat kinta,
REL 3PL.S=first IPFV look catch 1PL.INCL
to pagan kinta pan pa tu=panei pi natam̃ol maskosko. IPFV feed 1PL.INCL GO GO 1PL.INCL.S=come COP people be.mature our elders who first used to look after us, fed us until we became adults.
(30)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Mala \(\quad t u=l o \tilde{p}\) \\
when 1PL.INC
\end{tabular} & \[
\begin{aligned}
& \text { tu=lop̃a } \\
& \text { 1PL.INCL.S=see }
\end{aligned}
\] & \[
\begin{aligned}
& \text { te=ãata } \\
& \text { SBST=be.different }
\end{aligned}
\] & tapla, be.like.this \\
\hline tu=kat & raus \(=\mathrm{ra}\) & pa & \\
\hline 1PL.INCL.S=CERT & follow=3PL.OBJ & go & \\
\hline tu=kat & tarpagor te & atua & nta, \\
\hline 1PL.INCL.S=CERT & forget SBS & be.old & L.INCL.POSS \\
\hline
\end{tabular}
na ur=pea to lo parkat kinta.
REL 3PL.S=first IPFV see catch 1PL.INCL
When we saw other people like this, we went with them, we forgot our parents who first used to look after us.
(31) \(\mathrm{Ur}=\mathrm{psa}\) tonaki=nia lag,

3PL.S=speak put=3sG.OBJ say
"ku=paam nafnaga \(=\) n mala wia,
2SG.S=eat food=POSS:NH time be.good
ku=tarp̃agor nafnaga \(=n \quad\) mala \(s a=s . "\)
2SG.S=forget food=POSS:NH time be.bad=3OBL
They explained this by saying, "you eat the food from the good times, you forget the food from the bad times."
(32) Tenge, e=nou warange.

SBST.DEF 3SG.S=be.finished there.
This, this is finished there.```


[^0]:    ${ }^{1}$ Map made in MapInfo by Nick Thieberger, available at: http://languages-
    linguistics.unimelb.edu.au/thieberger/vanlangs/index.html Last accessed April 1, 2014.

[^1]:    ${ }^{2}$ Bislama is the national language of Vanuatu. It is a creole language in which the lexicon is primarily based on English, with a small percentage of words coming from French.

[^2]:    ${ }^{3}$ The other Polynesian outlier, Emae, is spoken on the island of Emae in the Shepherds Islands.

[^3]:    ${ }^{4}$ String bands are popular music groups comprising acoustic instruments (guitars, ukuleles, a bush-bass and percussion). They exist in many villages in Vanuatu and perform during festive events.

[^4]:    ${ }^{5}$ Elan is freely downloadable here: http://tla.mpi.nl/tools/tla-tools/elan/download/ (Last accessed on April 01, 2014)
    ${ }^{6}$ These literary resources were produced as part of the Lelepa Language Project:
    http://chiefroimatasdomain.com/?page id=144 (Last accessed April 05, 2014)
    ${ }^{7}$ See http://catalog.paradisec.org.au/collections/SL1 (Last accessed on April 01, 2014)
    ${ }^{8}$ see http://www.hrelp.org/grants/projects/index.php?projid=295 (Last accessed on April 01, 2014)
    ${ }^{9}$ Toolbox is freely downloadable here: http://www-01.sil.org/computing/toolbox/downloads.htm (Last accessed on April 01, 2014)

[^5]:    ${ }^{1}$ Nasals and liquids are grouped together in the table as they form a natural class in the language, which I will refer to as sonorants. They behave similarly in some ways, for instance in their propensity to be syllabic under certain conditions.

[^6]:    'canoe stanchion'
    'eat:F'
    'weave:IRR'
    'pray'
    'p.name'
    'afternoon'
    'breathe'
    'round'
    'p.name'
    ‘k.o.fish'

[^7]:    ${ }^{2}$ This is also the case of Lelepa's neighbour South Efate (Thieberger 2006:57).

[^8]:    ${ }^{3}$ Note that this is not valid for lexemes with three-consonnant clusters such as psruki 'speak', as seen in (103) (105).

[^9]:    ${ }^{4}$ Glide insertion is documented in closely-related languages such as South Efate (Thieberger 2006:53), Lewo (Early 1994:71), amongst others.

[^10]:    ${ }^{1}$ In Lelepa, traditional names such as Munalpa are passed from one person to the next and reflect status. Individuals change names several times in the course of their life as they change status. In contrast, Christian names such as Steven are kept by their bearers for their whole life and do not reflect changes in status.

[^11]:    ${ }^{2}$ The language also has a locative proclitic $a=$ 'LOC' (see 3.4.3) which likely reflects the POc local/temporal preposition *i (Ross 1998b, Lynch, Ross and Crowley 2002:87) rather than the article ${ }^{*} a$.
    ${ }^{3}$ There are also non-nominal compounds, which are mostly lexicalised and non-productive. The adverb malmauna 'now' is a combination of mala 'time' and mauna 'every', mauna being a combination of the adverb mau 'all' and the nominaliser -na. Note that a number of morphophonological processes occur with this compound: mala is reduced to mal, and the compound is a single phonological word. It is also not semantically compositional. Finally, some word class derivation occurs as well, as the elements of the compound belong to different word classes from the compound itself.

[^12]:    ${ }^{4}$ Note that compounding is not relevant to all referents belonging to semantic classes such as birds or baskets: names for many bird species such as maala 'Circus approximans', puasa 'peregrine falcon' and laaka 'kingfisher' are not compounds formed with maanu.

[^13]:    ${ }^{5}$ Note that the compounds marka tuama 'male ogre' and fterki tuama 'female ogre' could be interpreted as following a reversed order, with tuama 'ogre' contributing the main referential information, while marka 'old.man' and fterki 'married woman' modify tuama by encoding a particular characteristic of the referent.

[^14]:    ${ }^{8}$ The NP Kafman rua refers to the joint colonial government established by France and Great Britain which ruled Vanuatu until Independence in 1980.

[^15]:    ${ }^{9}$ Note that the use of the term determiner does not imply a claim for the existence of a determiner phrase or DP constituent in the language. In this work, I opted for a more traditional NP analysis rather than using a DP analysis.

[^16]:    ${ }^{1}$ However, certain adjectivals and the determiner skei 'INDEF' can be reduplicated.

[^17]:    ${ }^{2}$ Unlike (92), the relative clause is not introduced by na. Relativisers are optional, and this example could be analysed either as a main clause and a relative clause or as two separate clauses. However, intonation disambiguates structures such as in (93) (see 12.6.1). This clause is part of a single intonation phrase, with no pauses, thus it is analysed as a single clause.

[^18]:    ${ }^{1}$ Wearing pig's tusks around one's wrist and arms is a common traditional practice in Vanuatu.

[^19]:    ${ }^{1}$ I am grateful to Chris Ballard for pointing this resource out to me.

[^20]:    ${ }^{2}$ See Chapter 9 for a definition and discussion of the verb complex.
    ${ }^{3}$ Haspelmath's notion of 'narrow clause' excludes dislocated NPs (Haspelmath 2012:8), and in this sense is equivalent to the concept of 'basic clause' used in the present work (see 7.1.2).

[^21]:    ${ }^{4}$ The verb paus 'weave' is part of a class of verbs which retain their last consonant when hosting an enclitic but drop it otherwise, for instance, when followed by an NP or a verb in an SVC (see 3.3.5).

[^22]:    ${ }^{5}$ Note that this the case in many Vanuatu languages, as well as in Bislama (ren i ren 'it's raining', ples i kolkol 'it's cold', ples itudak 'it's night'). This shows one of the substrate's influences on that language.

[^23]:    ${ }^{6}$ Bellevue is a suburb of the Vanuatu capital Port-Vila.

[^24]:    ${ }^{7}$ Although informants attributed 'I will give you to this canoe' as a possible reading for (82), they did not accept it as a meaningful sentence.

[^25]:    ${ }^{8}$ Subject proclitics can sometime be omitted, under particular circumstances (see 10.1.2).

[^26]:    ${ }^{9}$ Such a split in transitivity is different from differential object marking (Bossong 1991, Aissen 2003), which is a type of alternation. In differential object marking, a transitive verb is able to take different objects which receive different marking according to their properties (e.g. animacy, definiteness, etc). In a transitivity split, a given verb can only take a given type of object, while another verb takes another type of object.

[^27]:    ${ }^{10}$ The Oceanic language Drehu, spoken in New Caledonia, displays a split in ditransitive constructions (MoyseFaurie 1983:161-162). In Drehu, the split is between two types of indirect objects, those that are unmarked and those that are introduced by a preposition. Indirect objects referring to proper nouns and pronouns are unmarked, while all other indirect objects are introduced by a preposition. Outside of Austronesia, a case of lexical split in ditransitive constructions is English (Malchukov, Haspelmath and Comrie 2007:40).

[^28]:    ${ }^{11}$ Similar constructions occur in the other Central Vanuatu languages Nguna and Namakir. In Nguna, Schütz (1969:59-60) describes constructions with magi- 'for' and in Namakir, Sperlich calls the equivalent of the Lelepa benefactive phrase a "benefactive object" (Sperlich 1991:271). It is clear that these constructions are historically related in all four languages, since they cover the same semantic scope, are built with cognate morphemes (except

[^29]:    ${ }^{12}$ Bomase, or 'Au Bon Marché', is a Port-Vila supermarket.

[^30]:    ${ }^{1}$ Ambitransitive verbs are also called labile verbs (Chikobava 1942, Kibrik et. al 1977, Haspelmath 1993:62)

[^31]:    ${ }^{2}$ Note that this count does not include derived transitive verbs, which would increase the number of transitives significantly.

[^32]:    ${ }^{3}$ Note that seisei is inherently reciprocal and while it is glossed 'meet', an alternative gloss may be 'have a meeting'.

[^33]:    ${ }^{4}$ However, the final syllable of a verb can give a good clue regarding verb class: most verbs ending in $k i$ are either transitive or ambitransitive.

[^34]:    ${ }^{5}$ Note that O-verbs in Lynch, Ross and Crowley (2002) and U-verbs in Ross (1998c, 2004) refer to the same thing. In the earlier reference, the authors Lynch, Ross and Crowley (2002:91, footnote 15) judge the label U-verb "infelicitous", whereas in the latter, Ross uses U-verbs. Here I follow Ross (2004a) and use the term "U-verb".

[^35]:    ${ }^{6}$ Note that the interlinearisation of examples shows which verbs are derived from those which are not.

[^36]:    ${ }^{7}$ This vowel is realised as an unstressed [i] by older speakers.

[^37]:    8 Example (116) also has the verb pan 'go'. The difference between pan and pa has to do with whether a destination for the motion event has been previously established. Pan denotes motion away from the deictic centre to a destination that has already been established in the discourse, whereas $p a$ simply encodes motion away from the deictic centre.

